
Chapter 4

Week 2 Activities and
Assignments Set 2

Most of the exercises and activities are based on material that is available in
short lectures and slides on our website

http://www.math.ubc.ca/~keshet/MCB2012/

Please check out the link t either Week 1 or Week 2. or else, in some of the
daily lectures recorded at PIMS. You can get to those recoded lectures by going
through a link on our main Home Page.

http://www.math.ubc.ca/~keshet/MCB2012/

4.1 Polymer length distributions (continued)

In Homework Set 3, you found the steady state length distribution of a polymer
when the monomer concentration is held fixed. You did so by solving the (linear
discrete) equation

dxj
dt

= k−xj+1 − (k− + ak+)xj + k+axj−1

assuming that k+, k−, a were constant. For consistency of notation in this home-
work set, we will use the notation pj throughout, so our polymer equation is

dpj
dt

= k−pj+1 − (k− + ak+)pj + k+apj−1 (4.1)

Your solution for the number of polymers of length j, pj as a function of j
contained an arbitrary constant, let us call it B, as well as dependence on some
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ratio of rate constants that I will call acrit. Here we add some postscripts to
that problem.

Exercise 4.1.1 (Polymer Length, continued)

(a) Suppose that the smallest stable configuration consists of an m-sized nu-
cleus, meaning that m monomers must come together to form the first
nucleus that can grow. Then there is a term proportional to am in the
equation for pm, and we will call the proportionality constant kinit. We
also define γ as the rate at which the m-size polymer breaks apart. Write
down a differential equation satisfied by the first stable nucleus, pm.

(b) Assume that the monomer concentration is fixed, and that at steady state,
pm = Brm. Use the steady state equation for pm to find B in terms of
kinit, γ, acrit, etc. You have thereby determined the arbitrary constant.
Use it to write down the solution for pj where j > m.

4.2 Simulations of polymers and/or microtubules

Do EITHER one of Exercises 2 or 3, or if you are motivated, you can do both
for bonus points. XPP codes are provided in the Appendix and on the website.
This has parameter values, and other useful information, even if you plan to use
Matlab.

Exercise 4.2.2 (Simulating the dynamic polymer length distribution)

Here we consider the dynamics of polymer assembly when the monomer pool
is being depleted, and when the smallest polymer is size m.

Let Np be the total number of polymer pieces, any one of which can grow
or shrink by polymerizing,

Np =
∑

pi.

We take the same polymer equation (4.1). On a separate handout (see website)
it is shown that when the total mass is constant, the equation satisfied by the
monomer is:

dc

dt
= − [mkinitc

m − (mγ + kr)pm]− (ckf − kr)Np (4.2)

After a while, once there are lots of growing polymers, this can be approxi-
mated by

da

dt
= (kr − kfc)Np. (4.3)
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(a) Explain the Equation 4.3.

(b) Use your favorite simulation method to simulate the growth of polymers
up to size j = 100 (i.e. the evolving length distribution). Assume that
the smallest stable size is a nucleus of 3 monomers (a tri-mer, namely size
3 polymer). Start with monomers only, and show how the distribution
evolves. [NOTE: while XPP may not be the best tool for this problem, if
you’d like to use it, you can watch the instructional video XPP tutorial,
and use the .ode file asizedis2.ode, which you just have to edit slightly.]

Exercise 4.2.3 (Simulating Microtubule populations (Dogteron-Leibler))

The Dogterom-Leibler equations for microtubule (MT) populations are:

∂ug
∂t

= −vg
∂ug
∂x
− fgsug + fsgus, (4.4a)

∂us
∂t

= vs
∂us
∂x

+ fgsug − fsgus, (4.4b)

Here ug(x, t), us(x, t) are the “densities” of growing and shrinking micro-
tubule plus ends, vg, vs > 0 are the rates of growth and shrinking, and fgs, fsg >
0 are the rates of transition g → s and s→ g, respectively. We will also consider
the boundary conditions

ug(0, t) = P, (4.5a)

vsus(L, t) = vgug(L, t), (4.5b)

(a) Explain the equations (4.4) and the boundary conditions (4.5).

(b) Analytically solve the steady state equations.

(c) Use your favorite software or XPP to numerically simulate the growth of
the MT population.

4.3 Reverse Engineering a polymer reaction

Exercise 4.3.4 (Using scaling to determine Polymerization kinetics)
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Figure 4.1: The generic polymerization mechanism. There are several oligomers
stages (right to left) that are each formed by adding some number ni of
monomers to a smaller oligomer. The schematic shows forward and reverse
rates and disassembly rates. Once the nucleus is formed, it is stable and grows.

The following generic model is assumed for the assembly process. The goal
will be to determine various powers and coefficients in these equations.

dp1
dt

= f0c
n0 − f1cn1p1 + b2p2 − d1p1, (4.6a)

dpi
dt

= fi−1c
ni−1pi−1 − ficnipi − bipi + bi+1pi+1 − dipi, (4.6b)

dν

dt
= fkc

nkpk, (4.6c)

dM

dt
= fk+1cν. (4.6d)

where Eqn. (4.6b) holds for 2 ≤ i ≤ k.
It will be assumed that the total mass is approximately divided between

monomer and nuclei (with very little in the oligomers pi) so that c(0) = c(t) +
M(t).

The observation of critical importance is that the data for many polymeriza-
tion curves (each with its own starting monomer level) will collapse to a single
“master curve” when the following scaling is applied:

t0 ∝ A−γ∞ (4.7)

(a) Use the definitions in Table 4.1 to explain the terms in the equations.
Fig 4.1 shows the process that the above equations represent.

(b) Rescale the equations for p1 and pi by defining the following dimensionless
variables:

t̂ =
t

to
, ĉ =

c

co
, p̂i =

pi
X
,

where co = c(0).
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Variable meaning model

c(t) monomer concentration all
pi(t) number concentration of the ith oligomer (i = 1 . . . k) all
ni number of monomers added to pi to form pi+1

ν(t) number concentration of nuclei NDP
k number of different oligomer species
fi forward rate constant for the ith oligomer species
fk forward rate constant for nuclei formation
fk+1 forward rate constant for polymer elongation
bi backward rate constant for the ith oligomer species
di disintegration rate constant for the ith oligomer species

M(t) monomer mass in fibril, excluding monomers in oligomer and nuclei NDP
A(t) the measured fluorescence, assumed to be a measure of M NDP

Table 4.1: Variables and their meanings in the various models. NDP= nucle-
ation dependent polymerization.

(c) Now apply the fact that data scales such that

to ∝ c−γo , ⇒ to =
λ

cγo

Here λ is some proportionality constant carrying units, and needed to
convert units of cγo to time units. We want the coefficients in the scaled
equations to be independent of co. This enforces strict constraints.

Find n1, b2, d1 using this constraint, applied to the (scaled) equation for p1.
Explain what your conclusions mean about the polymerization reaction.

(d) Similarly use to = λc−γo applied to the equation(s) for pi to draw conclu-
sions about the quantities ni, bi, di.

(e) Consider the nuclei and the mass equations, and use the scaling

ν̂ =
ν

µ
, M̂ =

M

co

to convert these to dimensionless form. At this point it will be convenient
to set X = µ.

(f) Show that the same constraint then identifies the required value for nk.
Show that another conclusion reached is that µ = cγo ,. Finally, determine
the value of n0 using your results so far.

(g) Now that all the scales (and some coefficients) have been so determined,
you can rewrite the dimensionless equations in a simpler form. Please do
so.
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(h) How many monomers are there in the first, second, third oligomer? (i.e.
in p1, p2, p3)? If? the first stable nucleus is represented by ν = pk many
monomers are there in the first stable nucleus (answer in terms of k).

In the next exercise we will use some other information to find the value of the
constant k, i.e. the size of the first stable nucleus.

Exercise 4.3.5 (Number of steps from monomer to fibril)

Close to the beginning of the reaction, c(t) ≈ c(0) = co ≈ constant, and
ĉ = c/co ≈ 1, p1(0) = p2(0) = . . . pk(0) = 0. At that very early stage, we can
approximate the equation for p1 and use that to get a rough estimate of the
time course of p1(t) for a short time period:

dp1
dt
≈ λf0 · 12γ ⇒ p1(t) ≈ λf0t,

Using this idea on the other equations will allow us to estimate the values of k
(the number of steps needed to form a stable fibril).

(a) Write down a similar set of approximate equations for p2, p3, ..Pk, ν,M
close to the beginning of the reaction. By integrating these simple equa-
tions, show that you obtain an approximation of the dimensionless variable
M as a function of (dimensionless) time in the form

M(t) = t(some power)

and find that power in terms of the number of steps k.

(b) Recall that A(t), which is the experimentally measure of polymerization
is an indicator of M(t), the mass in polymer form in the reaction. You are
given a plot of log(A(t)/A∞) versus log(t/t0), and you find that this plot
is well-fit by a straight line of slope 8.01. How many steps does it take to
assemble a fiber? [Recall that M(t) ≡ (A(t)/A∞).]

4.4 Appendix with XPP codes

These codes are also available on our website as plain text.

4.4.1 Polymer Size Distribution

This file has been corrected for the right monomer equation and for the fact
that dimers are the smallest size class.
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# asizedis2.ode

# polymer size distribution

# simple polymerization

# May 12, 2012

# xj= number of fibers of length j

# a= conc of monomers

# kf, kr = forward and reverse rate constants

# Set adepl=1 for constant total amt, 0 for fixed monomer

par kf=10, kr=1, kinit=0.005, gamma=1, adepl=1

# Set the initial monomer level

a(0)=20

#**********************************************

#at each stage, sum up the total number of polymer pieces

# (starting from largest down to smallest)

sm100=x100

sm[99..2]=sm[j+1]+x[j]

Np=sm2

#sm2 is then the total number of pieces after having

# added them all

#**************************************************

#eqn for monomers:

# Set adepl=1 for constant total amt, 0 for fixed monomer level

#a’ = adepl*(-kf*a*(sm2-x100+x2)+kr*(sm2+x2))

# The above old equation for monomers was wrong.

# For mass conservation use:

a’=-2*kinit*a^2+(2*gamma+kr)*x2-(kf*a-kr)*Np

# initialization from dimers

x2’= kinit*a*a-(a*kf+gamma)*x2+kr*x3

x[3..99]’= kf*a*(x[j-1]-x[j])+kr*(x[j+1]-x[j])

x100’ = -kr*x100+kf*a*x99

@ bounds=10000000, meth=gear, dt=0.05, total=100

done

To run this code: bring up XPP and type Initial conditions Go (I G)
To view the line plots of pj versus j for various times:



8 CHAPTER 4. WEEK 2 ACTIVITIES AND ASSIGNMENTS SET 2

File Transpose (F T). Fill in the table:
Column 1: x1

Ncols: 100 (for the number of size classes)
Colskip: 1 (to display every size)
Row 1: 1 (start at t=0)
NRows: 2000 (Because there are 2000 time steps)
RowSkip: 1 (to see the earliest time behaviour)
click OK
Bring up the IC’s panel (top left button of your XPP window. click on each

box at the left hand side of the panel (next to the quantities A,X1, X2, .. up to
X9. Click on xvst at the bottom of that panel. You should get a lovely colorful
plot of the polymerization size classes. To see the later time behaviour repeat
the above but use

RowSkip: 200 (to see the plots every 200’th time step)

4.4.2 Microtubule populations

# microtubulesDog.ode

# XPP code for simulating growing and shrinking microtubule

# plus ends according to Dogterom & Leibler PRL paper

# upwind basic Euler scheme on spatial domain

# discretization:

par h=0.1

#L is the domain length, set to 10 micro-meters

L=h*100.0

# here ug is the density of growing plus ends of MT.

# and us is the density of shrinking plus ends

# fgs=transition rate from ug to us

# fsg = transition rate from us to ug

#vg= growth rate

#vs=shrink rate

ug[1..100]’= vg*(ug[j-1]-ug[j])/h+ fsg*us[j]-fgs*ug[j]

us[0..99]’= vs*(us[j+1]-us[j])/h- fsg*us[j]+fgs*ug[j]

# equate fluxes for growing and shrinking tips at x=L

us[100]=ug[100]*vg/vs

# plus ends nucleated at x=0 so as to be at constant level there

ug0=1

# param values from Dogterom et al PNAS 1995
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# in units of micro meter/min for veloc and sec^-1 for transitions

# (for this reason, need factor of 60 to convert f’s to per min)

# vg=10,vs=15,fgs=60*0.012,fsg=60*0.02

param vg=10,vs=15,fgs=0.72,fsg=1.2

# param values from the Phys Rev Let paper footnote [9] are:

# vg=2,vs=20,fgs=60*0.004,fsg=60*0.05

# param vg=2,vs=20,fgs=0.24,fsg=3

# Note that a transition in the behaviour should take place

# when vs*fgs=vg*fsg currently 0.18 vs 0.2

@ dt=.01,total=10

done


