Application of the Rauch Comparison Theorem

Theorem 0.1. Let K be the sectional curvature of (M, g) with $0<L \leq K \leq H$ where L, H are constants. Let d be the distance between two consecutive conjugate points on a geodesic γ. Then $\pi / \sqrt{H} \leq d \leq \pi / \sqrt{L}$.

Proof. Let $S^{n}(H)$ be the tound sphere with sectional curvature $=H$. Let J be a Jacobi field along a geodesic $\gamma:[0, l] \rightarrow M, J(0)=0, J \perp \gamma^{\prime}$; take a geodesic $\tilde{\gamma}:[0, l] \rightarrow S^{n}(H)$ with $\left|\tilde{\gamma}^{\prime}\right|=\left|\gamma^{\prime}\right|$ and \tilde{J} a Jacobi field along \tilde{J} with $\tilde{J}(0)=0, \tilde{J} \perp \tilde{\gamma}^{\prime}$ and $\left|\tilde{J}^{\prime}(0)\right|=\left|J^{\prime}(0)\right|$. Note that $\tilde{\gamma}$ has no congujate points on $(0, \pi / \sqrt{H})$ (recall we wrote down Jacobi fields which equal 0 at $t=0$ for space forms). Rauch comparison implies $|J(t)| \geq|\tilde{J}(t)|>0, t \in(0, \pi / \sqrt{H})$, so J has no conjugate points there, in turn $d \geq \pi / \sqrt{H}$. Next, consider $S^{n}(L)$. If $d>\pi / \sqrt{L}$, then $0<\left|J(t) \leq|\tilde{J}(t)|, t \in(0, d)\right.$ but this is not tru for $S^{n}(L)$.

Remark. Compare to "model" spaces, namely, the space forms.
Proposition 0.2. Given M^{n}, \tilde{M}^{n} with $K_{p}(\sigma) \leq K_{\tilde{p}}(\tilde{\sigma})$ for all $p \in M, \tilde{p} \in \tilde{M}, \sigma, \tilde{\sigma}$, let $i: T_{p} M \rightarrow T_{\tilde{p}} \tilde{M}$ be a linear isometry. Suppose that $\exp _{\left.p^{\mid}\right|_{B_{r}(0)}}$ is diffeomprphic and $\left.\exp _{\tilde{p}}\right|_{\tilde{B}_{r}(0)}$ is non-singular; and $c:[0, a] \rightarrow$ $\exp _{p}\left(B_{r}(0)\right), \tilde{c}:[0, a] \rightarrow \exp _{\tilde{p}}\left(\tilde{B}_{r}(0)\right)$ with $\tilde{c}=\exp _{\tilde{p}} \circ i \circ \exp _{p}^{-1} \circ c$. Then $l(c) \geq l(\tilde{c})$.

Proof. Take a curve $\bar{c}(s)=\exp _{p}^{-1} c(s)$ in $T_{p} M$. Denote $f(t, s)=\gamma_{s}(t)=\exp _{p} t \bar{c}(s)$ the radial geodesic for any fixed $s \in[0, a]$ for $0 \leq t \leq 1$, and $J_{s}(t):=\frac{\partial f}{\partial s}$ is a Jacobi field along $\gamma_{s}, J_{s}(0)=0, J_{s}(1)=\frac{\partial f}{\partial s}(1, s)=c^{\prime}(s)$ (draw a picture to see what's going on).

$$
\frac{D J_{s}}{d t}(0)=\frac{D}{d t}\left[\left(d \exp _{p}\right)_{t \bar{c}(s)} t \bar{c}^{\prime}(s)\right]_{t=0}=\bar{c}^{\prime}(s)
$$

In \tilde{M}, set $\tilde{f}(t, s)=\exp _{\tilde{p}} t i(\bar{c}(s))=\tilde{\gamma}_{s}(t)$. Let $\tilde{J}_{s}(t)=\frac{\partial \tilde{f}}{\partial s}(t, s)$ be a Jacobi field with $\tilde{J}_{s}(0)=0, \tilde{J}_{s}(1)=$ $\tilde{c}^{\prime}(s), \frac{D \tilde{J}_{s}}{d t}(0)=i\left(\bar{c}^{\prime}(s)\right)$. We have

$$
\left\langle\tilde{J}_{s}^{\prime}(0), \tilde{\gamma}_{s}^{\prime}(0)\right\rangle=\left\langle i \bar{c}^{\prime}(s), i \gamma_{s}^{\prime}(0)\right\rangle=\left\langle\bar{c}^{\prime}(s), \gamma_{s}^{\prime}(0)\right\rangle=\left\langle J_{s}^{\prime}(0), \gamma_{s}^{\prime}(0)\right\rangle
$$

By Rauch comparison,

$$
\left|\tilde{c}^{\prime}(s)\right|=\left|\tilde{J}_{s}(1)\right| \leq\left|J_{s}(1)\right|=\left|c^{\prime}(s)\right|
$$

So

$$
l(\tilde{c})=\int_{0}^{a}\left|\tilde{c}^{\prime}\right| \leq \int_{0}^{a}\left|c^{\prime}\right|=l(c)
$$

We state, without proof, Bishop's volume comparison theorem:
Theorem 0.3. Let (M, g) be a complete manifold (more detail later, for now, say metrically complete). If $\operatorname{Ric}_{M} \geq H$ where H is a constant, then $\operatorname{Vol}_{M}\left(B_{r}(0)\right) \leq \operatorname{Vol}\left(B_{r}^{H}(0)\right)$ where $B_{r}^{H}(0)$ is the geodesic ball in the simply connected complete manifold of constant sectional curvature H. Moreover, $\operatorname{Vpl} l_{M}\left(B_{r}(0)\right) / \operatorname{Vol}\left(B_{r}^{H}(0)\right)$ is non-increasing in r and tends to 1 as $r \rightarrow 0$.

