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Chapter 1

Qualitative behaviour of
simple ODEs and
bifurcations

1.0.1 Cubic kinetics

We now consider an example where there are three steads.skédee is one of the most
basic examples exhibiting bistability of solutions.

dx 1
Fri c(x— 3 ) = f(x), c> 0 constant (1.2)

(The factor 1/3 that multiplies the term in (1.1) is choseslightly simplify certain later
formulas. Its precise value is not essential. In Exerciéa #e found that Eqn. (1.1) can
be obtained by rescaling a more general cubic kinetics ODE.

We graph the functiori(x) for Eqn. (1.1) in Fig 1.1(a). Solving for the steady states
of (1.1) dx/dt = f(x) = 0), we find that there are three such points, one-ad and others
atx = ++/3. These are the intersections of the cubic curve withxthgis in Fig. 1.1(a).
By our usual techniques, we surmise the direction of flow ftbensign (positive/negative)
of f(x), and use that sketch to conclude that 0 is unstable while botk = —+/3 and
x = /3 are stable. We also note that the constaibes not affect these conclusions. (See
also Exercise 22.) In Fig. 1.1(b), we show numerically computed solution&tm. (1.1),
with a variety of initial conditions. We see that all posdiinitial conditions converge to
the steady state at= ++/3 ~ 1.73, whereas those with negative initial values converge to
x = —v/3~ —1.73. Thus, the outcome depends on initial conditions in thiblem. We
will see other example of sudiistable kineticsin a number of examples in this book, with
a second appearance of this type in Section 1.0.2.
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2 Chapter 1. Qualitative behaviour of simple ODEs and bifurcations
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Figure 1.4. (a) Here we have removed flow lines from Fig. 1.3b and rotated t
diagram. The vertical axis is now the x axis, and the horiabakis represents the value
of the parameter A. (b) A bifurcation diagram produced by XBF for the differential
equation 1.1. The thick line corresponds to the black dotsthe thin lines to the white
dots in (a). Note the resemblance of the two diagrams. As énenmeter A varies, the
number of steady states changes. See Appendix A.B.1 foPféX and instructions for
producing (b).

We now consider the revised equation

dx 1
i _c(x 3x3+A) = f(x). (1.2)
whereA is some additive constant, which could be either positivesgrative. Without loss
of generality, we can set= 1, since time can be rescaled as discussed in Exercise 4.6h.

Clearly, A shifts the location of the cubic curve (as shown in Fig 1.3ayards A >
0) or downwardsA < 0). Equivalently, and more easily illustrated, we could sider a
fixed cubic curve and shift theaxis down A > 0) or up @A < 0), as shown in 1.3b. A&
changes, so do the positions and number of intersectiongoiithe cubic and the axis.
For certain values oA (not too large, not too negative) there are three intersegoints.
We have colored them white or black according to their stgbilf A is a large positive
value, or a large negative value, this is no longer true. éddéhere is a value @k in both
the positive and negative directions beyond which two stasates coalesce and disappeatr.
This type of change in the qualitative behaviour is call&ifar cation, andA is then called
abifurcation parameter.

We can summarize the behaviour witlbidur cation diagram. The idea is to repre-
sent the number and relative positions of steady states ¢og nomplicated attractors, as
we shall see) versus the bifurcation parameter. It is custgrio use the horizontal axis
for the parameter of interest, and the vertical axis for tieady states corresponding to
that parameter value. Consequently, to do so, we will siggptiee flow and arrows on
Fig 1.3b, and rotate the figure to show only the steady stdtesaThe resultis Fig 1.4(a).
The parameteA that was responsible for the shift of axes in Fig. 1.3b is ntoan@the



horizontal direction of the rotated figure. We have thereiamed a bifurcation diagram.
In the case of the present example, which is simple enoughbawealculate the values of
A at which the bifurcations take placki{urcation values). In Exercise 1.3, we guide the
reader in determining those valuég,andA;. (See, in particular, the configurations shown
in Fig 1.10.)

In general, it may not be possible to find bifurcation poimtalgtically. In most cases,
software is used to follow the steady state points as a paesoiinterest is varied. Such
techniques are commonly calledntinuation methods. XPP has this option as it is linked
to Auto, a commonly used, if somewhat tricky package [1]. Asaample, Fig. 1.4(b),
produced by XPP auto for the bifurcation in (1.2) is seen talibectly comparable to
our result in Fig. 1.4(a). The solid curve corresponds tostiable steady states, and the
dashed part of the curve represents the unstable steadg.stBecause this bifurcation
curve appears to fold over itself, this type of bifurcatisealled &old bifurcation. Indeed,
Fig. 1.4 shows that the cubic kinetics (1.2) has two fold twiftion points, one at a positive,
and another at a negative value of the paraméter

Bistability is accompanied by an interestihgsteresis as the parameteX is varied.

In Fig. 1.5, we show this idea. Suppose we start the systemawiegative value @& in the
lowest (negative) steady state value. Now let us graduadliseiased. We remain at steady
state, but the value of that steady state shifts, movindwigids along the lower branch of
the S in Fig. 1.5. At the bifurcation value, the steady stéeppears, and a rapid transition
to the high (positive) steady state value takes place. N@pase we decreageback to
lower values. We remain at the elevated steady state mosfhglbng the upper branch
until the lower (negative) bifurcation value &f This type of hysteresis is often used as an
experimental hallmark of multiple stable states and bitaln a biological system.

1.0.2 Bistability

A common model encountered in the literature is one in whistgmoidal function (often
called a Hill function) appears together with first orderetins, in the following form:

dx X2
a_f(x)_ 1+X2—mx+b (1.3)

wherem,b > 0 are constants. Here théill function (first rational term in Eqn. (1.3))
has “Hill constant’n = 2, but similar behaviour is obtained for> 2. This equation is
remarkably popular in modeling of switch-like behaviours e will see in Chapte??,
equations of a similar type are obtained in chemical prazsdsat involve cooperative
kinetics, such as formation of dimers and their mutual bigdiAnother example is the
behaviour of a hypothesized chemical in an old but instveatmodel of morphogenesis in
[13].

Here we investigate only the caricature of such systemgngiv (1.3), noting that
the first term could be a rate of autocatalysis productioq bfa source or production term
(similar to the parameteérin Eqn. (??)), andmthe decay rate of (similar to the parameter
yin Egn. (??)). The simplest case to be analyzed heré,4s0. Then we can easily solve
for the steady states of this equation. In the dase0, one of the steady states of (1.3) is
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x = 0, and two others satisfy

X2 X

=" = X =m(14+x?).

m—mxzo, =

Simplification and use of the quadratic formula leads to #silt

1+V1-4n?

o (1.4)

Xssl,2 =

[Exercise 1.4]. Clearly there are two possible value}, put these steady states are real
onlyifm<1/2.

Let us sketch the two parts dfx), i.e. the sigmoid/ = x?/(1+ x?) and the straight
line y = mxon the same plot, as shown in Fig. 1.6. In the aase 1/2 (dashed line) only
one intersection, at = 0 is seen. Fom < 1/2 there are three intersections (solid line).
Separating these two regimes is the value: 1/2 at which the line and sigmoidal curves
are tangent. This is thafur cation value of the parametem.

1.0.3 Other bifurcations

Many simple differential equations illustrate interegthifurcations. We mention here for
completeness the following examples, and leave their eafm to the reader. A more
complete treatment of such examples is given in [16]. Intadl following examples, the
bifurcation parameter isand the bifurcation value occursrat 0.

A simpler example of dold bifurcation, also calledsaddle-node bifurcation is
illustrated in the ODE

dx 2
dt_f(x)_r+x. (1.5)
We see from this equation that steady states are locatedras matisfyingr +x° = 0,
namely atxss = 4+v/—r. These two values are real only wher: 0. Whenr = 0, the
values coalesce into one and then disappear fo0. We show the qualitative portrait for
Eqgn. (1.5) in Fig. 1.7(a), and a sketch of the bifurcatiorgcian in panel (b).

A transcritical bifurcation is typified by:

dx 2
Pl rX —x°. (1.6)

This time, we demonstrate the use of XPPAUT in the bifurcatagram of Fig. 1.8. A
stable steady state (solid line) coexists with an unstaielady state (dashed line), they
meet and exchange stability at the bifurcation value 0. Exercise 1.8 further explores
details of the dynamics of (1.6) and how these corresporfuisaltagram.
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Figure 1.9. (a) Pitchfork bifurcation exhibited by Eqifl.7) as the parameter r
varies from negative to positive values. FoxrO there is a single stable steady state at
x = 0. At the bifurcation value of & 0, two new stable steady states appear, and &
becomes unstable. (b) A subcritical pitchfork bifurcatibat occurs in(1.8). Here the
two outer steady states are unstable, and the steady state-dt becomes stable as the
parameter r decreases. Diagrams were produced with the )Xd@lesin Appendix A.B.2.

Thepitchfork bifurcation is illustrated by the equation:

dx
5= X, (1.7)
See Fig 1.9(a) for the bifurcation diagram and Exercise @rQfactice with qualitative
analysis of this equation. We note that there can be up te thieady states. When the
parameter crosses its bifurcation value of= 0, two new stable steady states appear.
A subcritical pitchfork bifurcation is obtained in the slightly revised equation,

dx
9= X+ (1.8)

See Fig. 1.9(b) for the bifurcation diagram and Exercis® 1ot more details.

Exercises

1.1. ConsidedA/dt = aA—a;1A% a> 0, & > 0. Show thatA = \/(a/ay) is a stable
steady state.

1.2. Considey = f(x) = c(x— %x3+A) as in Eqn .(1.2). Compute the first and second
derivatives of this function. Find the extrema (criticaimts) by solvingf’(x) = 0.
Then classify those extrema as local maxima and local minisiag the second
derivative test. [Recall that’(p) < 0 = local maximum,f”(p) > 0= local mini-
mum, andf” (p) = 0 = test inconclusive.]
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1.3.

1.4.

1.5.

1.6.

1.7.

As shown in the text, Eqn. (1.2) undergoes a change iavi@lr at certain values
of the parameteA. In this exercise we calculate those values. In Fig 1.10,hvesvs
two configurations for which the cubic curve intersectsxlgis in only two places.
If A increases beyond the higher value (or decreases beyonavike Value) only
one steady state remains. Note that at théle cation points, the local maximum
(minimum) of the cubic curve just touches thaxis. Use this fact to compute the
two valuesA, Ay at the bifurcations.

Consider the bistable kinetics described by Eqn. @nép = 0.

(a) Show that aside from= 0, this equation has two steady states given by (1.4).
(Hint: show that you obtain a quadratic equation by settingdt = 0 and
simplifying algebraically.)

(b) What happens to the results obtained in part (a) for theeva = 1? for
m=1/2?

(c) Computef’(x) and use this to show that= 0 is a stable steady state.

(d) Use Fig. 1.6 to sketch the flow along thiaxis for the following values of the
parametem: m=1,1/2,1/4.

(e) Adapt the XPP file provided in Appendix A.B.1 for the ODE3}land solve
this equation withm = 1/4 starting from several initial values of Show

that you obtain bistable behaviour, i.e., that there arefessible outcomes,
depending on initial conditions.

Consider again Egn. (1.3) but now suppose that the seennb +~ 0.
(a) Interpret the meaning of this parameter and explain whlyould be positive.

(b) Make a rough sketch analogous to Fig. 1.6 showing how iy®salue ofb
affects the conclusions. What happens to the steady statefty atx = 0?

(c) Simulate the dynamics of Eqn. (1.3) using the XPP file tbped in Exer-
cise 1.4e fob=0.1,m= 1/3. What happens whenincreases to 0.2?

Consider the model by Ludwig, Jones and Holling [9] foruse budwormB(t).
Recall the differential equation proposed by these autlisee also Exercise 4.7.)

dB B B?

whererg,Kg,a > 0 are constants.
(a) Show thaB = 0 is an unstable steady state of this equation.

(b) Sketch the two functions= rgB (1 — K%) andy = B?/(a? 4 B?) on the same
coordinate system. Note the resemblance to the sketch inlFg but the
straight line is replaced by a parabola opening downwards.

(c) How many steady states (other than the ori&-at0) are possible?

Consider the equation
dx
= f(X)=r—x%
at (X) =r—x
Show that this equation also has a fold bifurcation and $katiigure analogous to

Fig. 1.7 that summarizes its behaviour.
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1.8.

1.9.

1.10.

Eqn. (1.6) has a transcritical bifurcation. Plot thelgative sketch of the function
on the RHS of this equation. Solve for the steady states @#pland use your
diagram to determine their stabilities. Explain how yowsulés for bothr < 0 and

r > 0 correspond to the bifurcation diagram in Fig. 1.8.

Consider Egn. (1.7) and the effect of varying the patame Sketch the kinetics
function (RHS of the differential equation (1.7)) for- 0 indicating the flow along
the x axis, the positions and stability of steady states. Now sam&cond sketch
with all these features for < 0. Connect your results in this exercise with the
bifurcation diagram shown in Fig 1.9(a).

Repeat the process of Exercise 1.9, but this time &osticritical pitchfork equa-
tion, (1.8). Compare your findings with the bifurcation diag shown in Fig 1.9(b).
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X
Jx)
2
1
stable
X
-2 0
unstable
-1
2F
0 1 2 3 4 5‘ 6 7 8 t
(@ (b)

Figure1.1. (a) A plot of the function () on the right hand side of the differential
equation(1.1). (b) Some numerically computed solutions(dfl) for a variety of initial
conditions.

> = - = > < - X

~V3 0 +V3

Figure 1.2. The “phase line” for equation(1.1). Steady states are indicated by heavy
points, trajectories with arrows show the direction of “flbas t increases.
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Figure 1.3. When the parameter A in Eqn(1.2) changes, the positions of the
steady states also change. (a) Here we show the cubic curve£00 and A< 0. (When
A changes, the curve shifts up or down relative to the x axis) Shown here is the flow
along the x axis. Same idea as (a), but the x axis is shiftedbwpi and the cubic curve is
drawn once. The height of the horizontal line correspondbéovalue of-A. Intersections
of the x axis and the cubic curve are steady states. (Un)ststehady states are indicated
with (white) black dots. Note that there is an abrupt losswd steady states when A gets
large and positive or large and negative.

X

Figure 1.5. Bistability and hysteresis in the behaviour of the cubiekirs(1.2).
Suppose initially A= —0.7 If the parameter is increased, the steady state on the lower
(solid) branch of the diagram gradually becomes more pesitOnce A reaches the value
at the knee of that branch (a fold bifurcation), there is a e transition to the higher
(positive) steady state value. If the value of A is then diserd, the system takes a different
path to its original location.
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Figure 1.6. We plot the Hill function and the straight linesymx here to illustrate
their intersections. Steady states of E¢h.3) at located at these intersections. A very
similar argument is used later in Fig 2.8 to understand hostdtility arises in a more
complicated equation with a biological interpretation.

ftx) (@) (b) Xss

Figure 1.7. Afold (or saddle-node) bifurcation that occurs in E¢h.5). (a) The
qualitative sketch of the function(X) on the RHS of the equation, showing the positions
and stability of the steady states. (Black dot signifieslstand white dot unstable steady
states.) (b) A schematic sketch of the bifurcation diagrdmchwvis a plot of the steady state
values as a function of the bifurcation parameter r. Solidseu stable steady state. dashed
curve: unstable steady state.
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025

02532 . . . . 6 . . . . 505
r

Figure 1.8. A transcritical bifurcation that occurs in Eqr{1.6). Diagram pro-
duced by XPP file in Appendix A.B.3.

J®)

A=A2

Figure 1.10. For the differential equation 1.2, there are values of thegpaeter A
that result in a change of behaviour, as two of the steadgstaterge and vanish.
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Chapter 2

Biochemical modules

(@) (b) S (©) ,—’X—'
s Y s
: N :
Y, R R Rp AN S

Figure 2.1. (a) Production and decay of substance R depends on presénce o
signal S, as shown in Eq(2.1). (b) Activation and inactivation (e.g. by phosphorylation
and dephosphorylation) of R in response to signal S. Thesttians are assumed to be
linear in (2.2)and Michaelian in(2.3). (c) An adaptation circuit. Based on [18].

2.1 Simple biochemical circuits with useful functions

Biochemical circuits can serve as functional modules, nlikehparts of electrical wiring
diagrams. Many of the more complicated models for bioldgjeme networks or protein
networks have been assembled by piecing together the pefame of smaller modules.
See [18], also [7]. Other current papers at the researchiteslade [6, 10, 15, 14].

2.1.1 Production in response to a stimulus

We consider a network in which protein is synthesized at domsal ratds that is enhanced
by a stimulus (raté&;S) and degraded at rake (Fig 2.1a). Then

%{ = ko+kiS— kR (2.1)

13



14 Chapter 2. Biochemical modules

Figure 2.2. (a) Simulation of simple production-decay of E¢2.1) in response
to signal that turns on at time £ t; = 0 and off at time t=t, = 3. See XPP file in
Appendix A.G.1. (b) Response of the adaptation circui{2o8). See XPP file in Ap-
pendix A.G.2. Note that in part (a) R returns to baseline aftgr the signal is turned qff
whereas in (b) R returns to its steady state level even ththughkignal strength is stepped
up att=0,5,10,15. (Signal strength increases in unit steps, not here shovecate.)

2.1.2 Activation and inactivation

In Fig 2.1b,RandRp, denote the levels of inactive and active form of the protéinterest,
respectively. Suppose that all the processes shown in thaefoperate at constant rates.
In that case, the equation for the phosphorylated fétgtakes the form

d
d_F\;p =k SR— szp. (2.28.)
Here the first term is the signal-dependent conversidR @f Ry, andk; is the rate of the
reverse reaction. Conservation of the total amount of tbeeprRy, implies that

Rr = R+ Rp = constant (2.2b)

We assume Michaelis-Menten kinetics

dt _Kml—i—R sz—i—Rp. '

Here the first term is activation & when the stimulu§is present. (IS= 0 it is assumed
that there is no activation.) The second term is inactivatldsing the conservation (2.2b)
we can eliminat&k and recast this equation in the form

= - ) 2.4
dt Km+(Rr—Rp) Km+Rp (2.4)

If we express the active protein as fraction of total amoeust.,r , = Rp/Rr then Eqn. (2.4)

can be rescaled to
drp _ kiS(1—rp)  karp 2.5)
dt Kl +(1—-rp) Klp+rp '
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activation inactivation di, /dt

0
Ip

@ (b)

Figure 2.3. (a) A plot of each of the two terms in Eqf2.5) as a function of g
assuming constant signal S. Note that one curve increases(fl,0) whereas the other
curve decreases {d, 0), and hence there is only one intersection in the inte@valr, < 1.
(b) The difference of the two curves in (a). This is a plot gf/dt and allows us to conclude
that the single steady staten<r, < 1is stable.

Steady state(s) of (2.5) satisfy a quadratic equation. Jinjgiests that there could be two
steady states, but as it turns out, only one of these neeaous, as the argument below
demonstrates.

How does the steady state value of the response depend onatii@tode of the
signal? letu = k1S v =kp,J = Kip, K = Kpp. Note that the quantity is proportional to
the signalS, and we will be interested in the steady state response axtdn ofu. Then
solving for the steady state of (2.5) reduces to solving aratgn of the form

ul-x)  wx
J+1-x K+x
In the exercises, we ask the reader to show that this equatitutes to a quadratic

a+bx+c=0, where a=(v—u), b=u(1—K)—v(1+J), c=uK. (2.7)

. wherex=ryp. (2.6)

We can write the dependence of the scaled respopsex on scaled signal. The result
is functionr,(u) that Tyson denotes the “Goldbeter-Koshland function”. {is function

is slightly messy, we relegate the details of its form to Eis& 2.3.) We can plot the
relationship to observe how response depends on signal.ofisider a case where the
enzymes operate close to saturation, let us kake0.01,J = 0.02. We letv = 1 arbitrarily
and plot the responsg, as a function of the “signalti. We obtain the shape shown in
Fig 2.4. The response is minimal for low signal level, unbiiree threshold aroung~ 1.
There is then a steep rise, wharis above that threshold, to full responsg~ 1. The
change from no response to full response takes place ovey aweall increment in signal
strength, i.e. in the range®< u < 1.2 in Fig. 2.4. This is the essence of a “zero order
ultrasensitivity” switch. More details for further studftopic are given in Sectiof2?.
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Response
.

Signal

Figure 2.4. Goldbeter Koshland “zero order ultrasensitivity”. Here epresents
a stimulus (u= kiS) and g is the response, given by a (positive) root of the quadratic
equation(2.7). As the figure shows, the response is very low until somehibiesevel of
signal is present. Thereafter the response is nearly 100%N\war the threshold (around
u=1) it takes a very small increase of signal to have a sharp iasesin the response.

2.1.3 Adaptation

Cells of the social amoebdgictyostelium discoideurman sense abrupt increases in their
chemoattractant (CAMP) over a wide range of absolute canaions. In order to sense
changesthe cells exhibit a transient response, and then gradaddipt if the cAMP level

no longer changes.

A circuit shown in Fig. 2.1c consists of an additional cheahidenoted by that is
also made in response to signal at some constant rate. Houweigeassumed to have an
inhibitory effect onR, i.e. to enhance its turnover rate. The simplest form of sustodel
would be

dR

4t = aS—keXR (2.82)
dX
S = KaS—kaX. (2.8b)

Behaviour of (2.8) is shown in response to a changing signaig. 2.2(b). After each
step up, the system (2.8) reacts with a sharp peak of respmutsdbat peak rapidly decays
back to baseline. Adaptation circuits of a similar type hbgen proposed by Levchenko
and Iglesias [8, 5] in extended spatial models of gradiensisg and adaptation iDic-
tyostelium discoideumn that context, they are known &zcal excitation global inhibi-
tion (LEGI) models. Such work has engendered a collection of x@atal approaches
aimed at understanding how cells detect and respond to chégradients, while adapting
to uniform elevation of the chemical concentration.
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2.2 Genetic switches

A simple switch genetic switch was devised by the group ofela@ollins [3] using an
artificially constructed pair of mutually inhibitory genéisansfected via plasmids into the
bacteriumE. coli). Here each of the gene products acts as a repressor of thedsgene.
We examine this little genetic circuit here.

I

X
1 7

0.5 u 4)

........

Figure 2.5. Right: The construction of a genetic toggle switch by Gardseal
[3], who used bacterial plasmids to engineer this circuitarliving cell. Here the two
genes, UV produce products,w, respectively, each of which inhibit the opposite gene’s
activity. (Black areas represent the promotor region ofdeees.) Left: a few examples of
the functiong2.10)used for mutual repression for-a1,2,5in the mode(2.11) Note that
these curves become more like an on-off switch for high gadfithe power n.

Let us denote by the product of one gend&Jj), andv the product of gen¥. Each
product is a protein with some (relatively fixed) lifetimes.i degradation at constant rate
causes removal of each protein. Suppose for a moment thagleoes are turned on and
not coupled to one another. In that case, we would expeatpheduct to satisfy the pair
of equations

du
a = IU - duu, (2‘9a)
dv
a = Iv—dvv. (2'9b)

Herely, |y are rates of production that depend on gene activity for glene respectively,
andd,, dy are the decay rates.

Now let us recraft the above to include the repression of pactiuct on the other’s
gene activity. We can do so by an assumption that producfiargiven product decreases
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Figure 2.6. Phase plane behaviour of the toggle switch model by Gardhat e
[3], given by Eqs(2.11)witha1 = a2 = 3,n=m= 3. See XPP file in Appendix A.G.3. The
two steady states close to the u or v axes are stable. The dhe genter is unstable. The
nullclines are shown as the dark solid curve (u nuliclinejléime dotted curve (v nullcline).

due to the presence of the other product. Gardner et al [8haesd terms of the form

a

Ix

We plot a few curves of type (2.10) fer = 1 and various values of the power This
family of curves intersect at the poiffd,1). Forn = 1 the curve decreases graduallyxas
increases. For larger powers (erg= 2,n = 5), the curve has a little “shoulder”, a steep
portion, and a much flatter tail, resembling the letter “Z”".

Gardner et al [3] employed the following equations (whewkjrd, were arbitrarily
taken as unit rates.)

du (o¢}
FNE R (412
dv oy
v__% _, 2.11b
dt  14um v ( )

The behaviour of this system is shown in the phase plane oRHg The presence of two
stable steady states is a hallmarlbadtability,.
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@ @ Repressor gene

| OR2 |  OR3 | |

N E synthesis

repressor

- QY

Figure2.7. The phage gene encodes for a protein that acts as the gene’s repres-
sor. The synthesized protein dimerizes and the dimers bimegulatory sites (OR2 and
OR3) on the gene. Binding to OR2 activates transcriptiorer@as biding to OR3 inhibits
transcription.

2.3 Dimerization in a genetic switch: the A virus

Dimerization is a source of cooperativity that frequenfipears as a motif in regulation of
gene transcription Here we illustrate this idea with the elegant model of Hastgl [4]
for the regulation of a gene and its product in ¥eirus.

The protein of interest is transcribed from a gene known gsatlematic in Fig. 2.7)
that has a number of regulatory regions. Hasty et al consigeutant with just two such
regions, labeled OR2 and ORS3. The protein synthesized fnengéne transcription dimer-
izes, and the dimer acts as a regulator, frenscription factor for the gene. Binding of
dimer to the OR2 region of DNA activates gene transcriptiamereas biding to OR3 stops
transcription.

We follow the notation in [4], definingK as the repressoX; a dimerized repressor
complex,D the DNA promotor site. The fast reactions are the dimeretind binding of
repressor to the promotor sites OR2 and OR3, for which thenad# equations are taken
as

Dimerization: 2(<L—1>X2

Binding to DNA (OR2): D+ X2<L—2>DX2

Binding to DNA (OR3): D+ X2<L—S>DX2*

Double binding (OR2 and OR3):DXo + XzéDXZXZ (2.12a)

Here the complexedX,, DX5 are, respectively, the dimerized repressor bound to sit2 OR
or to OR3, andXyX; is the state where both OR2 and OR3 are bound by dimers.
On a slower timescale, the DNA is transcribed to producepies of the gene product

11 wish to acknowledge Alex van Oudenaarden, MIT, whose erlature notes alerted me to this very topical
example of dimerization and genetic switches.
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0 x 1 0 x 1

@) (b)

Figure 2.8. (a) A plot of the two functions given by Eq&.16)for the simplified
dimensionless repressor modg2l15) (lowest dashed line:y = 12, (solid line:) y = 14,
and (highest dashed liney = 18. (b) Fory = 14, we show the configuration of the two
curves and the positions of the resultant three steady staféhe outer two are stable
and the intermediate one is unstable. Compare this figure fiij. 1.6 where a similar
argument was used to understand the bifurcation structéieesimpler model involving a
straight line and a Hill function.

and the repressor is degraded. The chemical equationssfee tire taken to be

Protein synthesis: DX, + P £> DX+ P+nX

Protein degradation: X & A (2.12b)
We define variables as followsg;y are the concentrations &f, X,, respectively, and, u,v
are the concentrations @, DXp,DX;. Similarly, z is the variable foDX>X,. The full
set of kinetic equations for this system are the topic of Eiser2.8. Howeven,, v,y,z are
variables that change on a fast timescale, and a QSS aptiaimis applied to these.
Because the total amount of DNA is constant, there is a coagen equation,

We ask the reader [Exercise 2.8] to show that, based on thee@@®ximation for the fast
variables, the equation farsimplifies to the form

dx . AK1K2X2

dt 14 (1+01)KiKax2 + 02K 2K 2x4
whereA is a constant. This can be rewritten in dimensionless formebygaling time and
appropriately to arrive at

—Kkax T, (2.14)

dx ax?

dt 1+(1+01)X2+02X4_yx+1' (2.19)
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Figure 2.9. (a) For some parameter ranges, the model by Hasty et al [4] of
Eqgn.(2.15)has two stable and one unstable steady, and hence displstgbliity. Here
y=15a =50,01 = 1,02 = 5. (b) Bifurcation diagram produced by Auto, with the bifur-
cation parametey. See XPP file and instructions in Appendix A.F.

Herea is a (scaled) magnitude of the transcription rate due toesesar binding, ang
is a (scaled) turnover rate of the repressor. In generalydhee ofa would depend on
the transcription rate and the DNA binding site concerdrgtivhereay is an adjustable
parameter that Hasty et al. manipulate.

In Fig. 2.8, we plot separately the two functions on the RHE@fi. (2.15) given by

ax? N .
fi(x) = 17 (1 o0t od (sigmoid curvg, fa(x) =yx—1 (straightling (2.16)

for three values of the slopg It is evident that the value of determines the number of
intersection points of the sigmoid curve and the straigid,liand hence, also the number
of steady states of Eqn. (2.15). Wheris large (e.g. steepest line in Fig 2.8), the two
curves intersect only once, at a low valuesxo€onsequently, for that situation, very little
repressor protein is available. Aslecreases, the straight line becomes shallower. Here
we see again the classic situationbd$tability, where three steady states coexist. The
outer two of these are stable, and the middle is unstablerise2.8]. This graphical
argument is a classic mathematical-biology modeling toal teappears in many contexts.
When three intersections occur, the amount of repressdebiathen depends on initial
conditions: on either side of the unstable steady statejahe ofx will tend to either the
low or the highx steady state. This situation is also shown in the time plotipced by a
full simulation, in Fig. 2.9(a). Finally, ag decreases yet further, two of the steady states
are lost and only the highsteady state remains.

From Fig. 2.9(a) we see that any initial valuexokill be attracted to one of the two
outer stable steady states. Indeed, the gene and its praciuss a switch. We summarize
this behaviour in the bifurcation plot of Fig. 2.9(b) withas the bifurcation parameter.
We find that the presence of three steady states depends ealtles ofy. The range
14 <y < 16 corresponds to switch-like behaviour. In Exercise 2.8 cansider how this
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and other experimental manipulations of theepressor system might affect the observed
behaviour, using similar reasoning and graphical ideas.

2.4 Models for the cell division cycle

SOme of the original literature includes [12, 20, 21]. Heeemostly discuss the theoretical
paper by Tyson and Novak [19].

Gl

START

High cyclin

High APC

S-G2-M

Figure 2.10. The cell cycle and its check points (rectangles) in the sfiagl model
discussed herein. The cycle proceeds clockwise from SPPARGh activity level of cyclin promotes
the START and its antagonist, APC, promotes the FINISH gafteocycle.

Cell division is conventionally divided into several phasdéfter a cell has divided,
each daughter cell may remain for a period in a quiescentgnowing)gap phase called
Go. Another, active (growing), gap pha&a precedes thé& (synthesis) phase of DNA
replication. TheG; phase intervenes betwe&mphase and phase initosis). During M
phase the cell material is divided. Here we will be concemnitd two checkpoints of the
cycle, after G1, signaling START cell division and after 8-@ signalling FINISH the
cycle (see Fig. 2.10.) Importantly, the START checkpoirelels on the size of the cell.
This requirement is essential for a balance between gromdrcell division, so that cells
do not become gigantic, nor do they produce progeny thaaréry. (In fact mutations
that produce one or the other form have been used by Tgsahas checks for validating
or rejecting candidate models.)

Control of the cell cycle is especially tight at thleeckpoints mentioned above. For
example, the division process seems to halt temporariljyea®i checkpoint to ascertain
whether the cell is large enough to continue to progresautiirdhe cycle or whether a
process other than mitosis is called for (e.g., termindldiéerentiation or the alternative
“meiotic” path to cell division). Once this checkpoint isgs&d, the cell has irreversibly
committed to undergoing division and the process must go on.

Regulation of the cell cycle resides in a network of molecsignaling proteins. At
the center of such a network are kinases whose activity israided by cyclin To sum-
marize, in phase G1 there is low Cdk and low cyclin levels lfoyis rapidly degraded).
START leads to induction of cyclin synthesis and buildup pélm and active Cdks that
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persist during the S-G2-M phases. The DNA replicates in gmagfon for two daughter
cells. At FINISH, APC is activated, leading to destructidrcgclin and loss of CdK ac-
tivity. Then the daughter cells grows until reaching a catisize where the cycle repeats
once more.

2.4.1 Modeling conventions

Before describing the simplest model for the cell cycle,ustcollect a few definitions
and conventions that will be used to construct the model. milver of these have been
discussed previously, and we gather them here to prepaassembling the more elaborate
model.

Let C denote the concentration of a hypothetical protein padiing in one of the
reactions, and suppose ti@is the concentration of a regulatory substance that bin@s to
and leads to its degradation. Then the standard way to moe&inetics ofC is

d—f = ksyn(SUbStrat¢— kdeca)c — KassoEQ. (2.17)

d

Hereksyn represents a rate of protein synthesisCofrom amino acidsKkassocis rate of
association o€ with Q, andkgegrqis a (basal) rate of decay Gf

Now suppose that some substance is simply converted frootiveao active form
and back. Recall our discussion of activation-inactivaiio Section 2.1.2. We consider
the same ideas in the case of phosphorylation and dephagsatian under the influence of
kinases and phosphatases. We can apply the reasoning ugsghfo (2.5) to write down
our first equation. Moreover, scaling the concentratio@ of terms of the total amou@r
[Exercise 2.3c] leads to

d_C _ K1Eaciv(1—C) B K2EdeactilC
dt J+(1-C) J+C

(2.18)

HereJi, J, are saturation constants;, K, are the maximal rates of each of the two reac-
tions andE; are the levels of the enzymes that catalyze the activatiactivation. Such
equations and expressions appear in numerous places indtielsrconstructed by the
Tyson group for the cell division cycle.

2.5 Hysteresis and bistability in cyclin and its antagonist

An important theme in the regulatory network for cell digisiis that cyclin and APC
are mutually antagonistic. As shown in Fig 2.11, each leadké destruction (or loss
of activity) of the other. To study this central module, Nkvand Tyson considered the
interactions of just this pair of molecules. This simplifgistep ignores a vast amount of
specific detail for clarity of purpose, but leads to insighta modular approach promised
above.

Let us use the following notation: L&t (cYclin) denote the level of active Cyclin-
Cdk dimers, an®® R, the levels of active (respectively inactive) APC compléxs hssumed
that the total amount of APC is constant, and scaled to lthaaP+ P, = 1. Then based on
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Fig. 2.11 and the background of Section 2.4.1, the simplestaiconsists of the equations

cyclin: ?j_\t( = kg — (kop + koppP)Y, (2.19a)
APC: dP_ MR VaP (2.19b)

dt ~ k+P L+P

Y 8@
cyclin A O
LA
inactive APC active APC

Figure2.11. The simplest model for cell division on which E(s21)are based.
Cyclin (Y) and APC (P) are mutually antagonistic. APC leanlthe degradation of cyclin,
and cyclin deactivates APC.

The rates of the reactions are not constant. That is becapigeean called herd,
(and for now held fixed) is assumed to enhance the forwardiosa@ctivating APC and
cyclin (Y) enhances the reverse reaction, deactivating it. TysomMNarndk assume that:

Vi = (ksp +kappA), Va=ksmY.

Here,m denotes the mass of the cell, a quantity destined to play poriant role in the
model(s) to be discuss&édRecall that cell mass (for now considered fixed) is known to
influence the decision to pass the START checkpoint. Thiesptbdel becomes

dy

_dt - kj_ - (k2p+ k2ppP)Y, (220a)
dP  (ksp+ksppA)R YP

dt J+PR _k4mJ4+ P (2.20b)

By conservation of the total amount of APC, and the scalindnaxes used,

R=1-P

2The reader will note that cell massis introduced already in the simplest model as a paramaterttaat
as the models become more detailed, the role of this quargitpmes more important. In the final models we
discussmis itself a variable that changes over the cycle and influgiteer variables. L.E.K.
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Hence,
dy
a = kl — (k2p+ k2ppP)Y7 (2213)
dP _ (kap+ksppA)(1—P) YP
dt = ht(1-P) ka5 (2.21b)

This constitutes the first minimal model for cell cycle compats, and our first task will
be to explore the bistability in this system.
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Figure 2.12. The YP phase plane for Eq2.21)and parameter values as shown
in the XPP file in Appendix A.H.1. Parameters with units oidétare: k = 0.04,kyp =
0.04,kopp = 1,ksp = 1,kspp = 10,ks = 35, Other (dimensionless) parameters are:=A
0,J3 = 0.04,J4 = 0.04. Here the cell mass is as follows: (a) #0.3. There are three
steady states, a stable node at low Y high P (0.038, 0.96akdeshode at highY low P
(0.9,0.0045), and a saddle point at intermediate levelsath§0.1, 0.36). (b) m= 0.6.
The nullclines have moved apart so that there is a singléb(g}asteady state atY,P) =
(0.95190.002): this state has high level of cyclin, and very little APC.

Figure 2.12 shows the typical phase-plane portrait of E3&1(, with theY andP
nullclines in dashed and solid lines, respectively. Theecthree steady states identified
with the checkpoints at G1 and at S-G2-M. As the cell grovspiasan increases. As
shown in Fig. 2.12(a), this pushes tRaulicline to the left so that eventually, two points
of intersection with the nullcline disappear. (Just as this occurs, the saddle poihiG1
steady state merge and vanish. This explains the saddle-node bifurcation applied
to such a transition, also calledfald bifurcation.) Parameter values of this model are
provided in [19] and in the XPP file in Appendix A.H.1. We findathat the bifurcation,
transition to S-G2-M is very rapid once the Gl checkpointhasn lost.

We show the bifurcation diagram for Egs. (2.21) in Fig. 2a)3(ith cell massn as
the bifurcation parameter,. Then in Fig. 2.13(b), we idgrateady states and the transi-
tion between them with parts of the cell cycle. We see the gntypof hysteresis that is
characteristic of bistable systems: the parametbas to increase to a high value to trig-
ger the START transition, and then cell mass has to decraas#l\gto signal the FINISH
transition. Here the latter is associated with cell divisid whichm drops by a factor of 2.
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Figure 2.13. (a) Bifurcation diagram for the simplest model of E¢®.21)with
cell mass m as the bifurcation parameter. The diagram wasywed using XPP file in
Appendix A.H.1. (b) Here we have labeled parts of the sangraiia with corresponding
phases of the cell cycle. Based on [19].

2.6 Activation of APC

Up to now, the quantityA in (2.21b) has been taken as constaftrepresents a protein
called Cdc20 that increases sharply during metaphase (kfigicell cycle. Next, Novak
and Tyson assume thatis turned on in a sigmoidal kinetics by cyclin, leading to an
equation with a Hill function of the form:

dA (mY/J5)”

a = k5p+ kSPPW - k6A

(2.22)
The terms include some basal rate of production and deddg, iem the cyclin-dependent
activation term.

Novak and Tyson first assume that the timescale of APC kin€tind specifically
of the Cdh1 protein in APC) is short, justifying a QSS assuamptThat is, we také® ~
Pss(A,Y, z), i.e. P follows the other variables with dependence on a host ofrpeters here
abbreviated by,

P=P(AY,2).

The details of the expression f8%s are discussed in Exercise 2.10 and are based on the
Goldbeter-Koshland function previously discussed. Whils simplification, the equations
of the second model are

dy

a =k — (kzp + k2ppPSS)Y, (2.236.)
n

dA (MY/J6)" oA (2.23b)

dt et Kepp Ly my g

with Pssas described above. We show a few of Yephase plane portraits in Figure 2.14.
It is seen that for small cell mass, there are three steadgssta stable spiral, a stable
node, and a saddle point. All initial conditions lead to eitbne of the two stable steady
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states. Asnincreases past 0.49, a small limit cycle trajectory is fatmehat cyclic loop
trajectory (shown in Fig 2.14(b)) is unstable, so trajeeware forced around it to either of
the attracting steady states (one inside, and one close tarigfin.). We show more details
of the events close to this type of bifurcation in the schéereltetch in Fig. 2.16. When

m increases further on, past= 0.8, the saddle point and stable node formerly near the
sharply bent knee of th& nullcline has disappeared. This means that the phase Ghés go
replaced by a stable limit cycle that has grown and beconidest@his type of bifurcation

is a saddle-node/loop bifurcation. (See Fig. 2.17 for #e)ai
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Figure2.14. The Y A phase plane for the mo@2I23) The Y nullcline is the solid
dark curve, and the A nulicline is the dashed curve. The stetades correspond to phases
G1 and S-G2-M as labeled in (a). Phase plane portraits arenshfor (a) m= 0.3, (b)
m= 0.5 (Here there is an unstable limit cycle, that exists ®4962< m < 0.5107. To
plot this loop, we have séit as a small negative timestep, i.e. integrated backwards in
time.) (c) m= 0.9: there is a large loop trajectory that has formed via a sadd@ae/loop
bifurcation. (d) Here we show only the nuliclines (drawn estfatically) and how their
intersections change in the transition between parts (lo) @) of the figure. Note that two
intersections that occur in (b) have disappeared in (c).

In the model of Egs. (2.23), for a small cell, the phase Glablst As we have
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seen above, the growth of that mass eventually leads totédbtel dynamics, where a
small displacement from G1 results in a large excursion @ligl(b)) before returning
to G1. When the mass is even larger, G1 disappears altogatidea cyclic behaviour
ensues. However, this is linked to division of the cell masthatm falls back to low level,

reestablishing the original nullcline configuration antliraing to the beginning of the cell
cycle.

2.6.1 The three-variable Y PAmodel

We are now interested in exploring the three-variable maditlout the QSS assumption
onP. Consequently, we adopt the set of three dynamic equations

(:j—r — k]_ - (k2p+ k2ppP)Y, (224&)
dP _ (ksp+ksppA)(1-P) YP

dt K+ (1-P) k4mJ4+ P’ (2.24b)
dA (mY/Js)"

a - k5p+ kSPDW - k6A (224C)

with the same decay and activation functions as before. V&g ke all k's andJ’s as
constants at this point. The model is more intricate thahdahé2.21), and the bifurcation
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Figure 2.15. (a) Bifurcation diagram for the full Y PA model given by E(&24)
produced by the XPP file and instructions in the Appendix &.Bifurcations labeled on
the diagram include a fold (saddle node, SN) bifurcationybgcsitical Hopf (SbH) and a
saddle-node loop (SNL) bifurcation. The open circles repng an unstable limit cycle, as
seen in Fig 2.14(b) of the QSS version of the model. The filiels represent the stable
limit cycle analogous to the one seen in Fig 2.14(c). (b) Ttverse of one cell cycle is
superimposed on the bifurcation diagram. The cell starthafow cyclin state (G1) along
the lower branch of the bistable curve. As cell mass increathe state drifts towards the
right along this branch until the SNL bifurcation. At thisipba stable limit cycle emerges.
This represents the S-G2-M phase, but as the cell dividemass is reset back to a small
value of m, setting it back to G1.
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plot hence trickier to produce (but see instructions in Aupe A.H.3). However, with
some persistence this is accomplished, yielding Figurg®2.1

Let us interpret Figure 2.15. In panel 2.15(a), we show tfadircyevels against cell
masan, the bifurcation parameter. (Cell mass increases alonlgtter axis to the right, as
before.) Labeled on the diagram in 2.15(a) are severaldafions (see caption), the most
important being the saddle-node/loop bifurcation (SNL)c® cell mass grows beyond
this critical value ofm~ 0.8, the lower G1 steady state disappears, and is replaced by a
stable limit cycle. This is precisely the kind of transitie have already seen in Fig 2.14
(between the configurations in 2.14(b) and 2.14(c)).

Figure 2.15(b), we repeat the bifurcation diagram, but tinie we superimpose a
typical “trajectory” over one whole cell division cycle:dlsystem starts in the lower right
part of the diagram at G1, progresses to higher cell massepdbe START checkpoint,
duplicates DNA in the S-G2-M phase and then divides into twagpny, each of whose
mass is roughly 1/2 of the original mass. This memrdsops back to its low value for each
progeny, and daughter cells are thereby back at G1.

a < derit a > derit a >> Qerit

Figure 2.16. Subcritical Hopf bifurcation. For a low value of some parasres,
the system has a stable spiral. Beyond some critical vali:eagi;, an unstable limit cycle
with some finite diameter suddenly appears. Then, as a ea@gito decrease, the limit
cycle shrinks and vanishes, and the spiral becomes unsi@bkalso Fig?.

To fix ideas we illustrate the two bifurcations in Figs 2.16ah17. The first,
Fig. 2.16, shows what happens in the phase plane as somegtarangoes through a
subcritical Hopf bifurcation. (We have seen an example of this in Cha®&rFig ??;
here we review this idea in the new context.) Note the sudgeeaance of an unstable
limit cycle with finite amplitude, that in general persistile shrinking in diameter for
some range of the bifurcation parameter. Fig. 2.17 showsasaddle-node/loop bifur-
cation can lead to the birth of a stable limit cycle, just ashaee seen in the context of the
model discussed above.

3This plot shares many features with a bifurcation diagranttfe QSS version of Fig 2.14 (not shown), but
with somewhat different bifurcation values. L.E.K.
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a < dcrit a = dcrit a > derit

Figure 2.17. Saddle-node/loop bifurcation here involves an unstabiband a
saddle point. As some bifurcation parameter, a, changestrtnsitions shown here take
place. When a- agit, there is a heteroclinic trajectory that connects the saduibint to
itself. For larger values of a, a limit cycle appears and tretdroclinic loop disappears.
At first appearance, the period of the limit cycle is very I@figfinitely long”) due to the
very slow motion along the portion of the trajectory clos¢he saddle point.

2.6.2 A fuller basic model

The models considered so far have included only the skdtatals of the regulatory cell
division components. Including some additional intei@tsi[19, p 255] results in a slightly
expanded version suitable for describing the cell cycle wfding yeast. The notation
for this model is provided in Table 2.1 and interactions lestv these are illustrated in
Figure 2.18.

The equations are given by the following:

cyclin: ?TT = Kky — (kop+ koppP)Y, (2.25a)
APC: ?j—f - (hpﬁsﬁpﬁ)g_ P) _kam J:erp, (2.25b)
Total A: dditT =ksp+ kg-,ppl_(i_rr(]:{(7/;;\)1:)n — keAr, (2.25c¢)
Active A: ddit’* =k; p% — keAa — kg[Mad JSiAAA, (2.25d)
IEP: % = komY(1— Ip) — kiglp, (2.25€)

cell mass: (jj_rtn = um(l— n—n;> . (2.25f)

Eqgs (2.25a) and (2.25b) for cyclin and APC have not changeckesihe previous
model. As in theY PAthree-variable model, APC is activated by the substa(specif-
ically Cdc20). However, we now distinguish between thevactorm, A, and the total
amountAt of Cdc20. This protein is assumed to be inactive when firstr@gized. The
basal synthesis rate, shownlkgg in (2.25c) is enhanced in the presence of high cyclin or
when the cell mass is large (Hill function in the second teras)in the previous model.
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Table 2.1. Names of variables and their identity in the cell cycle medel

Symbol | Identity | Activities and notes

Y CyclinB | - controls Cdk kinases (binding partner)
- high at START of cell cycle

- antagonist of APC

- whenY is low, cell divides.

P Cdhl | - associated with APC (Anaphase promoting complex)
- labels other proteins for destruction (including cyclin)
- antagonist of cyclinB

A Cdc20 | - has an active formAa) and an inactive form
- Ap acts as the activator for Cdhl

- Ar is total Cdc20.

Ip IEP - hypothetical activator of Cdc20 [19].

m mass | - the mass of the cell

- grows up to some maximal size if permitted
- influences regulators of cell division

- gets reset to low value once cell divides.

A turnover ratekg has been assumed. However, to exert its action, activaiosguired.
The activated form of\, now denotedx is tracked in (2.25d). Note the resemblance of
this equation to the form of a standard activation equatescdbed previously in (2.4).
The same turnover, at rakg has been assumed 8k as forAr. The intermediates IEP
activatesA and Mad has the opposite effect on Cdc20 (Fig. 2.18), with M&dn as a pa-
rameter in the model. (IEP is needed to get the right lag thuewas not identified with a
specific molecule in [19].) The equation for IEP, (2.25e) $iafple activation-deactivation,
that are assumed to be affected by both cyclin and cell mass

Furthermore, from (2.25f) we see that cell mass is now a dymaariable (rather
than a parameter as before). The mass has a self-limitedtytgmwto some maximal size
ms. (Compare with the form of a logistic equation and note thahcreases whenever
m < ms so long as case cell division does not occur.) A key furtheuiemption is that a low
value ofY causes cell division. A cell division event results in thesshaf the cell being
halved, and this occurs every time that the cyclin concéptrdalls below some threshold
value (e.g¥ihresh= 0.1).

As before, we here abandon hope of making analytical pregvih a model of this
complexity and turn to numerical simulations with parametdues obtained from [19]
(See XPP code in Appendix A.H.4.) Simulations of the syst2rag) produce the figures
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FINISH

S-G2-M

Figure 2.18. The full model of the cell cycle depicted in E&25) At its core is
the simpler Y PA module, but other regulatory parts of thewoet have been added. See
Table 2.1 for definitions of all components.

shown in Fig 2.19. We note the following behaviour: At theecof the mechanism there
is still the same antagonism between cyclin and APC: Now lati periodically over the
cell cycle, but they do so out of phase: APC is high when cyisliow and vice versa. The
total and active Cdc20, as well as the IEP shown in the thirkepaCareful observation
demonstrates thatr cycles in phase cyclin, but activation takes longer, so Aagpeaks
just asY is dropping to a low levelAs andlp are in phase. Cell mass is a saw-tooth curve,
with division coinciding with the sharp drop in cyclin legel

Exercises

2.1. Suppose th&k; > 0 fori =0,1,2in Eqn. (2.1).
(a) Find the solutiofR(t) to this equation.

(b) Find the steady state of the same equation.
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Figure 2.19. Time behaviour of variables in the extended model of Eg25)
Plots produced with the XPP file in Appendix A.H.4.

(c) Show that the steady state response depends linearlyeostiength of the

signal.
(d) What happens if initiallyd = 0, and then at timé= 0 Sis turned on? How
can this be recast as an initial value problem involving tree equation?

(e) Now suppose tha&is originally ON (e.g.S= 1), but then, at = 0, the signal
is turned OFF. Answer the same question as in part (d).

(f) Based on your responses to (d) and (e), what would happtae isignal is
turned on at some timtg and off again at a later tintg? Sketch the (approxi-
mate) behaviour oR(t).

(g) Create a simple XPP file and compare your answers to sedimulations.

2.2. Consider the simple phosphorylation-dephosphaoylatodel given by (2.2a). What

is the analogous differential equation f&? Find the steady state concentration for
Rp and show that it saturates with increasing levels of theai§nHint: eliminate
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R using the fact that the total amouR+ Ry is conserved.] Assume thkg, S ko
are all positive constants in this problem.
2.3. (a) Redraw Fig. 2.1 with parametd¢slabeled on the various arrows. Explain
what are the assumptions underlying Eqn. (2.3). Show th&emwation leads
to (2.4).

(b) What would be the corresponding equation for the unphoggated formR?

(c) Rescale the variabR by the (constant) total amouR§ in Eqn. (2.4).

(d) Solving for the steady state of the equation you got irt f@rleads to a
quadratic equation. Write down that quadratic equatiorRiggs Show that
your resultis in the form of (2.7) (Once the appropriate §titsons are made).

(e) Solve the quadratic equation, (2.7), in terms of thefa@ehtsa, b, c, and then
rewrite your result in terms of the parametarg K, J. This (somewhat messy
result) is the so-called Goldbeter-Koshland function.

() According to Novak and Tyson [19], the Goldbeter-Kostddunction has the
form 2y

Guv,J,K)y= ————.
B+ /B —4ay
for a, 3,y similar expressions af,v,J, K. How does this fit with your result?
Hint: recall that the an expression with radical denominatm be rational-
ized, as follows

1 P-va __p-a

p+va (p+yva(p—ya@)  p?—q
2.4. Consider the adaptation module shown in Fig. 2.1c arehddy Eqgs. (2.8).
(a) Show that the steady state levelPis the same regardless of the strength of
the signal.

(b) Is the steady state level &f also independent of signal? Sketch the (approx-
imate) behaviour o (t) corresponding to the result f&® and S shown in
Fig. 2.2(b)

(c) Use the XPP file provided in Appendix A.G.2 to simulatesthiodel with a
variety of signals and initial conditions.

(d) How do the parameteks in Eqgs. (2.8) affect the degree of adaptation? What
if X changes very slowly? very quickly relative R? (Experiment with the
simulation or consider analyzing the problem in other ways.

2.5. Here we consider Egs. (2.8) using phase-plane metlaodsassuming tha is
constant.

(a) Sketch theX andR nuliclines in theXRplane.

(b) Show that there is only one intersection point, i.e. auaisteady state, and
that this steady state is stable.

(c) Explain how the phase plane configuration changes \@igimstantaneously
increased, e.g. frol8=1t0S= 2.
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2.6. Consider the genetic toggle switch by Gardner et ald®kn by the model equa-
tions Egs. (2.11).

(a) Consider the situation that= 1 in the repression term of the function (2.10)
and in the model equations. Solve for the steady state ealisito Egs. (2.11).

(b) Your result in (a) would have led to solving a quadratiaa&ipn. How many
solutions are possible? How many (biologically relevatepdy states will
there be?

(c) Consider the shapes of the functidpshown in Fig. 2.5. Using these shapes,
sketch the nullclines in the phase planerice m= 1 and forn,m > 1. How
does your sketch inform the dependence of bistability osalmwers?

(d) Now suppose that=m= 3 (as in Fig 2.6). How do the values affect these
nullcline shapes? Supposeis decreased or increased. How would this affect
the number and locations of steady state(s)?

(e Explore the behaviour of the model by simulating it usimg XPP file in Ap-
pendix A.G.3 or your favorite software. Show that the configion shown in
Fig. 2.6 with three steady states depends on appropriateeshof the integer
powersn, m, and comment on these results in view of part (c) of this @gerc

(f) Further explore the effect of the parameters How do your conclusions
correspond to part (d) above?

2.7. Consider the genetic toggle switch in the situatiomshim Fig. 2.6.

(a) Starting withu = 2, what is the minimal value of that will throw the switch
tov (i.e., lead to the highr steady state)?

(b) Fig. 2.6 shows some trajectories that “appear” to apgrdae white dot in the
uvplane. Why does the switch not get “stuck” in this steadyestat

(c) Suppose thatthe experimenter can manipulate the tarmate ofu so thatit is
dy = 1.5 (rather thardy, = 1 and in (2.11)). How would this affect the switch?

2.8. Consider the chemical scheme proposed by Hasty et @l (2]12).

(a) Write down the differential equations for the variabeg u, v, d correspond-
ing to these chemical equations. (To do so, first replace apiatized rate
constants associated with the reversible reactions witlveia and reverse
constants (e.g{; is replaces byi,K_1 etc).)

(b) Hasty etalassume that Egs. (2.12a)ast i.e. are at quasi-steady state. Show
that this leads to the following set of algebraic equatiangliese variables:

y =KX, (2.26a)
U = Kody = K1Kodx2, (2.26b)
v = 01Kody = 01K1K2d X4, (2.26¢)
z = 02Kouy = 02(K1K2)2dX. (2.26d)

(c) Show that this QSS assumption together with the consernvequation (2.13)
leads to the differential equation fegiven by (2.14).
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(d) Show that the equation you obtained in part (c) can beittenrin the dimen-
sionless form (2.15).

(e) Runthe XPP code in Appendix A.F with the default valuesarbimeters, and
then changgto each of the following values: ()= 12 (ii) y= 14, (iii) y= 16,
(iv) y=18. Comment on the number and stability of steady states.

(f) Connect the behaviour you observed in part (e) with ttarbation diagram
in Fig 2.9(b).

2.9. Consider tha repressor gene model by Hasty et al [4], and in particulantbdel
(2.15) discussed in the text. Suppose an experimenteesantt the following ex-
perimental manipulations of the system. State how the exuatould change, or
which parameter would change, and what would be the effeth@mehaviour of
the system. Use graphical ideas to determine the quaétatitcomes (The manip-
ulations may affect some slope, height, etc. of a particulave in Fig. 2.8.)

(&) The experimenter continually adds repressor at somga@otrate to the sys-
tem.

(b) The experimenter inhibits the turnover rate of reprepsotein molecules.

(c) Repeat (b), but this time, the experimenter can contktirnover rate care-
fully and incrementally increases that rate from a low ddgtian level via
intermediate level, to high level. What might be seen asatfzs

(d) The experimenter inhibits the transcription rate in ¢tledl, so that repressor
molecules are made at a lower rate when the gene is active.

2.10. In the cell cycle model of Section 2.6, it is assumed tihe variableP given by
Eqgn. (2.21b) is on quasi-steady state (QSS). Here we exjhlateelationship.

(a) Assume thatP/dt = 0 in (2.21b) and show that you arrive at a quadratic
equation. Note similarity to Exercise 2.3d.

(b) Write down the solution to that quadratic equation.

(c) Show that you arrive at the Goldbeter-Koshland funcgtamin Exercise 2.3.
2VaJ|

(\/I —Va+Vadi +Vida+ \/(\/iva+VaJi +Vi~]a)2 - 4(V| _Va)VaJi

G(Va,Vi ) Jaa JI) =

2.11. Here we further explore the YP model of Eqgs. (2.21) showFig 2.12. Use the
XPP file provided in Section A.H.1 (or your favorite softwate investigate the
following:

(a) Replot the YP phase plane and add trajectories to the imgwaims shown in
Figs. 2.12(a) and 2.12(a).

(b) Use your exploration in part (a) to determine the basiattrhction of each of
the steady states in Figs. 2.12(a).

(c) Follow the instructions provided in Section A.H.1 to reguce the bifurcation
diagram in Fig. 2.13.

2.12. Consider the three variabf€®’Amodel for the cell cycle given by Egs. 2.24
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(a) Simulate the model using the XPP file provided Appendid.A.(or your fa-
vorite software) for values of the cell mass in the rangestdriest shown
in Fig 2.15, i.e. for low, intermediate, and larger cell maS&etch the time
behaviour ofY, P, A for these simulations.

(b) Follow the instructions in Appendix A.H.3 to reprodube bifurcation picture
for this model.

2.13. Consider the following set of equations:

dx

= = ax—y—X(C+y?), (2.27a)
d
d—i/:x+ay—y(x2+y2). (2.27b)

This set of equations represents the classic (superdyilopf bifurcation, in which
a stable limit cycle appears and gradually grow in diametarrate,/a — Ocrit -

(a) Explore this system numerically for a range of valuest @b find its stable
limit cycle.

(b) Now consider the related system that has a subcriticpf Hifurcation

% = ax—y+x(¢+y?), (2.28a)
d
o =X Ay YOE Y. (2.280)

Study this system using the same methods and compare yautsre¥ou
should find that an (unstable) limit cycle appears with nomzameter, and
shrinks as the bifurcation parameter increases.

2.14. Use the XPP file provided in Appendix A.H.4 (or your fat®software) to simulate
the model of Eqgs. (2.25). Compare the time behaviour of AP€Ccyelin obtained
in this model (e.g. in the first panel of Fig 2.19) with the esponding behaviours
obtained in the two and the three variable models.
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Chapter 3

Simple polymers

3.1 Simple models for polymer growth dynamics
3.1.1 Simple aggregation of monomers

We first look at simple aggregation where monomers can bedsaiapvhere on the grow-
ing polymer. An example of this type could be highly branchetymer where every site is
accessible for further addition, as shown in Fig 3.1. An eglenof this type was proposed
by [11] to describe the aggregation of amyloid monomers fiftdls. Let us define the

following variables:

c(t) = number of monomer subunits in the volume at time
F (t) = amount of polymer (in number of monomer equivalents) at time
A(t) = total amount of material (in number of monomer equivaleatsjmet.

( F is given a value that corresponds to the concentration ¢ftligh liberated monomer
in the same reaction volume.)

Assume: The rate of growth depends on a produat ahd F, with rate constant
ki > O (forward reaction rate) and the rate of disassembly orowenis linearly propor-
tional to the amount of polymer, with rate const@nt Note thatA = c+ F is constant
[Exercise 3.1(a)]. Our model equations are then:

9 ko (3.1a)

%—T = kiCF — BF. (3.1b)

EliminatingF by settingk = A— cleads to a single equation for monomers:

%:(—ka—Fé)F:kf(A—C) <k—6f—c) 3.2)

39
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polymer

& &

O

S
monomer

Figure3.1. A branched polymer. Any site on the polymer is competentiditian
on new monomers. Hence the more polymer, the faster it growa §iven monomer
concentration.

It follows that there is a critical concentration of monomegir = d/ks, that plays a role
in the dynamics. Let us exploit this fact to write Eqn. (312}he simpler form,

dc

4 = Kr(A=0) (G —©). (3.3)

Wheneverc < cqit, andc < A, the expression on the right hand side is positive so that
dc/dt is positive. This implies that increases in that caeWe cannot violate < A (so

the term(A — c) has to be positive), but dit < A, then it is possible thatyit < ¢ < A. In

that case, the product on the RHS of (3.3) is negative catetreases.

A plot of qualitative behaviour

In panels (a) and (b) of Fig 3.2, we pldt/dt (on the vertical axis) versus(on the hori-
zontal axis) prescribed by Egn. (3.3). In panel (b) of Fig 8:2 show what happens in the
case tha# < Cgrit .

The analysis so far has revealed that a non-trivial levelaymper occurs only if
A > corit. In that case, the system evolvescto) — Cerit, F (t) — A— Cerit. We summarize
several additional observations that can be made from sigydmination of the form of
Eqgn (3.3) (without the need to fully solve this in closed form

Steady state behaviour

Steady statesof Eqn. (3.2) occur whedc/dt = 0. We observe that the amount of monomer
left in solution is either

C = Cerit :k_f’ or c=A.

“Recall that thesign of the derivative indicates whether a quantity is increasing or decreasingh rguments
will be formalized and used insightfully in Chapter 1. L.E.K
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dc/dt dc/dt
= - c = c
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Figure 3.2. Polymerization kinetics in simple aggregation. State spplots of
(3.3) (also called phase portraits) showing monomer (c) and pely(f) levels for con-
stant total amount (A). (a) A ccrit = &/Ks: in this case, ¢, will always approachiits critical
concentrationg = cgrit = 8/Ks , (b) A< cerit: here there will be only monomers, and no
polymers will form. The grey region is an irrelevant regins@ce the level of monomer
cannot exceed the total amount of material, A. Time ploth®ftiwo cases, produced by
XPP (c) for A> cgit, (d) for A< cqrit. Parameter values: k= 1,0 = 1, A= 3. XPP code
can be found in Appendix A.A.

The amount of polymer at this steady state is (by consemptio= F=A—Cuit =A—
0/ks, or F = 0. Beyond the critical concentration, i.e. for- cqit, adding more monomer
to the system (which thus increases the total am@Qintill not increase the steady state
level of monomer, only the polymerized form.

Initial rise time

The initial rate of the reaction, when the mixture just staotgrow: Suppose that initially,
there is only a little bit of polymer to seed the reaction, F€0) =€, c(0) = A—egx~ A
for some smalk > 0. Then a good approximation of the polymer kinetics is gibgn
substitutinge = A into the above equation to get

dF

a ~ kf (A— Ccrit)F = KF
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whereK = ki (A— cgit) is a positive constant. Then the initial time behaviour @frfients,
F(t) = eexp(Kt), is exponentially growing providedl > Cerit .

Decay behaviour if monomer is removed

If the monomer is “washed away” from a mature reaction, ifeectively settingc = 0 in
Eqgn. (3.1b) leads to gradual disassembly of polymer, sinee t

dF

T —oF.
The polymer will decay exponentially with rate constant.e. F(t) = Foexp(—at). This
can be useful in determining values of parameters from data.

The full kinetic behaviour

Having identified main qualitative features of the systend a few special cases such as
early time behaviour, we turn to a full solution. Here we uskvgare to numerically inte-
grate the system of equations (3.1) and show the behavioarg$pecific set of parameter
values. We show this behaviour in panels (c) and (d) of Fig. Ihere are many soft-
ware packages that can easily handle such differentialtemsa Here we use XPP (code
provide in Appendix A.A).

Summary and observations

It is useful to gather the results of our simple analysis. Wefind that such observations
will help us later in distinguishing between one type of aggtion reaction and another.

3.1.2 Linear polymer growing at their tips

Here is a slightly different scenario, in which nucleatiators only at some sites. For
example, we consider a linear polymer with growth exclugia the end(s) of the fila-
ments, as shown in Fig 3.3. We keep the previous assumptdudigassembly takes place
by some bulk turnover of the polymer, i.e., not necessarlyrtonomer loss at the ends.
We guide the reader through exploration of this case in Ese1®.3, with main concepts
summarized here more briefly.

We will define:

n = Number of filaments (or filament tips) at which polymerizat@an occur

We assume at this stage that the number of filament tipis, constant, and that neither
breakage nor branching takes place. Then the appropriateliso

%’ = —kfen+ OF, (3.42)
d—F =kscn— OF. (3.4b)

dt
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Figure 3.3. A linear polymer. Growth occurs at filament ends (on-ragg &nd
turnover takes place at rai@

As before, conservation holds [Exercise 3.3a], and elitionaf F leads to the monomer
equation:

%::—kfcn+6(A—c):6A—c(kfn+6). (3.5)

The ratiod/(nks) is dimensionless: it represents the ratio of the criticalaamtration to

the concentration of tips.) However, properties of Eqs4)(8iffer in several ways from
that of our previous example.

Steady state

In Exercise 3.3c, we show that there is only one steady stéattemonomer level

_ 0A o)
C_—kfn+6:BA where B_kfn+6'

(3.6)

The factor3 so defined clearly satisfigs< 1 sincen, ks > 0. This means that such steady
state exists in all cases, unlike the previous situatiomiich it was contingent on a suffi-
ciently high amount of material.

The linear structure and turnover kinetics of the polymensidered here has the
following further implications: As shown in Fig 3.5, the i@bf polymer to monomer at
steady state is constant. That ratio does not depend onti@ioount of material, only on
the reaction rates and the number of filament ends. Provided are initial fiber ends on
which to polymerize, growth of polymer occurs for any levehwonomer. Increasing the
total amount of material will increase both monomer and pay proportionately. A large
number of small filaments will grow to larger overall masstlagew long filaments, since
more tips are available for polymerization.

One way to control the relative proportion of the polymediferm is to increase the
number of “ends” at which polymerization occurs. This olvaébn is germaine to actin,
where specific agents lead to the creation of “new ends” athvpolymerization occurs,
or to the capping/uncapping of such ends to slow or accel@@ymerization.
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Figure 3.4. Polymerization kinetics in filament elongation with growtiturring
only at filament tips, given by Egé3.4). Here the number of tips, n is assumed to be
constant. (a) the flow is always towards a unique steady ,stdtieh is inside the domain.
(b) time plot produced with XPP code (See Appendix A.B). rRatar values wereik=
1,0=1,n=5and initial conditions were @) = 2.9,F(0) = 0.1

Cerit 0

@ (b)

Figure 3.5. Steady state values of polymer and monomer as the total ambun
material A is slowly increased (direction of arrows). (a)the case of simple aggregation,
Egs.(3.1), discussed in Section 3.1.1, for monomer concentratiencgi < A no poly-
merization will occur. Thereafter, the monomer level wél ¢tbnstant and excess material
will all be incorporated into polymer. (b) In a linear polymeith irreversible addition of
monomer only at filament ends as in E(&.4) of Section 3.1.2, there will be a constant
ratio of monomer and polymer. As A increases, both will insee The slope of the line in
(b) is nks /3. Increasing the number of filament tips, n, will mean thaterafrthe material
is in polymer form.

A comparison of the steady state behaviour of the two models far considered is
given in Fig. 3.5. Here we show the distinct predictions teasly state behaviour for the
two distinct polymer types as the total amount of mateAal gradually increased.
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3.1.3 New tips are created and capped

New ends can be formed in a number of ways: (1) by spontanaalsation of filaments
from monomers (2) by breakage of long filaments to producetshones with more ends,
or (3) by agents that lead to branching of the filaments. We hencentrate on the third
mechanism.

Assume that the filaments sprout new tips at some constantrathis allows poly-
merization to accelerate. If new tips form without limit, si@ady state will be possible. A
control measure that limits explosive growth of new tipségded, so we assume that the
tips are capped at some rateKinetics of this type describe the polymerization of adtin
presence of the nucleator Arp2/3 that leads to filament Iiagcand capping protein that
stalls elongation at some tips [17]. Then the system of @steis

dn

i = @F —Kn, (3.78)
c
pr —kt cn+oF. (3.7b)

wherec is the monomer concentration<0c < A andF is filament length, as defined
in Section 3.1.1. In Eqgn. (3.7a) we see the creation of nes/dipng a filament (with
rate @ per unit filament per unit time), and the first-order decayg rat. In (3.7b) we
have monomer being used up at each tip (fueling the extewsithe filament) and being
recycled from filament degradation. Note that tips do natycamass, as they are a site on
an existing filament. The filament density equation is ungedr(here omitted), arfd can
be eliminatedf = A— c) as before leading to

%1 = @A—c)—Kn, (3.8a)
dc
pri —kfcn+0(A—c). (3.8b)

This is a system of two differential equations in the varalli(t),c(t). whose time be-
haviour is shown in the simulations of Fig 3.6. For low tip paqy ratek, the polymer
will form, as in Fig 3.6(a). Whew is too high, the filaments initially start to grow, but
eventually decay, as shown in Fig 3.6(b).

This system can also be studied in ttrephase plane (Figure 3.7(a,b).) It is evident
that there are up to two steady states; 0,c = AJF = 0 (unstable) and a stable steady
state at

c= 9K E_a-g n=%

Ki () K

that is physically meaningful only iA > ok /ks@ (Fig. 3.7(a)). If this inequality is not
satisfied, then only the trivial equilibrium is relevant aementually, only monomer will
remain (see Fig 3.7b and also Fig. 3.6b). In this sense, thasts an “effective critical
concentration”, whose value depends not only on the poliaton forward and back
kinetics, but also on the creation and removal of tips thedanucleation sites.
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polymer

monomer

Figure 3.6. Polymerization kinetics for the mod@.8) where new tips are cre-
ated and capped. (a) For low capping rate—= 0.1 polymer is formed. (b) Fok = 1,
the polymerization cannot be sustained, and eventually,monomers are left. Other pa-
rameter values used were k 1,6 = 1, 9= 0.2,A= 3. Simulations done with XPP file in
Appendix A.D. See also Fig 3.7 for another way to plot the safoemation using gphase

plane diagram.

tips

monomer

polymer

15

20

A

Stable S.S.

Figure 3.7. Plane plots showing nuliclines and steady states for thgrpetiza-
tion model in the case where filaments are broken to produeetips, and tips are then
capped. The horizontal axis is ¢, and the vertical axis is ee 5ig 3.6 for the corre-
sponding time plots. (a): For low capping rate,= 0.1 polymer is formed. (b)x =1,
the polymerization cannot be sustained, and eventually,monomers are left. Other pa-
rameter values used werg k1.0 =1, 9= 0.2,A= 3. See Section A.D for XPP file that

produced these phase plane diagrams.
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QSS on filament ends

If new tips are formed and removed rapidly relative to othieekcs, than a QSS on the
variablen leads ton =~ (¢/k)(A—c) so that

dc 0]

Pl —kicn+90(A—c) = —kg CE(A—C)+5(A—C) =kf(A—c) (E — (—pc) (3.9)

kf K

Thus, the dynamics of this case is similar to those discuissdction 3.1.1 in the limit of
rapid tip dynamics, but with a different “effective critic@oncentration”c(,; = 0K/ (ks ®).

3.1.4 Initial dynamics

The initial behaviour of this system starting with~ A, and somé- = € ## 0 depends on
whether there are also exposed filament endls-ad. There are two possibilities:

Case A: Some exposed tipsat t = 0: In Fig 3.6, we illustrate the case wheat@) # 0. In
Exercise 3.10b we ask the reader to show that close=t®, filaments grow linearly and
tips grow quadratically.

CaseB: No exposed tipsat t = O: If tips are initially all capped so tha(0) = 0, then new
tips must first form, before any polymerization can take lda that case, close to= 0,
tips grow linearly and then filaments grow quadratically¢Ecise 3.10c].

Implications

In this type of polymer reaction, with creation and cappiridilament tips, either linear

or quadratic initial polymerization rise time behaviounoaccur. Washout decay is not
changed from the description in Section 3.1.2. The effeativtical concentration in such
kinetics, c;; = 0k/(kf@), depends on turnover of both filaments and (exposed) tips, as
well as branching and monomer on-rate. This means that ampfihese parameters can
influence the long-term behaviour.

Exercises

3.1. (a) Show thatthe polymer equations (3.1) imply thatdle amount of monomer
and polymer are conserved.

(b) Verify the equation for the rate of changeadbtained by eliminating.

(c) Explain how the diagram faic/dt versusc is obtained from the differential
equation forc.

3.2. Use the XPP file provided in Appendix A.A to explore thdypterization by ag-
gregation discussed in Section 3.1.1. Show that you geltsessiin Fig 3.2. What
parameter(s) or value(s) should you vary to get the casegsinganels (c) and (d)
of that figure?
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(a) Show thatthe polymer equations (3.4) imply thatole amount of monomer
and polymer are conserved.
(b) Show that can be eliminated from Eqn. (3.4a) to arrive at Egn (3.5).

(c) Show that (3.4) has a single steady state solution, atdita level of monomers
at that steady state is given by (3.6). What is the correspgrevel of poly-

mer at that steady state?
(d) Show that if the number of “tips’p, is constant, the steady state levels of

monomer and polymer are proportional to each other.
3.4. Consider two special cases for the model (3.4) of pohygnewing atn tips where

n> 0 is constant.
(a) First, consider the early time behaviour. Explain whyg thodel implies that
some polymer is needed initially so that further polymei@awill occur.
(b) Assume that close to the beginning of the reaction A, andF ~ €. Find the
approximate behaviour &f(t) at this early time. Show thal- /dt ~ C so that
F grows linearly with time.
(c) What is the value of the consta@tyou found in part (b)?
(d) Now consider the case that monomer is continuously rexhérom a polymer-
ized mix that had been at its steady state. What will happé&metpolymer?
3.5. Use the XPP code provided in Appendix A.B to explore troaeh for polymers
growing at their tips discussed in Section 3.1.2. Show tbatget the results given
in Fig 3.4. How does the behaviour change if there are mose(tip- 10)? If the
rate of growth is slower; = 0.2) ?
3.6. Consider modifications of the model (3.4) as follows:

(a) Show thatif the polymerization at filament tips is reuges(with rate constant
kr for loss of monomer from tips), then this shifts the steadyesto

OA+kn — _
F=A-c 3.10
KN+ © (3.10)

(b) Show that if filaments do not turn over as a whole, but natitel and lose
monomers at their ends, then the kinetics are differentldg&phis model by
settingd = 0 and replacindsscn by (kfc — k;)n in the relevant equation.

(c) Show that the revision in (b) introduces a critical cameation,cerit = K /K.

3.7. Consider Egn. (3.3). What are the units of each of thebkas? Suppose we define

new variablest* = ot andc* = ¢/A whereA is the total amount of monomer in the
system. (Note thah,  are positive constants carrying units. What are those ®nits

(a) Explain why the new variablest;,c* are “dimensionless”, i.e. are unit-less

parameters.
(b) Substitute =t*/5,c = c*Ainto Eqn. (3.2) and simplify the equations. Show

that you obtain (after dropping the *'s).
dc
dt
What is the value of the parameteiand what does it represent?

3.3.

C_:

=(1-ac)(1-o). (3.11)
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(c) Use the results of analysis of Eqn. (3.3) to draw conohssiabout the be-
haviour of the dimensionless model, given by Eqn. (3.11).

3.8. For aggregating molecules, it may be the case that menaddition or loss can
only occur from the surface of a dense growing “pellet”. Ttése is a variation
on the theme described in the model (3.1) of Section 3.1.1e ke examine this

variant.
(a) Since the variablé has units proportional to mass, and assuming a 3D (roughly
spherical) aggregate, show that the surface area of a sietiét would be pro-

portional toF 2/3,
(b) Argue that this leads to the modified model

dc 2/3 _ 23( 9
(c) Show that the steady state monomer and polymer leveldeanged in this
situation.
(d) Show that the initial growth (close to= 0) and the “and washout kinetics”
follow a power rather than exponential behaviour.
(e) Adapt the XPP code given in Section A.A to studying andattrizing the
behaviour of this variant of the model.
3.9. Consider the model (3.8) for polymer filaments with thest are created and capped.
(a) What is the corresponding differential equationFa&r

(b) Find the steady state(s) of (3.8).
(c) Draw the qualitative state space plot (analogous to Figa,b) forc corre-
sponding to the equation (3.9).
(d) For Egn. (3.9), which steady statés stable? (unstable?)
3.10. Consider the model (3.8) for polymer filaments witls tipat are created and capped.
(a) Use the XPP file in Section A.D to simulate this model armieate the time
plots shown in Fig 3.6.
(b) If n(0) # 0, show that close tb= 0, filaments grow linearly and tips grow
quadratically.
(c) If tips are initially all cappedr((0) = 0), show that close to= 0, tips grow
linearly and filaments grow quadratically.
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Chapter 4

Introduction to
nondimensionalization and
scaling

This chapter is an introduction to the topic of dimensioseriables.

4.1 Simple examples

We start with simple models consisting of one differentigli@tion in order to establish
the motivation in an elementary setting. We first discusslaélgéstic population growth
equation, and then move on to models in a chemical setting.

4.1.1 The logistic equation
A well-known model for the density-dependent growth of aylagionN(t) is thelogistic

equation,

dN N

—=rIN(1-—]. 4.1
at ' ( K> (4.1)

Herer > 0 is theintrinsic growth rate in units of 1/time, andK > 0 is thecarrying

capacity, in the same units ds. This equation is a limited-growth version of thealthus

equation discussed in Exercise??.

Dividing both sides bK and regrouping terms leads to

1dN N N d /N N N
In this form, it is evident thaN only appears in in the grouping/K. We can simplify

the equation and reduce the number of constants by tredii®@s a single new quantity.
Accordingly, suppose we define a new variable,

Note that in this form, the population is measured in “mudtg of the carrying capacity.
Thusy is a pure number, a dimensionless variable carrying no,usitn if originally we
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had assigned units f8 such as number of organisms per unit area of habitat. Makiag t
substitutiorN = Ky into Eqn (4.2) (or Egn (4.1), for that matter), leads to the Bguation,

dy

2 —ry(1-vy). 4.3

G ==y (4.3)
We can go further with Eqn (4.3) and scale time so as to recheeamaining parameter
(r). To do so, we would define a new dimensionless variabtet. Then the substitution
t = s/r into Eqn (4.3) will eliminate the remaining parameter, iegdo

dy

gs = Y(@A-y). (4.4)
[Details in Exercise 4.1]. This elementary first exampleadty illustrates thanhtroduction
of dimensionless variables reduces the number of paras#tat characterize a problem.
Observe that in Eqn. (4.4), there are no free parameters Tiis means that we can
understand the essential behaviour of such an equatiorutdyisg this single prototype
rather than considering all possible results for multi@fues of the parameter for the
unscaled version, Eqn (4.1). The behaviour of Eqn. (4.4)péoged in Sectior??.

4.2 Other Examples

We present a few additional examples and show how each casmloimensionalized. Here
we will also see steps to take when it is not immediately fpansnt which combinations of
choices for scales are appropriate. Some of these examjdesraprevious models (e.g.
from Chapter 3) and others will be analyzed in later material

Example 4.1 (Macrophages and dead cells). Find a dimensionless formulation for the
following set of equations arising in a model for macropt&@et)) removing dead cells
(a(t)) and killing some cells in the process:

Z—rtn:g-(M—m)a—km (4.5a)
%‘ =kKCm- fma—da (4.5b)

Here M and C are total numbers of macrophages and target,celgpectively, assumed
to be constant in this example, and given in units such as ceif® (i.e. cells per cubic
cm). Time t is measured in hours. g is the rate of activatiothefmacrophages by dead
cell material, k is the rate of inactivatiorx is the rate of “bystander” killing of cells, f

is the rate of removal of dead cells by macrophages and d ig swihrer turnover of dead
cell material. It is assumed that gk, f,d > O are constants. [See Exercise 4.3a for a
discussion of the units of these parameters.]

Solution. We assume the following scalings:

m=mni, a=aa’, t=rtt"
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Herem,a, T are constant (dimension carrying) scales, to be chosenmayad,t* are the
numerical (dimensionless) variables. Then, substitutifginto Eqs. (4.5) leads to

d(mnt) o
G = g(M — mni)aa’ — kmnf, (4.6a)
d@a) _\cmint - tmntaa - daa, (4.6b)

We multiple both sides of Eqgn. (4.6) liym, and sides of Eqn. (4.8) by a,

dantt T o — e —
e a_[g(M —mni)aa’ —kmni], (4.7a)
‘;‘;" - g_[KCrﬁn‘i* _ fmnfaa’ - daa’]. (4.7b)

Now distribute the terms and group constants and variabiesté obtain

Zr:j =gat((M/m)—m")a" —ktm", (4.8a)
9 cMrm — frmintat — dra’, (4.8b)
dt* a

Let us use square brackets to emphasize the groupings daoorerms:

I — @ (/] - m)a’ — [k (4.92)
da* m . . i
av = |:KCE_T:| m* — [ftmm*a* — [dt]a". (4.9b)

We select values for the constant scale so as to simplify ag/ rathese groupings as
possible. In particular, we chose

M/m| =1, [KC?T] =1 [di=1

This choice is, to some extent arbitrary in the current edampimplies that the convenient
set of scales we have selected are

m=M, t1=1/d, a=«kCnm = @
We now drop the *s. The equations then simplify to
Z—T: a(1—m)a—dm, (4.10a)
%‘ =m-nma—a. (4.10b)

where
a=|[gat], d=Ikt]=k/d, n=][ftm]. (4.11)
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In Exercise 4.3b we ask the reader to rewrite these quantitieerms of the original pa-
rameters of the problem and to interpret their meanimgs.

Example 4.2 (Predator Prey equations). Consider the following set of equations

ax X Xy

o = X (1— R) ~Age (4.122)
dy y

Yoy <1_ q_x) | (4.12b)

These equations have been used to model the dynamics atimerprey (Xt)) and preda-
tors (y(t)). Assume thatrK,A,D,q > 0 are constants. Use dimensional analysis to reduce
these to a dimensionless form.

Solution. We define the following scalings:
Xx=xX, y=yy, t=rtt".

Here the quantitiex,y, T are convenient “scales” that will be chosen shortly, as & th
previous example. They are constant, whereas the numeailcedsx*, y*,t* that carry no
dimensions are the variables. Substituting these assigtsritego Egs. (4.12) leads to

dxx* XX* XXy
W_rlxx* <1—?> _AD+>6<*’ (4.13a)
dyy: vy
We multiply both sides of Egn. (4.13a) liyx and both sides of Eqn. (4.13b) byy and
simplify to obtain:
dxt . X7 . yl Xy
pre [r1T] X <1 {K} X > {ATA D/x (4.14a)
dy yly
e [roT]y* <1— {q_f} ;) . (4.14b)

[See Exercise 4.4b.] We now make judicious choices thataedioe complexity of the
terms. We can chose the scaley, T, i.e. we have three independent choices to make. It
proves convenient to set

[riT] =1, {%_] =1 [% =1

This is equivalent to selecting
T=r1, x=K, y=gx=gK

The equations are thereby simplified to

dx* . y| Xy
prey =X"(1-X")— [AT% W, (4.15a)

‘;i’: = [ra1]y* (1— i—) . (4.15b)
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We drop the *'s and obtain the final dimensionless set of equst

dx X

a :X(l—x)—G%( (416a)
dy y

a3 (4.160)

where the parameters in these have the following meanings:
y Aq ra D
a [ rj o v=lel=2 8=p/A=g

In Exercise 4.4c, we discuss the meanings of these paran&¥eralso consider an alter-
nate rescaling in part (d) of the same exercise. We will sthdysystem further in a later
chapter. (See Eqns??) and their analysis in Chapté?.) m

Exercises

4.1. Consider the logistic equation (4.1).
(a) Explain why it must be true th&i(t) andK have the same units.

(b) SupposeéN(t) is in units of density of organisms (e.g. number per unit grea
and time is measured in years. What are the units of the depidt? of r?
What are the units of the quantityland how could this be interpreted?

(c) Now consider Eqn (4.3). Define a new variatile= rt wherer is the growth
rate. Show that the substitutior=t*/r into Egn (4.3) will eliminate the re-
maining parameter, leading to Eqn. (4.4). This is equivii@mescaling time
in units that have what meaning?

4.2. Suppose you have found a solutygn) to (4.4). Explain how you would convert this
to a solutiorN(t) to (4.1). [Hint: consider a back substitution using thetietaships
s=rt andy =N/K.]

4.3. (a) For the model of macrophages and target cells giy€a.b), if mandc have

units of cells cm? (i.e. cells per cubic cm) and time is measured in hours,
what are the units for each of the parametgksk, f,d?

(b) Determine the values of the dimensionless parametgys) from (4.11) in
terms of the original parameters of the problem.

(c) Interpret the meanings of these dimensionless ratios.

4.4, Consider the model for predator-prey interactionsigivy (4.12). Suppose preda-
tors and prey are both insects, and are measured in units ®{eng. number of
individuals per square meter).

(&) What are the units of the parametgr&,A, D, q?
(b) Verify the calculations resulting in (4.14).
(c) Interpret the meanings of the dimensionless ratiasd.
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(d) Consider an alternate rescalig y = K, 1= 1/A. Find the corresponding di-
mensionless equations and dimensionless parameter ggsupnterpret your

results.
4.5. Consider the following equations for the growth of agirspecies of organism:
dP vP
a_KHD—dP. (4.17)

(a) Interpret what these equations are saying.
(b) Definex=P/P,s=t/t whereP,T are scales to be chosen. Use substitution to
convert Egn. (4.17) to a dimensionless form in terms of tisesées.

(c) What is a reasonable choice P For ,1? Are there more than one possible
scalings that make sense for this model?

(d) Use an appropriate scaling to obtain a final dimensienéggiations. What
dimensionless parameter grouping(s) appear?

4.6. Consider the equation

dx
gt = bye

(a) Show that this equation can be rescaled to the form

%_c(x— %XQ’)

by defining an appropriate scatéor x.
(b) Show that by rescaling time, we arrive at a similar equratvithc = 1.
See Section 1.0.1 for a further investigation of this culiekcs ODE.

4.7. Ludwig, Jones and Holling [9] studied the dynamics &f spruce budworm, here
denotedB(t). They suggested the following differential equation toalé the
growth of these insects and predation by birds:

dB B B2
(a) Explain the meanings of the terms in this equation.

(b) Rewrite these equations in dimensionless form. Theeetwo choices for
scales for the budworm density and two for time.

4.8. Hasty et al [4] derived a model for the concentration Ed@essox(t) in the lysis-
lysogeny pathway of thg virus. A reduced version of this model is
dx . AK1K2X2
dt 1+ (14 01KKox + 02K2K2x4)
Define a dimensionless repressor concentratioa x,/K1K, and a dimensionless

time t* = t(r/KiKz). Show that the dimensionless equation can be written in the
form

KX T (4.19)

dx ax?

dt 1+ (1+0p@+ ooxd)
Find the values of the parametersy in terms of the original parameters.

—yX+1 (4.20)
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Appendix A

Appendix: XPP Files

Some instructions are provided here but readers who haws need XPP will find good
resources for the installation and usage of this freewaa@ ionline tutorial by Ermentrout,
as well as in his written accounts. An extensive guide, widnynother interesting exam-
ples, is [1]. A related text, also richly supported with XPgamaples and instructions is

[2].

A.A Simulation for simple aggregation of monomers
ODE file for Fig 3.2 in Section 3.1.1

# actinl.ode
de/dt=-kf*c*F +kr*F
dF/dt=kf*c*F -kr*F
param kf=1, kr=1
init ¢=0.7, F=0.1
done

A.B Simulation for growth at filament tips
ODE file for Fig 3.4 in Section 3.1.2

# actin2.ode
de/dt=-kf*c*n +kr*F
dF/dt=kf*c*n -kr*F
param kf=1, kr=1, n=5
init ¢c=2.9, F=0.1

done
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A.B.1 Cubic kinetics

The following file was used to produce the solution curvesigf £.0.1 and the bifurcation
diagram in Fig 1.4(b).

# cubic.ode

#

# The cubic first order differential equation
#

X'= c¥(X-(1/3)*x"3+A)

param c¢=1,A=0

done

In order to produce the bifurcation diagram follow thes@stdRun the .ode file with initial
x value 1.5 and type “Initial condition” “Last” (I L) to contiue the solution so that it is
extremely close to its steady state value (repeat | L two methimes to do this). Type
“File” “Auto” (F A). This opens a new window. Edit the panels #ollows: Parameter:
there is only one parameter, so this need not be chanijees. select “hi-lo”. Then fill
in the range Xmin = -2, Ymin= -3, Xmax=2, Ymax=8lumerics. Change Par Min to -2,
Par Max to 2, and Ds to 0.01. Press CRun: “Steady state”. This will produce part of
the diagram starting with the value 8f= 0. To continue towards negative valuesAf
grab one of the points, and edit the Numerics panel to chasge E.01. This will run the
continuation in the opposite direction. For more detaig the book by Bard Ermentrout

[1].

A.B.2 Pitchfork bifurcations
The following file was used to produce the pitchfork bifuroatshown in Fig. 1.9.

# Pitchfork.ode
X'=r*X-X"3
param r=-0.5
init x=0

done

Instructions: Run the file in auto for some time steps. Sefe(File) A (Auto). The
parameter will already be setitpas that is the only parameter in the problem. Select Axes,
hl-lo, and set Xmin:-0.1, Ymin:-1, Xmax: 0.25, Ymax 1. SelBleimerics and change Par
Min: -0.5, Par Max: 0.25. click OK, then Run: Steady state.

To produce the subcritical pitchfork bifurcation of Fig91the file used was

# PitchforkSub.ode
X'=rx+x"3
param r=0.2

init x=0
done
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A.B.3 Transcritical bifurcation
To produce the transcritical bifurcation of Figure 1.8, tifleeused was:

# TRanscritBF.ode
X'=r*x-X"2

param r=0.2
init x=0.2
done

A.C Systems of ODEs

A.D Polymers with new tips
ODE file for Fig. 3.7

# TipsandCap.ode

#

# Simulation for formation of new filament tips
#

#

dc/dt=-kf*c*n +delta*(A-c)
dn/dt=phi*(A-c)-kappa*n

#

aux F=A-c

#dF/dt=kf*c*n -kr*(A-c)

param kf=1, delta=1, kappa=0.1, phi=0.2, A=3
init ¢c=2.9, n=1

@ total=20,xp=c,yp=n,xlo=0,xhi=3,ylo=0,yhi=7
done

A.D.1 Limit cycles and Hopf bifurcations

The following file was used to make the bifurcation plot of adabthat has a stable limit
cycle.

# HopfBF.ode

# start at x=y=0

# start at r=0.5 and pick ds=-0.02 to first

# get the fixed pt. Then grab the HB point and
# pick ds=0.01 to get the Hopf.

X'=rX-y-x*(X"2+y"2)
Y EXHY-YH (X 2+y2)
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param r=0.5
init x=0,y=0
done

The equations were integrated first with the above initialdittons. In Auto, the Numerics
settings were changed as follows: ds: -0.02, Parmin:-GaEmBx: 2. Then select Run:
Steady state. This produced the line of fixed point with l@i&tion point atr = 0. The
option Grab and tab key selects that bifurcation point. HituRn. In the Numerics panel,
switch to ds:0.01, then Run Periodic.

# HopfsubBF.ode

# start at x=y=0

# pick ds=-0.02 to get steady state

# then grab HB point and Run Periodic

X=Xy XA (X 2+y°2)
Y=Yy 24y 2)

param r=0.5
init x=0,y=0
done

Auto was run in a similar way, but the direction of steps dsiheat be changed. The open
dots signify an unstable limit cycle.

A.E Fitzhugh Nagumo Equations

#FitzhughNagumol.ode
# file to produce simulations for FHN model

dx/dt
dy/dt

C*(x-(X"3)/3-y+))
(x+a-b*y)lc

aux v=-x

par j=0,a=0.7,b=0.8,c=3
# Consider either c=3 or ¢=10
# Parameters should satisfy 1-(2/3)b<a<l,  0<b<l

# Convenient initial conditions:
init x=2.0,y=2.0

@ total=20,xp=x,yp=y,dt=0.01,xlo=-3 xhi=2,ylo=-1,yhi =2
done

Now let us make the bifurcation diagram shown in PRy To do so, sef = 0 and inte-
grate the equations to get as close as possible to the (stiéely state. (e.g. use Initial
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Conditions, Mouse [I M] to start close to the nullcline irgection, then continue using
Initial Conditions, Last [I L] to get even closer. Start alip clicking File, Auto [F A]
and set the Axes to hl-Lo with Xmin:0, Ymin:-2,Xmax:1,Ymaxin the Numerics panel
change Par Min:0 Par Max:1, click OK, and Run Steady state. Witl get the horizontal
branch of steady state, with a bifurcation point (HB). Grhhttpoint and Run periodic
(after decreasing ds to 0.005) to get this picture.

A.F Lysis-Lysogeny ODE model (Hasty et al)
The following XPP file was used to produce Figs. 2.12 for thsi$yysogeny model.

# lysislysogeny.ode

# Based on eq 7 in Hasty et al PNAS (2000) vol 97 #5 2075-2080
# should have a bistable switch

# gamma is the bifurcation parameter (range gamma= 14-16)

#

X'= alpha*x"2/(1+(1+sigmal)*x"2+sigma2*x"4)-gamma*x+ 1
param gamma=18,alpha=50,sigmal=1,sigma2=5
@total=10,xl0=0,xhi=10,ylo=0,yhi=1

done

To generate the bifurcation diagranfirst integrate the ODE file starting fror= 0 a few
times to get as close as possible to the steady state 0.06845. (e.g., integrate, then
“Continue” till t = 500, which does the job. Start Auto (File, Auto). Select Axaslo,
Xmin:10, Ymin:0, Xmax:20, Ymax:1 [Note that gamma will be the horizontal axis, and
Xss On the vertical axis.] Select Numerics, and change only@&2, Dsmax:0.1,Par Min:
0, Par Max: 20. (Click OK.) Select Run, Steady state. Thi$ pvibduce the Bifurcation
plot.

A.G Simple biochemical modules
A.G.1 Production and Decay
The following XPP file was used to produce the productionagidaehaviour in Fig. 2.2(a)

# ASProdDecay.ode

# Simple signal for production and decay of substance
#

R'=k0+k1*S-k2*R

# Signal gets turned on at time 0, off at time 3
# uses "Heaviside" step function to turn on or off

S=heav(t-0)-heav(t-3)

5| want to thank Bard Ermentrout for helping me with the Autttiags for this file. L.E.K.
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param k0=1k1=1k2=1
init R=1

@total=10

done

A.G.2 Adaptation

The following XPP file was used to produce the adaptation\iehain Fig. 2.2(b)

# AdaptTyson.ode

# An adaptation circuit
#

R'=k1*S-k2*X*R
X'=k3*S-k4*X

# Signal gets turned up in steps at times t=0, 5, 10, 15
# uses "Heaviside" step function

S=heav(t-0)+heav(t-5)+heav(t-10)+heav(t-15)

param k1=1k2=1, k3=1, k4=2
init R=1, X=0.5

@total=10

done

A.G.3 Genetic toggle switch

The following XPP file was used to produce the switch-likedabur of Fig. 2.6

AToggleSwitch.ode

#

#

# Based on Gardner et al Nature (2000) Vol 403 pp 339-342
# By making either n or m large enough, get

# nonlinearity that produces multiple steady states

# and a switch-like response

#

u'=alphal/(1+v'n)-u

v'=alpha2/(1+u"m)-v

param alphal=3,alpha2=3,n=3, m=3

@ total=20,xp=u,yp=v,dt=0.01,xlo=0,xhi=4,ylo=0,yhi=4
done
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A.H Cell division cycle models

A.H.1 The simplest Novak-Tyson model (Egs. (2.21)

The following XPP file was used to produce the phase planeg? Hi2 and the bifurcation
diagram in Fig. 2.13.

# tysonCCJTBO1.ode

# Model based on first system (eqs 2) shown in Tyson's paper
# JTB (2001) vol 210 pp 249-263

# Y=[CycB] = cyclin cdk dimers

# P=[Cdhl]= APN Cdhl complex (proteolytic complex)

# Y and P are mutually antagonistic

Y'=k1-(k2p+k2pp*P)*Y
P'=Factiv(P)*(1-P)-Fdecay(Y,P)*P

Factiv(P)=(k3p+k3pp*A)/(J3+1-P)
Fdecay(Y,P)=k4*m*Y/(J4+P)

# parameters with units of 1/time;
par k1=0.04

par k2p=0.04,k2pp=1

par k3p=1,k3pp=10

par k4=35

par A=0

# mass of cell (try m=0.6, m=0.3)
par m=0.3

# Dimensionless parameters:
par J3=0.04,J4=0.04

@ dt=0.005
@ xp=Y,yp=P,xlo=0,xhi=1,ylo=0,yhi=1
done

To make an AUTO bifurcation diagram, the system was firsttestiawith the parameter
m= 0.1, and integrated for many time steps to arrive at the stetadgys— 0.038684% =
0.99402.mwas used as the bifurcation parameter. Auto Axes were sdtlaswith Y on
the Y-axis, and Main Parm:m on the horizontal axis, and withixx0, Ymin:0, Xmax:0.6,
Ymax:1.5.

This system was slightly fiddly, and a few first attempts atdpigng a bifurcation
diagram with the default AUTO numerics parameters were ceesssful (MX type error).

AutoNumerics parameters were adjusted as follolgst:50 Nmax:200, NPr:50,
Ds:0.002, Dsmin: 0.000INcol:4, EPSL:0.0001, Dsmax:0.Bar Min: 0.1, Par Max: 0.2
Norm min:0, Norm Max: 1000, EPSU: 0.001, EPSS:0,001. Therdia was built up
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gradually by increasing the range of the plotted curve.

A.H.2 The second Novak-Tyson model

The following file was used to simulate ti# phase plane plots in Fig 2.14(a)-2.14(c).

Note that heré is put on QSS.

# tysonCCJTBO1_3QSSP.ode

# Model based on three egns system (egs 3) shown in Tyson's pap
# JTB (2001) vol 210 pp 249-263

# Y=[CycB] = cyclin cdk dimers

# P=[Cdhl]= APN Cdhl complex (proteolytic complex)
# Y and P are mutually antagonistic

# A= Cdcl4=Cdc20 - eqgn (3) in this paper

# In this file we put P on QSS and look at Y and A

Y'=k1-(k2p+k2pp*P)*Y
#P'=Factiv(P)*(1-P)-Fdecay(Y,P)*P
#Factiv(P)=(k3p+k3pp*A)/(J3+1-P)
#Fdecay(Y,P)=k4*m*Y/(J4+P)
P=G((k3p+k3pp*A)/(k4*m),Y,J3,J4)

# Here is the Goldbeter-Koshland function that comes
# from solving dP/dt=0

er

G(Va,Vi,Ja,Ji)=2*Va*Ji/(Vi-Va+Va*Ji+Vi*Ja+ sqrt((Vi- Va+Va*Ji+VitJa) 2-4*(Vi-Va)*Va*Ji))

A'=k5p+k5pp* ((M*Y/J5)"n)/(1+(y*m/J5)"n)-k6*A

# parameters with units of 1/time;
par k1=0.04

par k2p=0.04,k2pp=1

par k3p=1,k3pp=10

par k4=35

par k5p=0.005,k5pp=0.2,k6=0.1

# mass of cell (try m=1, m=0.3)
par m=0.3

# Dimensionless parameters:
par J3=0.04,J4=0.04,J5=0.3,n=4
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@ dt=0.005
@ xp=Ayp=Y,xlo=0,xhi=1,ylo=0,yhi=1
done

A.H.3 The three-variable Y PAmodel
The amended file below was used to produce Fig. 2.15 in Se2tih.

#tyson.ode
# Equations

# Equations

Y'=k1-(k2p+k2pp*P)*Y
P'=(1-P)*(k3p+k3pp*A)/(J3+1-P)-P*k4*m*Y/(J4+P)
A'=k5p+kbpp* ((M*Y/J5)"n)/(1+(y*m/J5)"n)-k6*A

# Parameters with units of 1/time:
p k1=0.04

p k2p=0.04,k2pp=1

p k3p=1,k3pp=10

p k4=35

p k5p=0.005,k5pp=0.2,k6=0.1

# mass of cell (try m=0.6, m=0.3, m=1)
p m=1

# Dimensionless parameters:

p J3=0.04,J4=0.04,J5=0.3,n=4

# Numerics

@ TOTAL=2000,DT=.1,xl0=0,xhi=2000,ylo=0,yhi=6

@ NPLOT=1,XP1=t,\YP1=Y

@ MAXSTOR=10000000

@ BOUNDS=100000

@ dsmin=1e-5,dsmax=.1,parmin=-.5 parmax=.5,autoxmin= -.5,autoxmax=.5
@ autoymax=.4,autoymin=-.5

To make the bifurcation diagram shown in Fig. 2.15, follow firocedure below.

e Change the integration method to "STIFF” (hUmerics, Metlgiiff, return, escape).
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First "Initial condition’, 'Go’, we can get some periodicaph at the bottom of the
drawing area. Click two peaks of the graph to find the appraténthe period of the
solution. Itis about 56.45.

'numerics’—change 'total’: 56.45, 'dt’:0.05, escape.

erase the original graph, 'IL’ several time to make sure tioctieser and closer to the
exact stable period orbit.

open the auto window. Select the auto settings as follows:
‘Parameter—'Parl’: m;

'Axes'—'hilo'— "Xmax’: 30, 'Ymax’: 5;
'Numerics'—'Ntst’:60,'Nmax’:200,'Npr:500, Epsl’: 0000001, 'ParMax’:30;

'Run’—'Periodic’, two short lines appears in the left batiaccorner, if necessary,
click "abort’ to stop them.;

'Grab’ and enter.
'Numerics'—'Ds’:-0.02.

'Run’—’extend’, you will find the both two ends will extendubit takes a long time,
so if necessary, click 'abort’ to stop them.

Then we want to find the steady state. Before we do that, ‘filelear grab’.
Go back to Xpp, 'Parameter—m:10, and 'IL’ several times.

Go back to Auto, and 'Run'—'Steady State’, a window will appdo ask you
whether want to destroy the diagram, choose 'No’, a fanch&psd graph will be
added to the diagram (lighter than the original one).

To see them more clearly, 'Axes'—fit’, redraw’. You mighegja graph with some
space between the first set of darker lines and lighter Seshaprve, depending on
how long you run before you click 'abort’ when you run the exi@n.

'‘Axes'—'fit’,'redraw’, the the former two darker line are avaged.

There is more interesting behaviour for smaller valuesofo see these, click file,
clear grab, and go back to XPP window. Chamgéo 0.3, and resimulate (Initial
Cond, Go, I L,I L,I L, I L). Return to AUTO windo, and reset themerics so that
Parmin=0.3, Parmax = 2. Run. This will allow you to see the fafurction. There
is also a subcritical Hopf bifurcation at = 0.5719. You can see this by grabbing
the Hopf point, adjusting the numerics menu to get Parmi=Parmax=0.6 and
running the periodic.

The last graph is the same as 'Tyson.ps’.
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Figure A.1. Bifurcation diagram for the full Y PA model given by E{&.24)(b)
A zoom into part of the diagram of (a). See also Fig 2.15 forthenzoomed view.

A.H.4 A more complete cell cycle model

The file below was used to produce Fig 2.19. in Section 2.6.2.

B=S

tysonCCJTBO01_4.ode

H+=

Model based on three eqns system (egs 3) shown in Tyson's pap er
JTB (2001) vol 210 pp 249-263

H+=

Y=[CycB] = cyclin cdk dimers

P=[Cdh1]= APN Cdhl complex (proteolytic complex)
Y and P are mutually antagonistic

A= Cdcl4=Total Cdc20 - egn (3) in this paper
#AA = active Cdc20 = Cdc20_A eqn (4)

# IP = [IAP] eqgn(5)

H H B R

Y'=k1-(k2p+k2pp*P)*Y
P'=Factiv(P)*(1-P)-Fdecay(Y,P)*P

#HHHHNOTE: CHANGE IN THE FOLLOWING FORMULA A->AA
# as per Tyson's discussion on p 255

Factiv(P)=(k3p+k3pp*AA)/(J3+1-P)
Fdecay(Y,P)=k4*m*Y/(J4+P)
A'=k5p+k5pp* ((M*Y/J5)"n)/(1+(y*m/J5)"n)-k6*A

AN = KTHPHA-AA)(JT+A-AA) K6*AA -k8*Mad*AA/(JS+AA)
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IP'=k9*m*Y*(1-IP)-k10*IP
m'= mu*m*(1-m/ms)

# parameters with units of 1/time:
par k1=0.04

par k2p=0.04,k2pp=1

par k3p=1,k3pp=10

par k4=35

par k5p=0.005,k5pp=0.2,k6=0.1

par k7=1,k8=0.5,Mad=1
par k9=0.1,k10=0.02
par mu=0.01,ms=10

#Global flag: See XPP book p 36

# When Y falls below threshold, the cell divides,
# then its mass m is 1/2 its previous mass.
global -1 Y-Ythresh {m=m/2}

par Ythresh=0.1

# mass of cell (try m=0.6, m=0.3)
#par m=0.3

# Dimensionless parameters:

par J3=0.04,J4=0.04,J5=0.3,n=4

par J7=0.001,J8=0.001

init Y=0.6,P=0.02,A=1.6,AA=0.6,IP=0.6,m=0.8

@ dt=0.005,Total=300,MAXSTOR=500000,BACK="{White}
done

A.l Odell-Oster model

The following XPP file can be used to investigate the Ostegl@eIl contraction model.

#0Odell.ode

# file to produce simulations for Oster and Odell (1984) mode

L'=k*(LO*L/(C"2+CO)-L)
C'=g*L-v*C+a*C"2/(b+C 2)

par k=1,00=0.1,g=1,v=1,a=2.3,b=1.5,C0=0.5
@ total=20,xp=C,yp=L,xl0o=0,xhi=2,ylo=0,yhi=0.3
done
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