18.100B Problem Set 9

Due Thursday April 21 by $2: 30 \mathrm{pm}$. When solving homework problems, you may cite the theorems proved in class. However, you may not cite theorems from Apostol that were not discussed / proved in class unless noted in the problem description.

Part A

1 Problem 1 contained an error, so has been removed.
2 (a, 5 points). (Apostol 7.14). Let $f, \alpha:[a, b] \rightarrow \mathbb{R}$. Suppose that f is continuous and α has bounded variation. Let $V(a)=0$ and for $x \in(a, b]$, let $V(x)$ be the variation of α. Prove that

$$
\begin{equation*}
\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d V . \tag{1}
\end{equation*}
$$

(note: you can't immediately assume that $|f| \in \mathcal{R}(V)$. But since f is continuous and α has bounded variation, this shouldn't be hard to prove)
(b, 5 points). When does equality hold in (1)? Prove that your answer is correct.
3 (5 points) (Apostol 7.15) Let $\alpha:[a, b]$ be a function of bounded variation on $[a, b]$, and let $\alpha_{1}, \alpha_{2}, \ldots$ be a sequence of functions, each of bounded variation on $[a, b]$. Suppose that the total variation of $\alpha-\alpha_{n}$ on $[a, b]$ tends to 0 as $n \rightarrow \infty$, and assume that $\alpha_{n}(a)=\alpha(a)$ for each $n=1,2, \ldots$. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Prove that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) d \alpha_{n}(x)=\int_{a}^{b} f(x) d \alpha
$$

(since f is continuous and α and each α_{n} have bounded variation, you can assume that the integrals in the above equation exist).

Part B

4 (5 points) Let $f_{1}, f_{2}, f_{3}, \ldots$ be a sequence of functions from $[a, b] \rightarrow \mathbb{R}$. Suppose that for each $x \in$ $[a, b], f_{1}(x) \leq f_{2}(x) \leq f_{3}(x) \leq \ldots$, and $\left|f_{j}(x)\right| \leq 1$ for each $j=1,2, \ldots$ Define $f(x)=\sup \left\{f_{j}(x)\right.$: $j=1,2, \ldots\}$ (convince yourself that f is well defined). If the Riemann integral $\int_{a}^{b} f_{j}(x) d x$ exists for each j, is it true that $\int_{a}^{b} f(x) d x$ exists? Prove that the answer is yes, or provide a counter-example.
5 (a, 7 points) (Apostol 7.35) Let f be Riemann integrable on $[a, b]$. Suppose $0 \leq f(x) \leq M$ for all $x \in[a, b]$ (here $M>0$), and $\int_{a}^{b} f(x) d x=I>0$. Let $h=\frac{I}{2(M+b-a)}$. Prove that the set $\{x \in[a, b]: f(x)>h\}$ contains a finite number of disjoint open intervals, the sum of whose lengths is at least h.

Hint: Choose a partition P of $[a, b]$ so that every Riemann sum $\sum_{k=1}^{n} f\left(t_{k}\right) \Delta x_{k}$ is $\geq I / 2$ (i.e. regardless of the choice of $t_{k} \in\left[x_{k-1}, x_{k}\right]$; you should explain why you can do this. Define

$$
A=\left\{k: f(x)>h \text { for all } x \in\left[x_{k-1}, x_{k}\right]\right\} .
$$

You want to show that the sum of the lengths of the intervals $\left[x_{k-1}, x_{k}\right]$ with $k \in A$ is at least h. (b, 3 points) Using part a, prove the following theorem: Let f be bounded and Riemann integrable on $[a, b]$. If $\int_{a}^{b} f d x>0$, then there is an open interval I so that $f(x)>0$ for all $x \in I$.

