
FINITE STATURE IN ARTIN GROUPS

KASIA JANKIEWICZ

Abstract. We give criteria for a graph of groups to have finite stature with respect to its
collection of vertex groups, in the sense of Huang-Wise. We apply it to the triangle Artin
groups that were previously shown to split as a graph of groups. This allows us to deduce
residual finiteness, and expands the list of Artin groups known to be residually finite.

1. Introduction

A group G has finite stature with respect to a collection of subgroups Ω, if for every H ∈ Ω
there are only finitely many H-conjugacy classes of subgroups of the form H∩

⋂
i∈I H

gi
i where

Hgi
i is a G-conjugate of an element Hi ∈ Ω. Finite stature was introduced by Huang-Wise

in [HW26] where they proved that under certain assumptions the fundamental group G of
a graph of groups has certain separability properties, provided that G has finite stature
with respect to its collection of vertex groups. In [HW24] the same authors showed that a
graph of nonpositively curved cube complexes X with word hyperbolic fundamental group
is virtually special, provided that π1X has finite stature with respect to the vertex groups
in the corresponding splitting as a graph of groups. Finite stature is closely related to the
more classical notion of finite height, introduced and studied in [GMRS98].

The goals of this paper are two-fold. Firstly, we illustrate that the notion of finite stature
is satisfied and useful in well-studied groups arising naturally in topology. Indeed, we provide
explicit examples of very different nature than the groups studied in [HW26, HW24], as they
are not hyperbolic and not virtually compact special. Specifically we show that the splittings
of certain Artin groups obtained by the author in [Jan22, Jan24] have finite stature with
respect to the vertex groups. Secondly, we deduce the residual finiteness of those Artin
groups, which was previously not known in some cases.

A triangle Artin group is an Artin group on three generators, given by the presentation

GMNP = 〈a, b, c | (a, b)M = (b, a)M , (b, c)N = (c, b)N , (c, a)P = (a, c)P 〉,

where (a, b)M denotes the alternating word aba . . . of length M .

Theorem 1.1. A triangle Artin group GMNP splits as graphs of free groups with finite
stature with respect to its collection of vertex groups, provided that either M > 2 or N > 3,
where we assume that M ≤ N ≤ P .

As a consequence (using results of [HW26]) we obtain the following.

Corollary 1.2. A triangle Artin group GMNP , where M ≤ N ≤ P and either M > 2 or
N > 3, is residually finite.
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The condition on M,N,P in Theorem 1.1 excludes the cases (M,N,P ) = (2, 2, P ) and
(M,N,P ) = (2, 3, P ). In the first case, the corresponding Artin group GMNP is isomorphic
to Z×AP where AP denotes a dihedral Artin group, and consequently GMNP does not split
as a graph of free groups, but is well-known to be residually finite. Wu-Ye have recently
shown that G2,3,P with p ≥ 6 splits as a graphs of finite rank free groups if and only if P is
even [WY25]. In a subsequent work, Meyer proved that G23P with P even has finite stature
with respect to its collection of vertex groups [Mey24]. It remains open whether G23P with
P ≥ 7 is residually finite.

There are a few other classes of Artin group that are known to be residually finite. In the
case of spherical type Artin groups, residual finiteness follows from linearity [Kra02, Big01,
CW02, Dig03]. The linearity of a few other Artin groups was established as a consequence
of being virtually special [Liu13, PW14], but none of the triangle Artin groups considered
in Thereom 1.1 admit virtual geometric actions on CAT(0) cube complexes [HJP16, Hae21].
Residual finiteness of some other Artin groups was proven in [BGJP18, BGMPP19].

Some, but not all, of the groups considered in the above corollary were proven to virtually
split as algebraically clean graphs of free groups, i.e. graphs of finite rank free groups where
all inclusions of edge groups in the adjacent vertex groups are inclusions as free factors, in
[Jan22, Jan24]. Such groups are known to be residually finite [Wis02]. Our method allows
us to deduce residual finiteness of new Artin groups, but also recover the residual finiteness
of the Artin groups treated in [Jan22, Jan24].

Group virtually splitting as algebraically clean graphs of groups satisfy some stronger
profinite properties than residual finiteness, some of which are discussed in the forthcoming
paper [JS25]. We do not know whether all the groups considered in this paper are in fact
virtually algebraically clean. More generally, the following is open.

Question 1.3. Let G be a graph of finite rank free groups with finite stature with respect to
its collection of vertex groups. Does G have a finite index subgroup whose induced splitting
is algebraically clean?

The converse is known to be false, as there are examples of algebraically clean graphs of
free groups that do not have finite stature [HW26, Exmp 3.31]. On the other hand, we do
not know whether there exists a group G splitting as an algebraically clean graph of groups
such that G does not have finite stature with respect to any splitting with free vertex groups.

This paper is organized as follows. In Section 2 we state some facts about maps between
graphs and free groups, and fix the notation and terminology. Section 3 discusses the notion
of finite stature, and we prove some facts used later in the text. Section 4 studies certain
families of graphs of free groups. Finally, Section 5 is devoted to Artin groups, and contains
computations that allow us to apply the results from earlier sections to prove Theorem 1.1.

Acknowledgements. The author thanks Jingyin Huang and Dani Wise for fruitful dis-
cussions, and the anonymous referee for their corrections and suggestions. This material
is based upon work supported by the National Science Foundation grants DMS-2203307,
DMS-2238198, and DMS-1926686.

2. Preliminaries

2.1. Maps between graphs. A combinatorial graph Γ is a disjoint union V (Γ) t E(Γ)
together with the operation E(Γ) → E(Γ), e 7→ ē of taking the opposite edge (i.e. the same
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edge with opposite orientation), and the operation E(Γ) → V (Γ), e 7→ τ(e) of taking the
endpoint of an oriented edge.

A metric graph is a combinatorial graph that can also be viewed as a 1-dimensional CW-
complex, with a path metric in which each 1-cell has length 1. Later, we will be considering
graphs of free groups and corresponding graphs of spaces where the spaces are graphs as
well. We will denote the underlying graph of the graph of groups/graphs by Γ, while the
vertex and edge spaces will be denoted by letters such as X, Y and will be viewed as metric
graphs. The following definitions will be applied to graphs arising as vertex and edge spaces.

A continuous map φ : Y → X between two metric graphs is combinatorial, if the image of
each 0-cell of Y is a 0-cell of X, and while restricted to an open 1-cell with endpoints y1, y2,
φ is an isometry onto an edge with endpoints φ(y1), φ(y2). A combinatorial immersion is a
combinatorial map f : Y → X which is locally injective. Every combinatorial immersion is
π1-injective [Sta83, Prop 5.3]. Also, every combinatorial immersion can be “completed” to
a covering map by attaching trees to Y , without changing its homotopy type.

A Stalling’s fold is a combinatorial map f : Y → X where

• there exist distinct edges y1, y2 ∈ E(Y ) such that τ(ȳ1) = τ(ȳ2), and E(X) =
E(Y )/y1 ∼ y2,
• V (X) = V (Y )/τ(y1) ∼ τ(y2), and
• f is the natural quotient map, where f(y1) = f(y2).

We note that f is a homotopy equivalence if and only if τ(y1) 6= τ(y2).
We will also consider more general maps between graphs than combinatorial.

Definition 2.1. A continuous map φ : Y → X between two metric graphs is monotone, if
the image of each 0-cell of Y is a 0-cell of X, and while restricted to each 1-cell y of Y , φ is
either constant and its image is a 0-cell x in X, or φ is a combinatorial map after possibly
subdividing y into n nontrivial subintervals.

Here are two important examples of monotone maps. An edge-subdivision is a monotone
map f : Y → X where

• there exists an edge y ∈ E(Y ) and edges y1, . . . , yk ∈ E(X) where k ≥ 2 such that
f(y) is equal the path y1 · · · yk,
• E(Y )− {y} = E(X)− {y1, . . . , yk}, and f is the identity map on E(Y )− {y},
• V (X) = V (Y )t {τ(y1), . . . , τ(yk−1)}, and τ(yi) = τ(ȳi+1) for all i = 1, . . . , k− 1 (i.e.
y1 · · · yk is a path in X),

An edge-subdivision is always a homotopy equivalence. An edge-collapse is a monotone map
f : Y → X where

• there exist an edge y ∈ E(Y ) such that E(X) = E(Y )− {y},
• V (X) = V (Y )/τ(y) ∼ τ(ȳ), and
• f is the natural quotient map, where f|y is constant.

Similarly, an edge-collapse is a homotopy equivalence if and only if τ(y) 6= τ(ȳ), i.e. if y is
not a loop.

The following proposition provides a useful factorization of every monotone map.

Proposition 2.2. Every monotone map φ : Y → X factors as Y
σ−→ Y

ι−→ X where

• σ : Y → Y is obtained by a sequence of edge-subdivisions, Stalling’s folds, edge-
collapses,
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• ι : Y → X is a combinatorial immersion.

Proof. Every combinatorial map factors as a sequence of Stallings-folds followed by a combi-
natorial immersion [Sta83, Sec 3.3]. By definition, a monotone map φ restricted to an edge
is either an edge-collapse, or an edge-subdivision post-composed with a combinatorial map.
The statement follows. �

2.2. Subgroups of free groups. Let X be a metric graph with a basepoint x ∈ X, and
let F = π1(X, x).

As noted above, for every combinatorial immersion Y → X and y ∈ Y that maps to
x, the fundamental group π1(Y, y) naturally embeds as a subgroup of F [Sta83, Prop 5.3],
in which case we say (Y, y) → (X, x) represents π1(Y, y). Two such groups π1(Y, y) and
π1(Y, y′) are conjugate in F by an element of F represented by the loop in X that is an
image of a path from y to y′ in Y . More generally, any other F -conjugate of π1(Y, y), by say
an element g ∈ F , can be obtained by taking a union of Y and a path labelled by g with its
start-point attached to y and performing Stalling folds. The fundamental group of this new
graph based at the endpoint of the added path is the conjugate g−1π1(Y, y)g. Thus a map
Y → X without specifying the basepoint in Y determines an F -conjugacy class of subgroups
of F .

Also, for every combinatorial immersion Y → X, there exists a covering map X̂ → X such
that Y → X factors as an embedding Y → X̂ which is a homotopy equivalence, composed
with the covering map X̂ → X [Sta83, Thm 6.1].

Definition 2.3 ([Sta83, Sec 7]). Given a subgroup H ⊆ F , the core of H with respect to
X is a based combinatorial immersion i : (Y, y)→ (X, x) where Y is the minimal subgraph

of the covering space of X̂ → X that corresponds to H, where the inclusion Y → X̂ is a
homotopy equivalence, and in particular induces an isomorphism π1(Y, y)→ π1(X̂, y) = H.

We can also think of the core of an F -conjugacy class of H as a combinatorial immersion
Y → X where Y is minimal among cores (Y, y)→ (X, x) of subgroups in the conjugacy class.
A core of an F -conjugacy class has no leaves, as removing leaves does not affect homotopy
type of a graph.

When (Y, y) → (X, x) is a monotone map and Y has no leaves (except for y possibly),
then ι : (Y , σ(y))→ (X, x) in Proposition 2.2 is the core of π1(Y, y) ⊆ π1(X, x).

2.3. Intersections of subgroups. Let φi : Yi → X be a combinatorial immersion for
i = 1, 2. The fiber product of Y1 and Y2 over X is the graph Y1 ⊗X Y2 with the vertex set

{(y1, y2) ∈ V (Y1)× V (Y2) : φ1(y1) = φ2(y2)}

and the edge set

{(e1, e2) ∈ E(Y1)× E(Y2) : φ1(e1) = φ2(e2)}.
There is a natural combinatorial immersion Y1 ⊗X Y2 → X, given by (y1, y2) 7→ φ1(y1) =
φ2(y2).

Lemma 2.4 ([Sta83]). Let H1, H2 ⊆ G = π1(X, v) where X is a finite metric graph, and
for i = 1, 2 let (Yi, yi) → (X, x) be the core of Hi with respect to X. Then the intersection
H1 ∩H2 is represented by (Y1 ⊗X Y2, (y1, y2))→ (X, x).
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We emphasize that in general fiber products have multiple connected components. When
(Yi, yi) → (X, x) represents Hi, then each connected component of Y1 ⊗X Y2 represents a
conjugacy class of a subgroup of G of the form Hg1

1 ∩ H
g2
2 = g−1

1 H1g1 ∩ g−1
2 H2g for some

g1, g2 ∈ G.

Lemma 2.5 ([GMRS98, Lem 1.2]). Suppose G is a Gromov hyperbolic group, and H1, H2

are quasiconvex subgroups. Then there are only finitely many conjugacy classes of infinite
intersections Hg1

1 ∩H
g2
2 where g1, g2 ∈ G.

The above statement follows directly from [GMRS98, Lem 1.2] when H1 = H2. Their
proof also works in the general case, and for completeness we include it below.

Proof. By Lemma 2.4 each conjugacy class of the intersection of conjugates H1 and H2 is
represented by the connected component of the fiber product Y1⊗X Y2 where Y1, Y2 are cores
of H1, H2 with respect to X. Since H1, H2 have finite ranks, Y1, Y2 are finite graphs. Thus
Y1⊗X Y2 is finite, and in particular, Y1⊗X Y2 has finitely many connected components (each
representing a conjugacy class of the intersections of conjugates of H1 and H2).

Following [GMRS98, Lem 1.2] we will show that if H1, H2 are K-quasiconvex subgroups of
a δ-hyperbolic group G, then for every shortest representative g of the double coset H1gH2,
if |g| ≥ 2k + 2δ, then H1 ∩ Hg

2 is finite. That will imply our statement. Indeed, each
intersection Hg1

1 ∩H
g2
2 is conjugate to H1 ∩Hg

2 , and there are only finitely many g ∈ G such
that |g| < 2K + 2δ, hence only finitely many conjugacy classes of infinite subgroups of the
form Hg1

1 ∩H
g2
2 .

Fix a double coset H1gH2 and assume that every representative g of this double coset
has length |g| ≥ 2k + 2δ. Since the cardinality of a subgroup H1 ∩ g−1H2g is invariant
under conjugation, we can assume that g is the shortest representative of the coset gH1. Let
h ∈ H1∩g−1H2g, and let h0 ∈ H2 satisfy h = g−1h0g. Consider a quadrilateral in the Cayley
graph of G at points 1, g−1, g−1h0, h = g−1h0g with geodesic path ph going from 1 to h, p1

going from 1 to g−1, ph0 going from g−1h0, and p2 going from g−1h0 to g−1h0g = h. We will
denote the label of a path p by Lab(p), the standard distance in the Cayley graph by d(·, ·),
and the length of a geodesic by | · |, and a path x with reversed orientation by x.

Let v be a vertex on the path ph which is as close to the middle as possible, in particular
|d(1, v) − d(v, h)| ≤ 1. Let q be an initial subpath of ph going from 1 to v. Since H1 is
K-quasiconvex and h ∈ H1, there exists a vertex at distance at most K away from v which
belongs to H1, let s be a path from v to that vertex. Let t be a shortest path from v to ph0 ,
and let w denote its endpoint. Since H2 is quasiconvex and h0 ∈ H2, there exists an element
of the coset g−1H2 at most K away from w, let s′ be a path from that vertex to w.

We have g = Lab(q′s′)Lab(s′ts)Lab(sq), and we have Lab(q′s′) ∈ H2, Lab(s′ts) ∈ H2gH1,
and Lab(sq) ∈ H1. By our assumption |Lab(s′ts)| > 2K+2δ, so |t| ≥ |Lab(s′ts)|−|s|−|s′| >
2δ. Since every point of the quadrilateral is contained in 2δ-neighborhood of the other three
sides, we conclude that v ∈ N2δ(p1 ∪ p2).

Suppose that v ∈ N2δ(p1), and let u be a vertex of p1 such that d(v, u) ≤ 2δ and let
y be a geodesic from u to v. Let p1 = p′1p

′′
1 where p′1 ends at u. Since g = Lab(p1) =

Lab(p′′1ys)Lab(sq) and g is a minimal length representative of gH1, we have |g| = |p′1|+ |p′′1| ≤
|p′′1| + |y| + |s|, and so |p′1| ≤ |y| + |s| ≤ 2δ + K. Thus |q| ≤ |y||p′1| ≤ 4δ + K, and so
|ph| ≤ 2|q| + 2 ≤ 8δ + 2K + 2. We have just shown that for every h ∈ H1 ∩Hg

2 the length
|h| ≤ 2|q|+ 2 ≤ 8δ, which implies that H1 ∩Hg

2 is a finite group. �
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3. Finite stature

Definition 3.1 ([HW26, Defn 1.1]). Let G be a group and let Ω = {Hλ}λ∈Λ be a collection
of subgroups of G. Then (G,Ω) has finite stature if for each H ∈ Ω, there are finitely
many H-conjugacy classes of infinite subgroups of form H ∩ C, where C is an intersection
of (possibly infinitely many) G-conjugates of elements of Ω.

The main result of [HW26] is the following.

Theorem 3.2 ([HW26, Thm 1.3]). Let G be the fundamental group of a graph of groups
with finite underlying graph Γ. Suppose that

(1) each Gv for v ∈ V (Γ) is a hyperbolic, virtually compact special group,
(2) each Ge for e ∈ E(Γ) is quasiconvex in its vertex groups,
(3) (G, {Gv}v∈V (Γ)) has finite stature.

Then each quasiconvex subgroup of a vertex group of G is separable in G. In particular, G
is residually finite.

In particular, the first two conditions are automatically satisfied for any finite graph of
finite rank free groups, and free groups are locally quasi-convex.

Corollary 3.3. Let G be the fundamental group of a graph of finite rank free groups. If
(G, {Gv}v∈V (Γ)) has finite stature, then every finitely generated subgroup of a vertex group
of G is separable. In particular, G is residually finite.

We also note the following characterization of finite stature in terms of edge stabilizers
in the action of G on the Bass-Serre tree associated to the splitting. All the stabilizers
considered in this paper are pointwise stabilizers.

Lemma 3.4 ([HW26, Lem 3.9, Lem 3.19]). Let T be the Bass-Serre tree of the splitting of
G as a graph of groups with the underlying graph Γ. Then (G, {Gv}v∈V (Γ)) has finite stature
if and only if for each v ∈ V (Γ), there are only finitely many Gv-conjugacy classes of groups
of the form Gv ∩

⋂
e∈E Stab(e) where E ⊆ E(T ).

Moreover, if all the vertex groups are hyperbolic and edge groups are quasiconvex, then it
suffices to only consider finite subsets E ⊆ E(T ).

We note that in the above statement, we can identify Gv with Stab(ṽ) for some fixed lift
ṽ ∈ V (T ) of v. In fact, every conjugate of a vertex group of G can be identified with Stab(ṽ)
for some ṽ ∈ V (T ). We explain in more detail, how one can think of the intersections of
conjugates of vertex groups.

We will denote the pointwise stabilizer of a path ρ in T by Stab(ρ), i.e. Stab(ρ) =⋂
e∈ρ Stab(e). Using the identification of Gv with Stab(ṽ), we can view Stab(ρ) as a sub-

group of Gv if ṽ is contained in ρ. To emphasize that, we will denote such a subgroup by
Gv ∩ Stab(ρ). If ρ, ρ′ both pass through ṽ and ρ ⊆ ρ′, then Gv ∩ Stab(ρ′) ⊆ Gv ∩ Stab(ρ).

Proposition 3.5. Let G be a graph of δ-hyperbolic groups with quasiconvex edge groups,
and let T be its Bass-Serve tree. Then (G, {Gv}v∈V (Γ)) has finite stature if and only if there
are only finitely many Gv-conjugacy classes of groups of the form Gv ∩ Stab(ρ) where ρ is a
finite path in T passing through ṽ.

Proof. Lemma 3.4 implies that it suffices to show that there are finitely many conjugacy
classes of groups of the form Gv ∩

⋂
e∈E Stab(e) for v ∈ V (Γ) and finite E ⊆ E(T ), if and
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only if there are only finitely many conjugacy classes of groups of the form Gv ∩ Stab(ρ)
where ρ is a finite path that passes through v.

The forward implication is immediate. Let us assume there are only finitely many conju-
gacy classes of groups of the form Gv∩Stab(ρ) where ρ is a finite path passing through ṽ. The
group Gv ∩

⋂
e∈E Stab(e) is exactly the subgroup of G stabilizing all the edges in E (and in

particular stabilizing ṽ which is an endpoint of some e ∈ E). In particular, Gv∩
⋂
e∈E Stab(e)

can be realized as the subgroup of Gv stabilizing the union of paths {ρe}e∈E where ρe is the
minimal path containing v and the edge e, i.e. Gv ∩

⋂
e∈E Stab(e) = Gv ∩

⋂
e∈E Stab(ρe) =⋂

e∈E (Gv ∩ Stab(ρe)). Since there are only finitely many conjugacy classes of subgroups of
the form Gv ∩Stab(ρ) and all such subgroups are quasiconvex in Gv as finite intersections of
quasiconvex subgroup, Lemma 2.5 implies that there are also only finitely many conjugacy
classes of their intersections. �

We finish this section with the following observation that will allow us to work with certain
finite index subgroups of the considered groups.

Proposition 3.6 (Passing to finite index supergroups). Let G split as a graph of groups. If
G′ is a finite index subgroup of G such that G′ has finite stature with respect to the vertex
groups in the induced graph of groups decomposition, then G has finite stature with respect
to its vertex groups.

Proof. This follows immediately from the characterization of finite stature in terms of the of
number of orbits of based big trees in the sense of [HW26, Def 3.7], see [HW26, Lem 3.9]. �

4. Graphs of free groups

4.1. Amalgamated products A ∗C B where [B : C] = 2. Let G = A ∗C B be an amal-
gamated product of finite rank free groups, where [B : C] = 2. Let b ∈ B −C, i.e. bC is the
nontrivial coset of C/B.

Let T be the Bass-Serre tree of G (metrized so that each edge of T has length 1). The
vertices of T are of two kinds: infinite valence A-vertices, corresponding to conjugates of A,
and valence two B-vertices corresponding to conjugates of B. The edges of T correspond
to conjugates of C. We use the convention where Cg denotes the conjugate g−1Cg, so that
(Cg)h = Cgh.

We start with the following observation.

Lemma 4.1. An element g ∈ G stabilizes an edge e of T if and only if g stabilizes an
adjacent edge e′ meeting e at a B-vertex.

Proof. Since the vertex incident to both e and e′ has valence 2, any element stabilizing one
of the edges must stabilize the other one as well. �

Remark 4.2. As a consequence of the lemma, we get that for every path ρ′ in T , Stab(ρ′) =
Stab(ρ) where ρ is the minimal path containing ρ′ that starts and ends at A-vertices.

Thus we will only consider paths in T starting and ending at A-vertices. We continue
measuring the length of paths with respect to the original metric on the tree, i.e. any two
A-vertices are even distance away.

In the following lemma, we describe all the stabilizers of paths in T joining two A-vertices.
In our application, we will only need the statement for the paths of length at most 8, so
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Aba1 Ba1 A B Ab Bd1b Abd1b

Ca1 Ca1 C C Cd1b Cd1b

Figure 1. Every length 6 path in the Bass-Serre tree of A ∗C B where
[B : C] = 2 is conjugate to the pictured path. The labels are the stabilizers.
We note that two consecutive edges meeting at a B-vertex have the same
stabilizers. See Lemma 4.3. Algebraically, this also follows from the fact that
Cb = C, since [B : C] = 2.

we give explicit description in those cases, but for completeness we also give the general
statement for paths of arbitrary length.

Let ρ : [0, 2`] → T be a path joining two A-vertices. Since the length of ρ is even, the
middle point of ρ is always a vertex in T . Depending on the parity of `, the middle vertex
can be an A-vertex or a B-vertex. If ` is even, the middle vertex of ρ is an A-vertex, and in
the lemma below we will consider such paths where the middle vertex of ρ is stabilized by A,
and that the following vertex is stabilized by B (see initial subpath of length 4 of the path
in Figure 1 for an example with ` = 2). If ` is odd, the middle vertex of ρ is a B-vertex,
and by conjugating Stab(ρ), and we will consider paths where the middle vertex is stabilized
by B, and the vertex before is stabilized by A (see Figure 1 for an example where ` = 3).
Note that those cases can be simultaneously described as satisfying Stab(ρ(2k)) = A and
Stab(ρ(2k + 1)) = B where ` = 2k or ` = 2k + 1, depending on the parity of `.

Lemma 4.3. Let ρ : [0, 2`]→ T be a length 2` combinatorial path in T starting and ending
at A-vertices. Suppose that Stab(ρ(2k)) = A and Stab(ρ(2k + 1)) = B, where ` = 2k or
` = 2k + 1 depending on the parity of `.

Then Stab(ρ) is of the form K` ⊆ C where:

• K1 = C
• K2 = Ca1 ∩ C for some a1 ∈ A
• K3 = Ca1 ∩ C ∩ Cd1b for some a1, d1 ∈ A
• K4 = Ca2ba1 ∩ Ca1 ∩ C ∩ Cd1b for some a1, a2, d1 ∈ A

and more generally,

• for ` = 2k + 1:

K2k+1 = Cakbak−1b...ba1 ∩ Cak−1b...ba1 ∩ · · · ∩ Ca1 ∩ C ∩ Cd1b ∩ Cd2bd1b ∩ · · · ∩ Cdk...bd1b

for some a1, . . . , ak, d1, . . . , dk ∈ A;
• for ` = 2k:

K2k = Cakbak−1b...ba1 ∩ Cak−1b...ba1 ∩ · · · ∩ Ca1 ∩ C ∩ Cd1b ∩ Cd2bd1b ∩ · · · ∩ Cdk−1...bd1b

for some a1, . . . , ak, d1, . . . , dk−1 ∈ A.

Additionally, we have the following, where K` and K ′` denote two groups of the form as
above (for possibly different choices of elements ai’s and di’s).

• if ` is odd, then K` = K`−1 ∩ (K ′`−1)b

• if ` is even, then K` = K`−1 ∩ (K ′`−1)a
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Proof. Since Stab(ρ) =
⋂
e∈ρ Stab(e), by analyzing the stabilizers of edges in ρ, we get the

description of Stab(ρ) as required.
Let us now prove the second part of the statement. First assume that ` = 2k + 1. Then

K2k+1 =(Cakbak−1b...ba1 ∩ Cak−1b...ba1 ∩ · · · ∩ Ca1 ∩ C ∩ Cd1b ∩ Cd2bd1b ∩ · · · ∩ Cdk−1...bd1b)∩

∩ (Cdkbdk−1b...bd1 ∩ · · · ∩ Cd1 ∩ C ∩ C(a1b−2)b ∩ Ca2b(a1b−2)b ∩ · · · ∩ Cak−1b...(a1b
−2)b)b

We note that a1b
−2 ∈ A since b2 ∈ C, so the expression above is indeed of the form K2k ∩

(K ′2k)
b. Similarly, when ` = 2k, we get

K2k =(Cak−1b...ba1 ∩ Cak−2b...ba1 ∩ · · · ∩ Ca1 ∩ C ∩ Cd1b ∩ Cd2bd1b ∩ · · · ∩ Cdk−1...bd1b)∩

∩ (Cdk−2...bd1ba
−1
1 ∩ · · · ∩ Ca−1

1 ∩ C ∩ Ca2b ∩ · · · ∩ Cakb...ba2b)a1

which gives as K` = K`−1 ∩ (K ′`−1)a for a = a1 as required. �

We emphasize that subgroups K` in the above statement are not uniquely defined, i.e.
they depend on the choice of elements ai and di.

4.2. Monochrome cycles preserving splittings. We start with recalling the definition
of a graph of spaces in the special cases where all the vertex and edge spaces are graphs. A
graph of graphs X(Γ) consist of the following data:

• a combinatorial graph Γ,
• for every v ∈ V (Γ), a metric graph Xv,

• for every edge e ∈ E(Γ), a metric graph Xe such that Xe

β
' Xē, and an injective

monotone map φe : Xe → Xτ(e).

Moreover, we say X(Γ) is orientation preserving, if all graphs Xu for u ∈ V (Γ) ∪ E(Γ)
are oriented, and maps φe are orientation preserving monotone maps (i.e. sending oriented
paths to possibly trivial oriented paths).

We emphasize that we do not require φe to be a combinatorial map, but by Proposition 2.2
we know that φe factors as the composition Xe → Xe → Xτ(e) where the second map is a
combinatorial immersion.

Let [n] denote the set {1, . . . , n}. An edge coloring of a metric graph X is a maps c :
{1-cells of X} → [n]. We refer to i ∈ [n] as colors. A cycle in a graph X is monochrome
if each edge in the cycle has the same color. Suppose graphs X,X ′ admit edge colorings
c, c′ with colors [n] respectively. A monotone map φ : X → X ′ is color-preserving, if
c′(φ(e)) = c(e) for every 1-cell e of X. A color-preserving isomorphism is a combinatorial
map which is bijective on both vertex-sets and edge-sets, which is color-preserving.

Definition 4.4 (Monochrome cycles preserving graph of graphs). Fix n ≥ 1 and for each
i ∈ [n] = {1, . . . , n} let `i ≥ 1. LetX(Γ) be a graph of graphs, where for each u ∈ V (Γ)∪E(Γ)
there exists a coloring cu : {1-cells of Xu} → [n], and if u ∈ E(Γ) then cu = cū. A graph of
graphs X(Γ) is monochrome cycles preserving if

• for every e ∈ E(Γ), φe is color-preserving, and
• for each i ∈ [n] and each u ∈ V (Γ) t E(Γ), the preimage c−1

u (i) ⊆ Xu is a disjoint
union of embedded cycles,
• for e ∈ E(Γ), the map φe restricted to each cycle of color i factors through a cycle of

length `i in the factorization provided by Proposition 2.2.
9



We can visualize such graphs of groups as having edges in vertex and edge graphs colored
in a way that the induced colorings of edges in the edge graphs is consistent with respect
to both adjacent vertex graphs. Note that in particular, each vertex and edge graph in a
monochrome cycles preserving graph of graphs is a union of monochrome cycles. The third
condition can be thought of stating that each cycle of a given color in an edge graph has
length `i in the metric induced by each vertex group. We note that this length does not
need to correspond to the combinatorial length of that cycle, as the attaching maps φe do
not need to be combinatorial. We make this (and more general) statement more precise in
Lemma 4.6. Instead of providing any examples now, we refer the reader to Section 5 and
splittings of Artin groups, induced by monochrome cycles preserving graph of graphs. They
are the motivation for the above definition.

We will denote the associated graph of group by G(Γ).

Lemma 4.5. Let X(Γ) be a monochrome cycles preserving graph of groups.

(1) For j = 1, 2, let Y j → Xv be a combinatorial immersion where for each color i the
subgraph of Y i consisting of edges of color i is a disjoint union of cycles of length `i.
Then for each color i the subgraph of Y 1 ⊗Xv Y 2 consisting of edges of color i is a
disjoint union of cycles of length `i.

(2) Let ψ : Y → Xe be a combinatorial immersion. Let φe ·ψ : Y → Xτ(e) factor through

Y and let φe · β · ψ : Y → Xτ(e) factors through Y
′

in the factorization provided by

Proposition 2.2. Then for each color i the subgraph of Y consisting of edges of color
i is a disjoint union of cycles of length `i, if and only if, for each color i the subgraph

of Y
′

consisting of edges of color i is a disjoint union of cycles of length `i.

Proof.
(1) We need to show that each e of Y1 ⊗Xv Y2 of color i is contained in a unique mono-

chrome cycle of length `i. For j = 1, 2, let πj : Y1 ⊗Xv Y2 → Yj be the natural
projection. Note that for j = 1, 2, πj(e) has color i and by assumption it is contained
in a unique monochrome cycle Cj of length `i. Thus C1, C2 lift to a monochrome
cycle of length `i containing e.

(2) For each color i the subgraph of Y consisting of edges of color i is necessarily a disjoint
union of cycles and path segments, since Y embeds in some covering of Xτ(e). The
same is also true for Y for the same reason.

The map Xe → Xe does not identify two vertices of Xe, which are both adjacent
to edges of the same color, and consequently this property also holds for the map
Y → Y . In particular, the subgraph of Y consisting of edges of color i has any path
segments if and only if the subgraph of Y consisting of edges of color i does. Thus
the subgraph of Y consisting of edges of color i is a disjoint union of cycles if and

only if the subgraph of Y
′

consisting of edges of color i is a disjoint union of cycles.
Finally, let C be a monochrome cycle of Y of color i, and let C be the preimage of

C in Y , which is also a monochrome cycle. Then C has length `i if and only if the
map Y → Xτ(e) restricted to C is 1-1. This happens if and only if Y → Xe restricted

to C is 1-1. Thus each monochrome cycle of color i in Y has length `i if and only if

each monochrome cycle of color i in Y
′

does.
�
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In the next couple of Lemmas, we assume that ρ ⊆ T is a path in the Bass-Serre tree of
G(Γ) passing through the vertex ṽ, and an edge ẽ containing ṽ. We identify the stabilizer
Stab ṽ with Gv for some v ∈ V (Γ), and the Stab(ẽ) with Ge for some e ∈ E(Γ). We view
the stabilizer Stab(ρ) =

⋂
e⊆ρ Stab(e) as a subgroup of Stab(ẽ) = Ge.

Since we are assuming that Gv is the fundamental group of the graph Xv, the inclusion of
Stab(ρ) in Gv can be represented by the monotone map φ : Yρ → Xv, where Yρ is the core of
Stab(ρ) with respect to Xe, and the map is obtained by post-composition with Xe → Xv. Let

φ : Yρ
σ−→ Y ρ

ι−→ Xv be a factorization of φ provided by Proposition 2.2. Graphs Yρ and Y ρ

have natural coloring induced by their combinatorial immersions to Xe and Xe respectively.

Lemma 4.6. Let X(Γ) be a monochrome cycle preserving graph of groups. Then for every
finite path ρ in the Bass-Serre tree of the associated group G(Γ), for each color i the subgraph
of Y ρ consisting of edges of color i is a disjoint union of cycles of length `i.

Proof. Since Stab(ρ) =
⋂
e∈ρ Stab(e), we can obtain Y ρ by a finite sequence and of fiber

product of graphs Y 1 ⊗Xv Y 2 and moving between the factorizations of intermediate graphs
Y combinatorially immersing in some Xe with respect to two maps to the vertex spaces
Xτ(e), Xτ(e) By Lemma 4.5 those operations preserve the property that each subgraph of

color i is a disjoint union of cycles of length `i. Thus the resulting graph Y ρ has this
property. �

As a consequence of Lemma 4.6, we can view every Y ρ as the 1-skeleton of a 2-complexÁYρ obtained by attaching `i-gons of color i along each monochrome cycle of color i.
If ρ ⊆ ρ′, then Stab(ρ′) ⊆ Stab(ρ) and so there is a combinatorial immersion Y ρ′ → Y ρ

over Xv.

Lemma 4.7. Suppose ρ ⊆ ρ′ and ÁYρ is simply connected. Then the combinatorial immersion
Y ρ′ → Y ρ is an embedding of a subgraph.

Proof. Since ÁYρ is simply connected, it follows that ÁYρ′ ⊆ ÁYρ, and so Y ρ′ ⊆ Y ρ. �

5. Finite stature in triangle Artin groups

5.1. The statement. A triangle Artin group is given by the presentation

GMNP = 〈a, b, c | (a, b)M = (b, a)M , (b, c)N = (c, b)N , (c, a)P = (a, c)P 〉,

where (a, b)M denote the alternating word aba . . . of length M .
The following theorem describes a splitting of GMNP as an amalgamated product of free

groups, where the map from the amalgamating subgroup to the vertex groups is described
in terms of maps between graphs.

Theorem 5.1 ([Jan22, Cor 4.13]). Let GMNP be an Artin group where M,N,P ≥ 3. Then
GMNP = A ∗C B where A ' F3, B ' F4 and C ' F7, and [B : C] = 2. The map C → A is
induced by the map φ : XC → XA pictured in Figure 2, and the map C → B is induced by
the quotient of the graph XC by a π rotation.

Theorem 5.2 ([Jan24, Prop 2.8]). Let GMNP be an Artin group where M,N ≥ 4 and
P = 2.

11



Figure 2. The map φ : XC
σ−→ XC

ι−→ XA when (1) none, (2) one, (3) two
or (4) all of M,N,P are even, respectively. Specifically, M = 2m or 2m + 1,
N = 2n or 2n + 1, and P = 2p or 2p + 1. We use the convention where the
edge labelled by a number k is a concatenation of k edges of the given color.
The thickened edges in XC are the ones that get collapsed to a vertex in XC

• If at least one of M,N is odd, then GMNP = A ∗C B where A ' F2, B ' F3 and
C ' F5, and [B : C] = 2. The map C → A is induced by the map φ : XC → XA

pictured in Figure 3, and the map C → B is induced by the quotient of the graph
XC by a π rotation.
• If both M,N are even then GMNP = A∗B where A ' F2, B ' F3. The two maps
B → A are induced by the maps φ1, φ2 : XB → XA pictured in Figure 4.

Here is a precise statement of the main theorem of this paper (Theorem 1.1).

Theorem 5.3. Let GMNP be a triangle Artin group where M ≤ N ≤ P and either M > 2,
or N > 3. Then GMNP has finite stature with respect to {A}, where A is as described in
Theorem 5.1 or Theorem 5.2 respectively. All finitely generated subgroups of A are separable
in GMNP , and in particular GMNP is residually finite.

12



Figure 3. The map φ : XC
id−→ XC

σ−→ XC
ι−→ XA when P = 2, M = 2m+1 ≥

5, and (top) N = 2n + 1 ≥ 5, (bottom) N = 2n ≥ 4, respectively. The use of
colors in the leftmost graphs represents the π-rotation of XC .

Figure 4. The maps φi : XB
id−→ XB

σ−→ XB
ι−→ XA for i = 1, 2, when

M = 2m ≥ 4, N = 2n ≥ 4, and P = 2.

In subsections 5.5, 5.6, 5.7 and 5.8 we will prove groups GMNP as above have finite stature
with respect to {A} by analyzing various cases (see Proposition 5.12, Proposition 5.14,
Proposition 5.20, and Proposition 5.24). The separability of finitely generated subgroups of
A will then follow from Corollary 3.3.

5.2. Some facts about the splittings of Artin groups. We start with some facts that
will be used in the next sections. We first focus on the cases where GMNP splits as A ∗C B.
Let β : XC → XC be the π-rotation, as in Theorem 5.1 or Theorem 5.2 respectively. A choice
of a path between x ∈ XC and β(x) ∈ XC determines an element b ∈ B − C, such that the
induced homomorphism C → C is the conjugation by b. We emphasize that β2 is the identity
map. Figure 2 and Figure 3 illustrate the factorization φ = ι ◦ σ from Proposition 2.2. We
denote σ(XC) = XC .

We will also extend the definition of σ to any combinatorial immersion of XC (and abuse
the notation) in the following way. Given a combinatorial immersion Y → XC , let Y → XC

be a combinatorial immersion, and let σ : Y → Y be a composition of edge-subdivisions,
Stallings’ folds, and edge-collapses, which locally coincides with σ : XC → XC . In particular,
the following diagram commutes.

Y Y

XC XC .

σ

σ
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We note the following.

Lemma 5.4. The map σ : Y → Y is a homotopy equivalence for every combinatorial
immersion Y → XC .

For each subgroup H ⊆ C there is a one-to-one correspondence between the core Y → XC

of H with respect to XC and the core Y → XC of H with respect to XC , where Y = σ(Y )
as above.

Proof. The map σ : XC → XC is obtained as a sequence of edge-subdivisions and edge-
collapses of the edges. By analyzing each of the cases in Figure 2 and Figure 3, we note that
we never collapse a loop. Thus, by discussion in Section 2, σ : XC → XC is a homotopy
equivalence. Similarly, any induced map Y → Y is also obtained as a sequence of edge-
subdivisions and edge-collapses of the edges that are not loops, and hence σ : Y → Y is a
homotopy equivalence. By construction Y → XC is the core of some subgroup H ⊆ π(XC)

with respect to XC if and only if Y → XC is the core of H with respect to XC . �

We will use the notation σ−1(Y ) to denote Y such Y = σ(Y ).

Lemma 5.5. Let H ⊆ C be a subgroup, and let Y → XC be its core with respect to XC .

Then Y → XC
β−→ XC is the core of Hb ⊆ C. Moreover,

Proof. Indeed, Y → XC induces the inclusion H → C and XC
β−→ XC induces the conjugation

by b. �

When we consider the composition of the map Y → XC
β−→ XC with σ : XC → XC we

will again abuse the notation and write σβ(Y ) to represent the map Y → XC .
The following lemma will allow us to apply Proposition 3.5.

Lemma 5.6. Let T be the Bass-Serre tree of the splitting GMNP = A ∗C B, and ρ be a
finite path in T of length 2` between a pair of A-vertices and such that Stab(ρ(2k)) = A
where ` = 2k or 2k + 1. The A-conjugacy class of the stabilizer Stab(ρ) is represented by a
combinatorial immersion Y ` → XC → XA, where the corresponding Y` is defined recursively:

• Y1 = XC ,
• Y` is a connected component of σ−1(Y `−1 ⊗XA

Y `−1) for even `,
• Y` is a connected component of σ−1(Y `−1 ⊗XA

σ · β(Y`−1)) for odd `

The map Y `−1 → XA in the recursive definition above is obtained by composing the map
Y `−1 → XC with the map XC → XA.

Proof. Let ρ be a path of length 2`. By Lemma 4.3, Stab(ρ) is equal to a group K` defined
recursively as

• K1 = C,
• if ` is even, then K` = K`−1 ∩ (K ′`−1)a1 .
• if ` is odd, then K` = K`−1 ∩ (K ′`−1)b,

Clearly, Y1 = XC → XC is the core of K1 = C with respect to XC . For even `, K` =
K`−1 ∩ (K ′`−1)a, so by Lemma 2.4 the core of K` with respect to XC is Y `−1 ⊗XA

Y `−1,

and by Lemma 5.4 the core of K` with respect to XC is σ−1(Y `−1 ⊗XA
Y `−1). For odd `,

K` = K`−1 ∩ (K ′`−1)b, so by Lemma 2.4 and Lemma 5.5 the core K` with respect to XC is

Y `−1⊗XA
σ · β(Y`−1), and by Lemma 5.4 the core of K` with respect to XC is σ−1(Y `−1⊗XA

σ · β(Y`−1)). �
14



We emphasize that a group K` is not uniquely determined, and similarly a graph Y` is not
uniquely determined, as at each step in this recursive construction there might be multiple
connected components to choose from. Since a sequence of group C = K1 ⊇ K2 ⊇ K3 ⊇ . . .
form a descending chain, we have a corresponding sequence of combinatorial immersions
. . . −→ Y3 → Y2 → Y1 = XC .

Lemma 5.7. Let ρ be an arbitrary finite path in T of length 2` between the pair of A-
vertices containing a vertex whose stabilizer is A. Then the A-conjugacy class of Stab(ρ) is
represented by a Y ` or σβ(Y`).

Proof. Let ` = 2k or 2k + 1. The proof is by induction on the half of the distance d from
the vertex of stabilized by A to the “middle” A-vertex ρ(2k) of ρ (since any two A vertices
are at even distance, d measures the number of steps between “consecutive” A-vertices).
When d = 0, i.e. ρ(2k) is stabilized by A, then we are in the setting of Lemma 5.6 and
the A-conjugacy class of Stab(ρ) ⊆ A is represented by Y `. Suppose that for every length
2` path ρ′ between A-vertices where the distance from ρ′(2k) to the vertex stabilized by A
equals d− 1, the A-conjugacy class of Stab(ρ′) is represented by Y ` or σβ(Y`).

Now let ρ be a length 2` path between A-vertices where the distance from ρ(2k) to the
vertex stabilized by A equals d. Then there exist b ∈ B−C and a ∈ A (possibly a = 1) such
that ρ = a−1b−1ρ′, where ρ′ is another length 2` path with the distance from ρ′(2k) to the
vertex stabilized by A equal d − 1. By the inductive assumption the A-conjugacy class of
Stab(ρ′) is represented by Y ` or σβ(Y`). The A-conjgacy class of Stab(ρ) = a−1b−1 Stab(ρ′)ba
is represented by σβ(Y`) or σβσ−1σβ(Y`) = σβ2(Y`) = Y `. The last equality holds since β2

is the identity. �

5.3. Representing combinatorial maps as colored graphs. By orienting and coloring
all the edges of XA with distinct colors, we can represent the combinatorial immersion
Y ρ

ι−→ XA as the graph Y ρ whose edges are oriented and colored by the colors of the edges of
Xv. From now on, we will mostly view Y ρ as graphs together with orientation and coloring
of edges, which means that such a graph encodes a map Y ρ → XA.

Lemma 5.8. Suppose that there are only finitely many orientation and color preserving
isomorphism types of graphs Y` for any ` ≥ 1. Then GMNP has finite stature with respect
to {A}.

In particular if there exists k ≥ 1 such that every map Y k+2 → Y k is an embedding of a
subgraph, then GMNP has finite stature with respect to {A}.

Proof. We first prove the first statement. The orientation and color preserving isomorphism
types of graphs Y` correspond to combinatorial immersions Y` → XA. By Lemma 5.6 and
Lemma 4.3 there are finitely many A-conjugacy classes of Stab(ρ) for finite paths ρ in T
joining two A-vertices with Stab(ρ(2k)) = A where ` = 2k or 2k + 1. By Lemma 5.7 there
are also only finitely many A-conjugacy classes of Stab(ρ) for an arbitrary path ρ between
A-vertices, and passing through the vertex stabilized by A. By Remark 4.2, every for every
finite path ρ′ in T , Stab(ρ′) = Stab(ρ) where ρ is the shortest path containing ρ′ joining
two A-vertices. We conclude that there are only finitely many A-conjugacy classes of groups
of the form A ∩ Stab(ρ) where ρ is any finite path passing through the vertex . Thus the
assumptions of Proposition 3.5 are satisfied. We deduce that GMNP has finite stature with
respect to {A}.
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Now let k ≥ 1 such that Yk+2 → Yk is an inclusion. Since Yk+2 is obtained from Yk in two
steps as described in Lemma 5.6, we deduce that Yk+2(i+1) → Yk+2i is an inclusion for each i ≥
0. In particular, there can only be finitely many orientation and color preserving isomorphism
types of graphs Yk+2i since Yk, as a finite graph, has only finitely many subgraphs. Using
the formula for Yk+2i+1 from Lemma 5.6 we deduce that there are finitely many isomorphism
types of graphs for any ` ≥ 1. The conclusion follows from the first part of the lemma. �

5.4. Monochrome cycle preserving structure of splitting of Artin groups.

Proposition 5.9. Let GMNP be an Artin group M,N,P ≥ 3. Then GMNP has a subgroup
G′ of index at most 2 that is the fundamental group of a monochrome cycles preserivng

graph of graphs XA
φ←− XC

β·φ−−→ XA.

Proof. Let GMNP = A ∗C B as in Theorem 5.1. Then GMNP has an index 2 subgroup
G′ which splits as A ∗C A. The associated graph of graphs has two vertices with each
vertex graph being a copy of XA, and one edge graph XC . We choose the coloring of
cA : XA → {red, green, blue}, where each loop has distinct color, as in Figure 2. Those
figure also show how the coloring is cC : XC → {red, green, blue} is defined. The two maps
XC → XA differ by precomposing one with the automorphism β of XC . In particular, both
maps XC → XA are orientation and color preserving, and the preimage of each color in XC

is a union of disjoint embedded cycles. Moreover, the maps XC → XA both factor through
XC , and in particular, both maps restricted to each cycle factors through a cycle of length Q
if Q is odd, and Q/2 is Q is even, for Q = M,N,P respectively. Thus the graphs of graphs

XA
φ←− XC

β·φ−−→ XA is orientation and monochrome cycles preserving. �

Every finite path ρ in the Bass-Serre tree of GMNP = A ∗C B joining a pair of A-vertices
can be also thought of as a path in the Bass-Serre tree of the index 2 subgroup G′ = A∗CA of
GMNP . By Proposition 5.9 above and Lemma 4.6, for the combinatorial immersion Yρ → XA

of Stab(ρ) the associated graph Y ρ is a union of monochrome cycles, where each cycle of
color i has length `i. We can denote the the 2- complex obtained from Yρ by attaching 2-cells

whose boundaries have color i and length `i by ÁYρ, as in Section 4.2.

Notation 5.10. We now switch to the use of notation of Lemma 5.6, where the graph Yρ is
denoted by Y` where 2` = |ρ|, and the associated K` is the stabilizer Stab(ρ). We will also

write ÁY` for ÁYρ. Once again, we remind that Y`, K` depend not only on `, but also the choice
of parameters ai, di in their definition, which are equivalent to the choice of ρ.

Lemma 5.11. If for some ` ≥ 1 a complex ÁY` is simply connected, then for every Y `+2,
the combinatorial immersion Y `+2 → Y ` is an embedding of a subgraph. In particular, if

there exists ` ≥ 1 such that every ÁY` is simply connected, then GMNP has finite stature with
respect to {A}.

Proof. The first statement follows directly from Lemma 4.7. Since there are only finitely
many orientation and color preserving isomorphism types of Y k, there are also only finitely
many orientation and color preserving isomorphism types of their subgraphs. Thus if all
Yk are simply-connected, there are only finitely many orientation and color preserving iso-
morphism types of graphs that Y ρ might have. It follows that there are only finitely many
conjugacy classes of the groups of the form Gṽ ∩ Stab(ρ). By Proposition 3.5 G′ has finite
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Figure 5. (M,N,P ) = (2m + 1, 4, 4). The graph on the left is the fiber
product Y 2 = XC ⊗XA

XC . The graph on the right is σβ(Y2)⊗XA
Y 2.

stature with respect to both copies of A. By Proposition 3.6 GMNP also has finite stature
with respect to {A}. �

In the next subsections we apply Lemma 5.8 or Lemma 5.11 to prove that all the large
type triangle Artin group have finite stature. We consider three cases:

(Sec 5.5) at least one M,N,P ≥ 3 is even and {M,N,P} 6= {2m+ 1, 4, 4} for m ≥ 1,
(Sec 5.6) {M,N,P} = {2m+ 1, 4, 4} where m ≥ 1,
(Sec 5.7) all M,N,P are odd and ≥ 3.

We also consider the case where one of the exponents is 2, and the other two are both strictly
greater than 3:

(Sec 5.8) {M,N,P} where M,N ≥ 4 and P = 2.

The goal in all the cases is to prove that there are only finitely many orientation and color
preserving isomorphism types of graphs Y `. In the remaining sections, we will just say an
“isomorphism” in reference to an “orientation and color preserving isomorphism”.

5.5. Case where at least one of M,N,P ≥ 3 is even and {M,N,P} 6= {2m + 1, 4, 4}.
In the next proof, we continue to use Notation 5.10.

Proposition 5.12. Suppose M,N,P ≥ 3 and at least one of them is even, but {M,N,P} 6=
{2m + 1, 4, 4}. Then GMNP has finite stature with respect to {A}, where A is as in Theo-
rem 5.1.

Proof. By Theorem 5.1 in all the cases listed in the statement, GMNP splits as an amalga-
mated product A∗C B of finite rank free groups where [B : C] = 2, which by Proposition 5.9
is virtually the fundamental group of a monochrome cycles preserving graph of graphs. By

[Jan22, Lem 5.2, 5.3, 5.4] (see also [Jan22, Rem 5.5]) ÁY2 is simply-connected, where Y2 → XC

if the core of C ∩Cg with respect to XC , as in Lemma 5.6. By Lemma 5.11 GMNP has finite
stature with respect to {A}. �

We note that the residual finiteness of the Artin groups considered above was also proven
in [Jan22].

5.6. Case where {M,N,P} = {2m+ 1, 4, 4}. We continue to use Notation 5.10.

Lemma 5.13. Let {M,N,P} = {2m + 1, 4, 4}. Every graph Y 2 is either the left graph in

Figure 5, or has simply connected ÁY2. Every graph Y 3 is either the right graph in Figure 5,

or has simply connected ÁY3. The map Y 4 → Y 2 is always an embedding of a subgraph.
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Figure 6. (M,N,P ) = (2m + 1, 4, 4). The vertical arrows are respectively:
Y 2 → XC , Y2 → XC , β(Y2)→ XC , and σ · β(Y2)→ XC .

Proof. By Theorem 5.1 in all the cases listed in the statement, GMNP splits as an amalga-
mated product A∗C B of finite rank free groups where [B : C] = 2, which by Proposition 5.9
is virtually the fundamental group of a monochrome cycles preserving graph of graphs.

By Lemma 5.6, Y 2 is computed as a connected component of the fiber product Y 1⊗XA
Y 1,

which has been done in [Jan22, Lem 5.3]. If ÁY2 is simply-connected, then Y 4 → Y 2 is an
embedding of a subgraph for every Y4, by Lemma 5.11.

In the case where ÁY2 is not simply connected, Y2 is the graph on the left in Figure 5.
This graph has an order 2 isomorphism which can be represented by swapping the top-left
vertex with the bottom-left vertex, and the top-right vertex with the bottom-right vertex,
and extending appropriately to the edges. The two maps Y 2 → XC (corresponding to the
projection onto two components of the fiber product) differ by precomposing one with this
symmetry, and so both are represented by the first vertical arrow in Figure 6. Lemma 5.4
ensures that Y2 → XC can be computed, which is done in the second vertical arrow in
Figure 6. Then the rest of Figure 6 represent the computation of σβ(Y2) → XC . Finally,
by Lemma 5.6, Y 3 is computed as the fiber product σβ(Y2) ⊗XA

Y 2, i.e. the fiber product
of the left top and the right top graphs in Figure 6. We deduce that Y 3 either has simply

connected ÁY3, or it is the right graph in Figure 5.

If ÁY3 is simply-connected, then so is ÁY4 and Y 4 → Y 2 is an embedding of a subgraph,
as required. Otherwise, Y 4 is a connected component of Y 3 ⊗XA

Y 3 by Lemma 5.6. Note

that each connected component Y 4 is either equal to Y 3, or has simply connected ÁY4, and
in particular, the map Y 4 → Y 2 is an embedding of a subgraph. �

Combining Lemma 5.13 and Lemma 5.8 yields the following.

Proposition 5.14. The Artin group GMNP where M = 2m + 1 ≥ 3 and N = P = 4 has
finite stature with respect to {A}, where A is as described in Theorem 5.1.

5.7. Case where M,N,P ≥ 3 are all odd. First consider the case where M = N = P = 3.

Proposition 5.15. Let (M,N,P ) = (3, 3, 3), and let T be the Bass-Serre tree of the splitting
G333 = A ∗C B. Then for every path ρ in T , Stab(ρ) = C.
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Figure 7. (M,N,P ) = (2m+ 1, 2n+ 1, 2p+ 1). The graph on the left is the
fiber product Y 2 = XC ⊗XA

XC . The graph on the right is σβ(Y2)⊗XA
Y 2.

Proof. Indeed, in this case C is normal in both A and B, so all G333-conjugates of C are
equal C. This proves that all edge stabilizers in the action of G333 on T are equal C. �

For the remaining cases, we will apply Lemma 5.8 to deduce that GMNP has finite stature
with respect to {A}, similarly as in Section 5.6 We now consider the case where M,N,P are
all at least 5. We continue to use Notation 5.10.

Lemma 5.16. Let M,N,P ≥ 5 be all odd. Every graph Y 2 is either the left graph in

Figure 7, or has simply connected ÁY2. Also, every graph Y 3 is either the right graph in

Figure 7, or has simply connected ÁY3. The map Y 4 → Y 2 is always an embedding of a
subgraph.

Proof. We write M = 2m+ 1, N = 2n+ 1, and P = 2p+ 1. By Theorem 5.1 in all the cases
listed in the statement, GMNP splits as an amalgamated product A ∗C B of finite rank free
groups where [B : C] = 2, which by Proposition 5.9 is virtually the fundamental group of a
monochrome cycles preserving graph of graphs.

The first part of the lemma was proven in [Jan22, Lem 5.1]. In order to prove the second
part we start with computing σβ(Y2), which is illustrated in Figure 8. We note that there are

two connected components Y 2 of the fiber product XC ⊗XA
XC for which ÁY2 is not simply

connected. They are both isomorphic to the left graph in Figure 7, but their maps to XC are
different. The first column of Figure 8 shows the two combinatorial immersions Y 2 → XC

(they are determined by the coloring of the vertices). For each Y2, we compute σβ(Y2), in a
similar manner as in Lemma 5.13, see the rest of Figure 8. In each case, we deduce that each

connected component Y 3 of Y 2⊗XA
σβ(Y2) either has simply connected ÁY3, or it is the right

graph in Figure 7. In either case, we every map Y 4 → Y 2 is an embedding of a subgraph by
a reasoning similar to one in Lemma 5.13. �

We now move to the case where one or two of M,N,P are equal to 3. Unlike in the previous
case, the computation of the fiber product XC ⊗XA

XC in such cases was not included in
[Jan22]. We start with that computation.

Lemma 5.17. Suppose one or two of M,N,P are equal to 3. Every connected component

Y2 of XC ⊗XA
XC either has simply connected ÁY2 or is

• the left graph in Figure 9, when M = 3 and N,P ≥ 5,
• the right graph in Figure 9, when M = N = 3 and P ≥ 5,
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Figure 8. (M,N,P ) = (2m+1, 2n+1, 2p+1). Each of the two rows of vertical
arrows corresponds to respectively: Y 2 → XC , Y2 → XC , β(Y2) → XC , and
σβ(Y2)→ XC .

Figure 9. (M,N,P ) = (2m + 1, 2n + 1, 2p + 1). A connected component of
XC⊗XA

XC , when M = 3 and N,P ≥ 5 (left), M = N = 3 and P ≥ 5 (right).

Proof. This is a direct computation. We remind that the graph XC is the middle graph in
the first row of Figure 2. In Figure 9 we bi-colored the vertices of the graphs (i.e. colored
with a pair of colors) to make it easier for the reader to verify the computation. �

Now our goal is to show that Y `+2 → Y ` is an embedding of a subgraph for some `, so we
can apply Lemma 5.8. The case where exactly one of M,N,P is equal 3 is considered first.

Lemma 5.18. Let N,P ≥ 5 be odd, and M = 3. Every Y 3 either has a simply connected ÁY3,
or is one of the graphs in in Figure 10. Moreover, the map Y 5 → Y 3 is always an embedding
of a subgraph.
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Figure 10. (M,N,P ) = (3, 2n + 1, 2p + 1). All the connected components

Y 3 of Y 2 ⊗XA
σβ(Y2) either has simply connected ÁY3, or is one of the graphs

pictured above. The labels of vertices are 1c, 2d etc, where the number corre-
sponds to a vertex of Y 2 and the letter corresponds to a vertex of σβ(Y2) (see
Figure 11).

Proof. We write N = 2n + 1 and P = 2p + 1. By Lemma 5.17, every Y2 either has simply

connected ÁY2 or is the left graph in Figure 9. There are two components of XC ⊗XA
XC

isomorphic to the left graph in Figure 9, each with a map toXC . For each of them we compute
σβ(Y2) similarly as in Lemma 5.16 and Lemma 5.18. This is illustrated in Figure 11. Next,
for each of the two choices of σβ(Y2) (as illustrated in Figure 9) we compute the fiber product
Y 2 ⊗ σβ(Y2), whose connected component yield Y 3. The labelling of the vertices in the top
left, top right and the bottom right graph in Figure 9, will help the reader to verify that
every connected component Y 3 of those fiber products are either pictured in Figure 10 or

has simply-connected ÁY3.
Finally, we compute the fiber product of the pairs of graphs from Figure 10, which yield

Y 4. The only Y 4 with non-simply-connected ÁY4 is the top-left graph in Figure 12, which in
particular embeds in appropriate Y 3 and is invariant under σβσ−1 (as verified in Figure 12).
Thus every Y 5 → Y 3 is an embedding.

�

In the remaining case exactly two of M,N,P are equal 3.

Lemma 5.19. Let P ≥ 5 be odd, and M = N = 3. Every Y 3 either has simply connectedÁY3, or is one of the graphs in Figure 13. Moreover, the map Y 5 → Y 3 is always an embedding
of a subgraph.

Proof. We write P = 2p+ 1. By Lemma 5.17, every Y2 either has simply connected ÁY2 or is
isomorphic to the right graph in Figure 9.

We compute σβ(Y2) similarly as in Lemma 5.18. This is illustrated in Figure 14. Once
again, for each of the two choices of σβ(Y2) we compute the fiber product Y 2 ⊗ σβ(Y2). As
a result we obtain that Y 3 is either a monochrome (blue) cycle, or it is isomorphic to one of
the graphs in Figure 13.

We now note that the collection of graphs in Figure 13:

• has the property that the fiber product of any two graphs is a subgraph of one of the
graphs in the collection, and
• is invariant under σβσ−1, as verified in Figure 15.
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Figure 11. (M,N,P ) = (3, 2n+ 1, 2p+ 1). Each of the two rows of vertical
arrows corresponds to respectively: Y 2 → XC , Y2 → XC , β(Y2) → XC , and
σβ(Y2)→ XC .
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Figure 12. (M,N,P ) = (3, 2n+ 1, 2p+ 1). The vertical arrows corresponds
to respectively: Y 4 → XC , Y4 → XC , β(Y4)→ XC , and σβ(Y4)→ XC .
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Figure 13. (M,N,P ) = (3, 3, 2p+ 1). Each unlabelled blue loop has length
2p+ 1.

Figure 14. (M,N,P ) = (3, 3, 2p+1). Each of the two rows of vertical arrows
corresponds to respectively: Y 2 → XC , Y2 → XC , β(Y2)→ XC , and σβ(Y2)→
XC .

The first fact implies that every Y 4 is a subgraph of some Y 3. The second fact implies that
this is also the case for Y 5. In particular, every Y 5 → Y 3 is an embedding. �

We now summarize what we have proven in this subsection.

Proposition 5.20. The Artin group GMNP where M,N,P ≥ 3 are odd has finite stature
with respect to {A}, where A is as described in Theorem 5.1.

Proof. When M = N = P = 3, the statement follows from Proposition 5.15. The case where
M = N = 3, and P = 2p+ 1 ≥ 5 follows from Lemma 5.19 and Lemma 5.8. The case where
M = 3, N = 2n + 1 ≥ 5, and P = 2p + 1 ≥ 5 follows from Lemma 5.18 and Lemma 5.8.
Finally, the case where M = 2m + 1 ≥ 5, N = 2n + 1 ≥ 5, and P = 2p + 1 ≥ 5 is a
consequence of Lemma 5.16 and Lemma 5.8. �
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Figure 15. Each unlabelled blue loop has length 2p+ 1

We note that the residual finiteness of G333 follows from [Squ87]. The residual finiteness
of GMNP where M,N,P ≥ 5 was proven in [Jan22]. However, the methods of [Jan22] do
not cover the cases where one or two of M,N,P are equal 3.

5.8. The case where {M,N, 2} where M,N ≥ 4. We first focus on the case where M,N
are both even. We recall that, unlike in the previous cases, GMNP splits as an HNN-extension
A∗B, as in Theorem 5.2.

Lemma 5.21. Let M = 2m,N = 2n and P = 2. The graphs φ1XB and φ2XB are (unbased)
isomorphic. In particular, the stabilizer of every finite path in the Bass-Serre tree of the
splitting of GMNP = A∗B is conjugate to a subgroup of A represented by φ1XB or a wedge
of monochrome cycles.
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Figure 16. P = 2. All the graphs Y ` are either wedges of circles, or one
of the graphs above, when (a) M,N ≥ 5 are both odd and P = 2, and (b)
exactly one of M,N ≥ 4 is odd and P = 2.

Figure 17. (M,N, 2) = (2m + 1, N, 2). In case (a) N = 2n + 1, and in case
(b) N = 2n. If Y is the rightmost graphs, then it is isometric to σβ(Y ).

Proof. The graphs φ1XB and φ2XB are computed in Theorem 5.2, and it is easy to see
that the two graphs are isomorphic. Every connected component Y of the fiber product
φ1XB ⊗XA

φ1XB is either isomorphic to φ1XB or is a wedge of monochrome cycles. �

Next, we consider the cases where at both M,N are odd.

Lemma 5.22. Let P = 2 and M = 2m + 1, N = 2n + 1 ≥ 5. Every graph Y 2 either is
isomorphic to the left graph in Figure 16(a) or it is a wedge of monochrome cycles. If Y
is the left graph in Figure 16(a), then σβ(Y ) is (unbased) isometric to Y . Therefore, every
graph Y i either one of the two graphs in Figure 16(a), or it is a wedge of monochrome cycles.

Proof. The first statement was proven in [Jan24, Rem 3.5]. The proof of the second statement
is illustrated in Figure 17(a). Let Y 2 be the left graph in Figure 16(a). Then every connected
component Y 3 of the fiber product Y 2 ⊗XA

σβ(Y2) = Y 2 ⊗XA
Y 2 is a wedge of monochrome

cycles, is isomorphic to Y 2 or to the right graph in Figure 16(a). We also note that if Y is
the right graph in Figure 16(b), then σβ(Y ) is isometric to Y . We conclude that every graph
Y ` either one of the two graphs in Figure 16(a), or it is a wedge of monochrome cycles. �

Finally, we consider the cases where exactly one of M,N is odd.

Lemma 5.23. Let P = 2, M = 2m + 1 ≥ 5, and N = 2n ≥ 4. Every graph Y 2 either is
isometric to the graph in Figure 16(b) or it is a wedge of monochrome cycles. If Y is the
graph in Figure 16(b), then σβ(Y ) is (unbased) isometric to Y . Therefore, every graph Y i

either one of the graph in Figure 16(b), or it is a wedge of monochrome cycles.

Proof. The first statement was proven in [Jan24, Prop 3.4]. The proof of the second state-
ment is illustrated in Figure 17(b). Let Y denote the graph in Figure 17(b). Every connected
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component of the fiber product Y ⊗XA
Y is either isometric to Y or it is a wedge of mono-

chrome cycles. �

Proposition 5.24. The Artin group GMN2 where M,N ≥ 4 has finite stature with respect
to {A}, where A is as described in Theorem 5.1.

Proof. All the cases can be deduced from Lemma 5.8 together with

• Lemma 5.21 when M,N are both even;
• Lemma 5.23 when exactly one of M,N is odd;
• Lemma 5.22 when both M,N are odd. �

Residual finiteness of GMN2 where at least one of M,N is even was proven in [Jan24], but
the case of both M,N odd is a new result.

5.9. Triangle Artin groups with label ∞. Note that all of the above proofs are valid if
any of the labels M,N,P are equal to ∞.
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