Set 5, Due: March 25, 2024

1. Let $L \subset \mathbb{S}^n \subset \mathbb{R}^{n+1}$ be an immersed submanifold. Ddefine the cone over *L* by

$$C(L) = \{rx : r \ge 0, x \in L\}$$

and call *L* the link of *C*(*L*). Find the relation between the mean curvatures of *C*(*L*) in \mathbb{R}^{n+1} (away from the origin), *L* in \mathbb{R}^{n+1} , *L* in \mathbb{S}^n .

2. p.259: 8-18

- **3.** Consider the upper half-plane $\mathbb{R}^2_+ = \{(x, y) \in \mathbb{R}^2 : y > 0\}.$
 - (1) Let g be the Riemannian metric given by

$$g_{11} = 1, \ g_{12} = 0, \ g_{22} = \frac{1}{y}.$$

Compute $\lim_{\epsilon \to 0} L_g(c_{\epsilon})$ where c_{ϵ} is the vertical segment $x = 0, \epsilon \le y \le 1$. Is g complete? Explain your answer.

(2) Let *g* be the Riemannian metric (called Lobatchevski metric, Poincaré metric) defined by

$$g_{11} = g_{22} = \frac{1}{y^2}, \ g_{12} = 0.$$

Show g is complete.

4. Let *M* and *N* be Riemannian manifolds and let $f : M \to N$ be a diffeomorphism. Assume that *N* is complete and that there exists a constant c > 0 such that

$$\left| df_p(v) \right| \le c |v|$$

for all $p \in M$ and $v \in T_p M$. Show that *M* is complete.