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Chapter 1

Qualitative behaviour of
simple ODEs and
bifurcations

1.0.1 Cubic kinetics

We now consider an example where there are three steady states. Here is one of the most
basic examples exhibiting bistability of solutions.

dx
dt

= c

(

x− 1
3

x3
)

≡ f (x), c> 0 constant. (1.1)

(The factor 1/3 that multiplies the term in (1.1) is chosen toslightly simplify certain later
formulas. Its precise value is not essential. In Exercise 4.6a we found that Eqn. (1.1) can
be obtained by rescaling a more general cubic kinetics ODE.

We graph the functionf (x) for Eqn. (1.1) in Fig 1.1(a). Solving for the steady states
of (1.1) (dx/dt = f (x) = 0), we find that there are three such points, one atx= 0 and others
at x = ±

√
3. These are the intersections of the cubic curve with thex axis in Fig. 1.1(a).

By our usual techniques, we surmise the direction of flow fromthe sign (positive/negative)
of f (x), and use that sketch to conclude thatx = 0 is unstable while bothx = −

√
3 and

x=
√

3 are stable. We also note that the constantc does not affect these conclusions. (See
also Exercise 1.??.) In Fig. 1.1(b), we show numerically computed solutions toEqn. (1.1),
with a variety of initial conditions. We see that all positive initial conditions converge to
the steady state atx=+

√
3≈ 1.73, whereas those with negative initial values converge to

x= −
√

3≈ −1.73. Thus, the outcome depends on initial conditions in this problem. We
will see other example of suchbistable kinetics in a number of examples in this book, with
a second appearance of this type in Section 1.0.2.

1
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Figure 1.4. (a) Here we have removed flow lines from Fig. 1.3b and rotated the
diagram. The vertical axis is now the x axis, and the horizontal axis represents the value
of the parameter A. (b) A bifurcation diagram produced by XPPAUT for the differential
equation 1.1. The thick line corresponds to the black dots and the thin lines to the white
dots in (a). Note the resemblance of the two diagrams. As the parameter A varies, the
number of steady states changes. See Appendix A.B.1 for the XPP file and instructions for
producing (b).

We now consider the revised equation

dx
dt

= c

(

x− 1
3

x3+A

)

≡ f (x). (1.2)

whereA is some additive constant, which could be either positive ornegative. Without loss
of generality, we can setc= 1, since time can be rescaled as discussed in Exercise 4.6b.

Clearly,A shifts the location of the cubic curve (as shown in Fig 1.3a) upwards (A>
0) or downwards (A< 0). Equivalently, and more easily illustrated, we could consider a
fixed cubic curve and shift thex axis down (A> 0) or up (A< 0), as shown in 1.3b. AsA
changes, so do the positions and number of intersection points of the cubic and thex axis.
For certain values ofA (not too large, not too negative) there are three intersection points.
We have colored them white or black according to their stability. If A is a large positive
value, or a large negative value, this is no longer true. Indeed, there is a value ofA in both
the positive and negative directions beyond which two steady states coalesce and disappear.
This type of change in the qualitative behaviour is called abifurcation, andA is then called
abifurcation parameter.

We can summarize the behaviour with abifurcation diagram. The idea is to repre-
sent the number and relative positions of steady states (or more complicated attractors, as
we shall see) versus the bifurcation parameter. It is customary to use the horizontal axis
for the parameter of interest, and the vertical axis for the steady states corresponding to
that parameter value. Consequently, to do so, we will suppress the flow and arrows on
Fig 1.3b, and rotate the figure to show only the steady state values. The result is Fig 1.4(a).
The parameterA that was responsible for the shift of axes in Fig. 1.3b is now along the
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horizontal direction of the rotated figure. We have thereby obtained a bifurcation diagram.
In the case of the present example, which is simple enough, wecan calculate the values of
A at which the bifurcations take place (bifurcation values). In Exercise 1.3, we guide the
reader in determining those values,A1 andA2. (See, in particular, the configurations shown
in Fig 1.10.)

In general, it may not be possible to find bifurcation points analytically. In most cases,
software is used to follow the steady state points as a parameter of interest is varied. Such
techniques are commonly calledcontinuation methods. XPP has this option as it is linked
to Auto, a commonly used, if somewhat tricky package [1]. As an example, Fig. 1.4(b),
produced by XPP auto for the bifurcation in (1.2) is seen to bedirectly comparable to
our result in Fig. 1.4(a). The solid curve corresponds to thestable steady states, and the
dashed part of the curve represents the unstable steady states. Because this bifurcation
curve appears to fold over itself, this type of bifurcation is called afold bifurcation. Indeed,
Fig. 1.4 shows that the cubic kinetics (1.2) has two fold bifurcation points, one at a positive,
and another at a negative value of the parameterA.

Bistability is accompanied by an interestinghysteresis as the parameterA is varied.
In Fig. 1.5, we show this idea. Suppose we start the system with a negative value ofA in the
lowest (negative) steady state value. Now let us gradually increaseA. We remain at steady
state, but the value of that steady state shifts, moving rightwards along the lower branch of
the S in Fig. 1.5. At the bifurcation value, the steady state disappears, and a rapid transition
to the high (positive) steady state value takes place. Now suppose we decreaseA back to
lower values. We remain at the elevated steady state moving left along the upper branch
until the lower (negative) bifurcation value ofA. This type of hysteresis is often used as an
experimental hallmark of multiple stable states and bistability in a biological system.

1.0.2 Bistability

A common model encountered in the literature is one in which asigmoidal function (often
called a Hill function) appears together with first order kinetics, in the following form:

dx
dt

= f (x) =
x2

1+ x2 −mx+b (1.3)

wherem,b > 0 are constants. Here theHill function (first rational term in Eqn. (1.3))
has “Hill constant”n = 2, but similar behaviour is obtained forn≥ 2. This equation is
remarkably popular in modeling of switch-like behaviour. As we will see in Chapter??,
equations of a similar type are obtained in chemical processes that involve cooperative
kinetics, such as formation of dimers and their mutual binding. Another example is the
behaviour of a hypothesized chemical in an old but instructive model of morphogenesis in
[13].

Here we investigate only the caricature of such systems, given in (1.3), noting that
the first term could be a rate of autocatalysis production ofx, b a source or production term
(similar to the parameterI in Eqn. (??)), andm the decay rate ofx (similar to the parameter
γ in Eqn. (??)). The simplest case to be analyzed here, isb= 0. Then we can easily solve
for the steady states of this equation. In the caseb= 0, one of the steady states of (1.3) is
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x= 0, and two others satisfy

x2

1+ x2 −mx= 0, ⇒ x
1+ x2 = m, ⇒ x= m(1+ x2).

Simplification and use of the quadratic formula leads to the result

xss1,2 =
1±
√

1−4m2

2m
(1.4)

[Exercise 1.4]. Clearly there are two possible values (±), but these steady states are real
only if m< 1/2.

Let us sketch the two parts off (x), i.e. the sigmoidy= x2/(1+ x2) and the straight
line y= mxon the same plot, as shown in Fig. 1.6. In the casem> 1/2 (dashed line) only
one intersection, atx = 0 is seen. Form< 1/2 there are three intersections (solid line).
Separating these two regimes is the valuem= 1/2 at which the line and sigmoidal curves
are tangent. This is thebifurcation value of the parameterm.

1.0.3 Other bifurcations

Many simple differential equations illustrate interesting bifurcations. We mention here for
completeness the following examples, and leave their exploration to the reader. A more
complete treatment of such examples is given in [16]. In all the following examples, the
bifurcation parameter isr and the bifurcation value occurs atr = 0.

A simpler example of afold bifurcation, also calledsaddle-node bifurcation is
illustrated in the ODE

dx
dt

= f (x) = r + x2. (1.5)

We see from this equation that steady states are located at points satisfyingr + x2 = 0,
namely atxss= ±

√
−r. These two values are real only whenr < 0. Whenr = 0, the

values coalesce into one and then disappear forr > 0. We show the qualitative portrait for
Eqn. (1.5) in Fig. 1.7(a), and a sketch of the bifurcation diagram in panel (b).

A transcritical bifurcation is typified by:

dx
dt

= rx− x2. (1.6)

This time, we demonstrate the use of XPPAUT in the bifurcation diagram of Fig. 1.8. A
stable steady state (solid line) coexists with an unstable steady state (dashed line), they
meet and exchange stability at the bifurcation valuer = 0. Exercise 1.8 further explores
details of the dynamics of (1.6) and how these correspond to this diagram.
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Figure 1.9. (a) Pitchfork bifurcation exhibited by Eqn.(1.7) as the parameter r
varies from negative to positive values. For r< 0 there is a single stable steady state at
x = 0. At the bifurcation value of r= 0, two new stable steady states appear, and x= 0
becomes unstable. (b) A subcritical pitchfork bifurcationthat occurs in(1.8). Here the
two outer steady states are unstable, and the steady state atx = 0 becomes stable as the
parameter r decreases. Diagrams were produced with the XPP codes in Appendix A.B.2.

Thepitchfork bifurcation is illustrated by the equation:

dx
dt

= rx− x3. (1.7)

See Fig 1.9(a) for the bifurcation diagram and Exercise 1.9 for practice with qualitative
analysis of this equation. We note that there can be up to three steady states. When the
parameterr crosses its bifurcation value ofr = 0, two new stable steady states appear.

A subcritical pitchfork bifurcation is obtained in the slightly revised equation,

dx
dt

= rx+ x3. (1.8)

See Fig. 1.9(b) for the bifurcation diagram and Exercise 1.10 for more details.

Exercises

1.1. ConsiderdA/dt = aA− a1A3; a > 0, a1 > 0. Show thatA =
√

(a/a1) is a stable
steady state.

1.2. Considery= f (x) = c(x− 1
3x3+A) as in Eqn .(1.2). Compute the first and second

derivatives of this function. Find the extrema (critical points) by solvingf ′(x) = 0.
Then classify those extrema as local maxima and local minimausing the second
derivative test. [Recall thatf ′′(p)< 0⇒ local maximum,f ′′(p)> 0⇒ local mini-
mum, andf ′′(p) = 0⇒ test inconclusive.]
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1.3. As shown in the text, Eqn. (1.2) undergoes a change in behaviour at certain values
of the parameterA. In this exercise we calculate those values. In Fig 1.10, we show
two configurations for which the cubic curve intersects thex axis in only two places.
If A increases beyond the higher value (or decreases beyond the lower value) only
one steady state remains. Note that at thesebifurcation points, the local maximum
(minimum) of the cubic curve just touches thex axis. Use this fact to compute the
two valuesA1,A2 at the bifurcations.

1.4. Consider the bistable kinetics described by Eqn. (1.3)andb= 0.

(a) Show that aside fromx= 0, this equation has two steady states given by (1.4).
(Hint: show that you obtain a quadratic equation by settingdx/dt = 0 and
simplifying algebraically.)

(b) What happens to the results obtained in part (a) for the value m= 1? for
m= 1/2?

(c) Computef ′(x) and use this to show thatx= 0 is a stable steady state.

(d) Use Fig. 1.6 to sketch the flow along thex axis for the following values of the
parameterm: m= 1,1/2,1/4.

(e) Adapt the XPP file provided in Appendix A.B.1 for the ODE (1.3) and solve
this equation withm= 1/4 starting from several initial values ofx. Show
that you obtain bistable behaviour, i.e., that there are twopossible outcomes,
depending on initial conditions.

1.5. Consider again Eqn. (1.3) but now suppose that the source termb 6= 0.

(a) Interpret the meaning of this parameter and explain why it should be positive.

(b) Make a rough sketch analogous to Fig. 1.6 showing how a positive value ofb
affects the conclusions. What happens to the steady state formerly atx= 0?

(c) Simulate the dynamics of Eqn. (1.3) using the XPP file developed in Exer-
cise 1.4e forb= 0.1,m= 1/3. What happens whenb increases to 0.2?

1.6. Consider the model by Ludwig, Jones and Holling [9] for spruce budworm,B(t).
Recall the differential equation proposed by these authors, (see also Exercise 4.7.)

dB
dt

= rBB

(

1− B
KB

)

−β
B2

α2+B2 (1.9)

whererB,KB,α > 0 are constants.

(a) Show thatB= 0 is an unstable steady state of this equation.

(b) Sketch the two functionsy= rBB
(

1− B
KB

)

andy= B2/(α2+B2) on the same

coordinate system. Note the resemblance to the sketch in Fig. 1.6, but the
straight line is replaced by a parabola opening downwards.

(c) How many steady states (other than the one atB= 0) are possible?

1.7. Consider the equation
dx
dt

= f (x) = r− x2.

Show that this equation also has a fold bifurcation and sketch a figure analogous to
Fig. 1.7 that summarizes its behaviour.
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1.8. Eqn. (1.6) has a transcritical bifurcation. Plot the qualitative sketch of the function
on the RHS of this equation. Solve for the steady states explicitly and use your
diagram to determine their stabilities. Explain how your results for bothr < 0 and
r > 0 correspond to the bifurcation diagram in Fig. 1.8.

1.9. Consider Eqn. (1.7) and the effect of varying the parameter r. Sketch the kinetics
function (RHS of the differential equation (1.7)) forr > 0 indicating the flow along
the x axis, the positions and stability of steady states. Now showa second sketch
with all these features forr < 0. Connect your results in this exercise with the
bifurcation diagram shown in Fig 1.9(a).

1.10. Repeat the process of Exercise 1.9, but this time for the subcritical pitchfork equa-
tion, (1.8). Compare your findings with the bifurcation diagram shown in Fig 1.9(b).
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Figure 1.1. (a) A plot of the function f(x) on the right hand side of the differential
equation(1.1). (b) Some numerically computed solutions of(1.1) for a variety of initial
conditions.

• • •
−
√

3 0 +
√

3
x

Figure 1.2. The “phase line” for equation(1.1). Steady states are indicated by heavy
points, trajectories with arrows show the direction of “flow” as t increases.
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A = 0

A < 0

x
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A > 0
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A < 0

Figure 1.3. When the parameter A in Eqn.(1.2) changes, the positions of the
steady states also change. (a) Here we show the cubic curve for A = 0 and A< 0. (When
A changes, the curve shifts up or down relative to the x axis).(b) Shown here is the flow
along the x axis. Same idea as (a), but the x axis is shifted up/down and the cubic curve is
drawn once. The height of the horizontal line corresponds tothe value of−A. Intersections
of the x axis and the cubic curve are steady states. (Un)stable steady states are indicated
with (white) black dots. Note that there is an abrupt loss of two steady states when A gets
large and positive or large and negative.

x

-2 -1 0 1 2
A

Figure 1.5. Bistability and hysteresis in the behaviour of the cubic kinetics(1.2).
Suppose initially A= −0.7 If the parameter is increased, the steady state on the lower
(solid) branch of the diagram gradually becomes more positive. Once A reaches the value
at the knee of that branch (a fold bifurcation), there is a sudden transition to the higher
(positive) steady state value. If the value of A is then decreased, the system takes a different
path to its original location.
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1 2 3
x

0

Figure 1.6. We plot the Hill function and the straight line y= mx here to illustrate
their intersections. Steady states of Eqn.(1.3) at located at these intersections. A very
similar argument is used later in Fig 2.8 to understand how bistability arises in a more
complicated equation with a biological interpretation.

xss

x

f(x)

r

(a)   (b)

Figure 1.7. A fold (or saddle-node) bifurcation that occurs in Eqn.(1.5). (a) The
qualitative sketch of the function f(x) on the RHS of the equation, showing the positions
and stability of the steady states. (Black dot signifies stable, and white dot unstable steady
states.) (b) A schematic sketch of the bifurcation diagram which is a plot of the steady state
values as a function of the bifurcation parameter r. Solid curve: stable steady state. dashed
curve: unstable steady state.
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Figure 1.8. A transcritical bifurcation that occurs in Eqn.(1.6). Diagram pro-
duced by XPP file in Appendix A.B.3.

A=A1

A=A2

f(x)

Figure 1.10. For the differential equation 1.2, there are values of the parameter A
that result in a change of behaviour, as two of the steady states merge and vanish.
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Chapter 2

Biochemical modules

R

S

R Rp

S(a)                  (b)         

R

S

X (c)

Figure 2.1. (a) Production and decay of substance R depends on presence of
signal S, as shown in Eqn.(2.1). (b) Activation and inactivation (e.g. by phosphorylation
and dephosphorylation) of R in response to signal S. The transitions are assumed to be
linear in (2.2)and Michaelian in(2.3). (c) An adaptation circuit. Based on [18].

2.1 Simple biochemical circuits with useful functions
Biochemical circuits can serve as functional modules, muchlike parts of electrical wiring
diagrams. Many of the more complicated models for biological gene networks or protein
networks have been assembled by piecing together the performance of smaller modules.
See [18], also [7]. Other current papers at the research level include [6, 10, 15, 14].

2.1.1 Production in response to a stimulus

We consider a network in which protein is synthesized at somebasal ratek0 that is enhanced
by a stimulus (ratek1S) and degraded at ratek2 (Fig 2.1a). Then

dR
dt

= k0+ k1S− k2R. (2.1)

13
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Figure 2.2. (a) Simulation of simple production-decay of Eqn.(2.1) in response
to signal that turns on at time t= t1 = 0 and off at time t= t2 = 3. See XPP file in
Appendix A.G.1. (b) Response of the adaptation circuit of(2.8). See XPP file in Ap-
pendix A.G.2. Note that in part (a) R returns to baseline onlyafter the signal is turned off,
whereas in (b) R returns to its steady state level even thoughthe signal strength is stepped
up at t= 0,5,10,15. (Signal strength increases in unit steps, not here shown toscale.)

2.1.2 Activation and inactivation

In Fig 2.1b,RandRp denote the levels of inactive and active form of the protein of interest,
respectively. Suppose that all the processes shown in that figure operate at constant rates.
In that case, the equation for the phosphorylated form,Rp takes the form

dRp

dt
= k1SR− k2Rp. (2.2a)

Here the first term is the signal-dependent conversion ofR to Rp, andk2 is the rate of the
reverse reaction. Conservation of the total amount of the proteinRT , implies that

RT = R+Rp = constant. (2.2b)

We assume Michaelis-Menten kinetics

dRp

dt
=

k1SR
Km1+R

− k2Rp

Km2+Rp
. (2.3)

Here the first term is activation ofRwhen the stimulusS is present. (IfS= 0 it is assumed
that there is no activation.) The second term is inactivation. Using the conservation (2.2b)
we can eliminateRand recast this equation in the form

dRp

dt
=

k1S(RT −Rp)

Km1+(RT −Rp)
− k2Rp

Km2+Rp
. (2.4)

If we express the active protein as fraction of total amount,e.g.rp = Rp/RT then Eqn. (2.4)
can be rescaled to

drp

dt
=

k1S(1− rp)

K′m1+(1− rp)
− k2rp

K′m2+ rp
. (2.5)
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0 1rp

activation          inactivation

(a)

rp0 1

dr  /dtp

(b)

Figure 2.3. (a) A plot of each of the two terms in Eqn.(2.5) as a function of rp
assuming constant signal S. Note that one curve increases from (0,0) whereas the other
curve decreases to(1,0), and hence there is only one intersection in the interval0≤ rp≤ 1.
(b) The difference of the two curves in (a). This is a plot of drp/dt and allows us to conclude
that the single steady state in0≤ rp≤ 1 is stable.

Steady state(s) of (2.5) satisfy a quadratic equation. Thissuggests that there could be two
steady states, but as it turns out, only one of these need concern us, as the argument below
demonstrates.

How does the steady state value of the response depend on the magnitude of the
signal? letu= k1S,v= k2,J = Km1,K = Km2. Note that the quantityu is proportional to
the signalS, and we will be interested in the steady state response as a function ofu. Then
solving for the steady state of (2.5) reduces to solving an equation of the form

u(1− x)
J+1− x

=
vx

K+ x
, wherex≡ rp. (2.6)

In the exercises, we ask the reader to show that this equationreduces to a quadratic

ax2+bx+ c= 0, where a= (v−u), b= u(1−K)− v(1+ J), c= uK. (2.7)

We can write the dependence of the scaled response,rp = x on scaled signal,u. The result
is functionrp(u) that Tyson denotes the “Goldbeter-Koshland function”. (Asthis function
is slightly messy, we relegate the details of its form to Exercise 2.3.) We can plot the
relationship to observe how response depends on signal. To consider a case where the
enzymes operate close to saturation, let us takeK = 0.01,J= 0.02. We letv= 1 arbitrarily
and plot the responserp as a function of the “signal”u. We obtain the shape shown in
Fig 2.4. The response is minimal for low signal level, until some threshold aroundu≈ 1.
There is then a steep rise, whenu is above that threshold, to full responserp ≈ 1. The
change from no response to full response takes place over a very small increment in signal
strength, i.e. in the range 0.8≤ u≤ 1.2 in Fig. 2.4. This is the essence of a “zero order
ultrasensitivity” switch. More details for further study of topic are given in Section??.
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Figure 2.4. Goldbeter Koshland “zero order ultrasensitivity”. Here u represents
a stimulus (u= k1S) and rp is the response, given by a (positive) root of the quadratic
equation(2.7). As the figure shows, the response is very low until some threshold level of
signal is present. Thereafter the response is nearly 100% on. Near the threshold (around
u= 1) it takes a very small increase of signal to have a sharp increase in the response.

2.1.3 Adaptation

Cells of the social amoebaeDictyostelium discoideumcan sense abrupt increases in their
chemoattractant (cAMP) over a wide range of absolute concentrations. In order to sense
changes, the cells exhibit a transient response, and then graduallyadapt if the cAMP level
no longer changes.

A circuit shown in Fig. 2.1c consists of an additional chemical, denoted byX that is
also made in response to signal at some constant rate. However, X is assumed to have an
inhibitory effect onR, i.e. to enhance its turnover rate. The simplest form of sucha model
would be

dR
dt

= k1S− k2XR, (2.8a)

dX
dt

= k3S− k4X. (2.8b)

Behaviour of (2.8) is shown in response to a changing signal in Fig. 2.2(b). After each
step up, the system (2.8) reacts with a sharp peak of response, but that peak rapidly decays
back to baseline. Adaptation circuits of a similar type havebeen proposed by Levchenko
and Iglesias [8, 5] in extended spatial models of gradient sensing and adaptation inDic-
tyostelium discoideum. In that context, they are known aslocal excitation global inhibi-
tion (LEGI) models. Such work has engendered a collection of experimental approaches
aimed at understanding how cells detect and respond to chemical gradients, while adapting
to uniform elevation of the chemical concentration.
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2.2 Genetic switches

A simple switch genetic switch was devised by the group of James Collins [3] using an
artificially constructed pair of mutually inhibitory genes(transfected via plasmids into the
bacteriumE. coli). Here each of the gene products acts as a repressor of the second gene.
We examine this little genetic circuit here.

0 4
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2

0

x

0.5

Ix

1

2
5

u

v

Gene U

Gene V

Figure 2.5. Right: The construction of a genetic toggle switch by Gardner et al
[3], who used bacterial plasmids to engineer this circuit ina living cell. Here the two
genes, U,V produce products u,v, respectively, each of which inhibit the opposite gene’s
activity. (Black areas represent the promotor region of thegenes.) Left: a few examples of
the functions(2.10)used for mutual repression for n= 1,2,5 in the model(2.11). Note that
these curves become more like an on-off switch for high values of the power n.

Let us denote byu the product of one gene (U), andv the product of geneV. Each
product is a protein with some (relatively fixed) lifetime, i.e. degradation at constant rate
causes removal of each protein. Suppose for a moment that both genes are turned on and
not coupled to one another. In that case, we would expect their product to satisfy the pair
of equations

du
dt

= Iu−duu, (2.9a)

dv
dt

= Iv−dvv. (2.9b)

HereIu, Iv are rates of production that depend on gene activity for genesU,V respectively,
anddu,dv are the decay rates.

Now let us recraft the above to include the repression of eachproduct on the other’s
gene activity. We can do so by an assumption that production of a given product decreases
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Figure 2.6. Phase plane behaviour of the toggle switch model by Gardner et al
[3], given by Eqs.(2.11)with α1 = α2 = 3,n= m= 3. See XPP file in Appendix A.G.3. The
two steady states close to the u or v axes are stable. The one inthe center is unstable. The
nullclines are shown as the dark solid curve (u nullcline) and the dotted curve (v nullcline).

due to the presence of the other product. Gardner et al [3] assumed terms of the form

Ix =
α

1+ xn . (2.10)

We plot a few curves of type (2.10) forα = 1 and various values of the powern. This
family of curves intersect at the point(0,1). Forn= 1 the curve decreases gradually asx
increases. For larger powers (e.g.n= 2,n= 5), the curve has a little “shoulder”, a steep
portion, and a much flatter tail, resembling the letter “Z”.

Gardner et al [3] employed the following equations (whereindu,dv were arbitrarily
taken as unit rates.)

du
dt

=
α1

1+ vn −u, (2.11a)

dv
dt

=
α2

1+um− v. (2.11b)

The behaviour of this system is shown in the phase plane of Fig. 2.6. The presence of two
stable steady states is a hallmark ofbistability,.
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Figure 2.7. The phageλ gene encodes for a protein that acts as the gene’s repres-
sor. The synthesized protein dimerizes and the dimers bind to regulatory sites (OR2 and
OR3) on the gene. Binding to OR2 activates transcription, whereas biding to OR3 inhibits
transcription.

2.3 Dimerization in a genetic switch: the λ virus

Dimerization is a source of cooperativity that frequently appears as a motif in regulation of
gene transcription1. Here we illustrate this idea with the elegant model of Hastyet al [4]
for the regulation of a gene and its product in theλ virus.

The protein of interest is transcribed from a gene known as cI(schematic in Fig. 2.7)
that has a number of regulatory regions. Hasty et al considera mutant with just two such
regions, labeled OR2 and OR3. The protein synthesized from this gene transcription dimer-
izes, and the dimer acts as a regulator, i.e.transcription factor for the gene. Binding of
dimer to the OR2 region of DNA activates gene transcription,whereas biding to OR3 stops
transcription.

We follow the notation in [4], definingX as the repressor,X2 a dimerized repressor
complex,D the DNA promotor site. The fast reactions are the dimerization and binding of
repressor to the promotor sites OR2 and OR3, for which the chemical equations are taken
as

Dimerization: 2X
K1−→←− X2

Binding to DNA (OR2): D+X2
K2−→←− DX2

Binding to DNA (OR3): D+X2
K3−→←− DX∗2

Double binding (OR2 and OR3):DX2+X2
K4−→←− DX2X2 (2.12a)

Here the complexesDX2,DX∗2 are, respectively, the dimerized repressor bound to site OR2
or to OR3, andDX2X2 is the state where both OR2 and OR3 are bound by dimers.

On a slower timescale, the DNA is transcribed to producencopies of the gene product

1I wish to acknowledge Alex van Oudenaarden, MIT, whose online lecture notes alerted me to this very topical
example of dimerization and genetic switches.
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Figure 2.8. (a) A plot of the two functions given by Eqs.(2.16)for the simplified
dimensionless repressor model(2.15). (lowest dashed line:)γ = 12, (solid line:) γ = 14,
and (highest dashed line:)γ = 18. (b) For γ = 14, we show the configuration of the two
curves and the positions of the resultant three steady states. The outer two are stable
and the intermediate one is unstable. Compare this figure with Fig. 1.6 where a similar
argument was used to understand the bifurcation structure of a simpler model involving a
straight line and a Hill function.

and the repressor is degraded. The chemical equations for these are taken to be

Protein synthesis: DX2+P
k1−→ DX2+P+nX

Protein degradation:X
kd−→ A (2.12b)

We define variables as follows:x,y are the concentrations ofX,X2, respectively, andd,u,v
are the concentrations ofD,DX2,DX∗2 . Similarly, z is the variable forDX2X2. The full
set of kinetic equations for this system are the topic of Exercise 2.8. However,u,v,y,z are
variables that change on a fast timescale, and a QSS approximation is applied to these.
Because the total amount of DNA is constant, there is a conservation equation,

dtotal = d+u+ v+ z. (2.13)

We ask the reader [Exercise 2.8] to show that, based on the QSSapproximation for the fast
variables, the equation forx simplifies to the form

dx
dt

=
AK1K2x2

1+(1+σ1)K1K2x2+σ2K2
1K2

2x4
− kdx+ r, (2.14)

whereA is a constant. This can be rewritten in dimensionless form byrescaling time andx
appropriately to arrive at

dx
dt

=
αx2

1+(1+σ1)x2+σ2x4 − γx+1. (2.15)
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Figure 2.9. (a) For some parameter ranges, the model by Hasty et al [4] of
Eqn. (2.15)has two stable and one unstable steady, and hence displays bistability. Here
γ = 15,α = 50,σ1 = 1,σ2 = 5. (b) Bifurcation diagram produced by Auto, with the bifur-
cation parameterγ. See XPP file and instructions in Appendix A.F.

Hereα is a (scaled) magnitude of the transcription rate due to repressor binding, andγ
is a (scaled) turnover rate of the repressor. In general, thevalue ofα would depend on
the transcription rate and the DNA binding site concentration, whereasγ is an adjustable
parameter that Hasty et al. manipulate.

In Fig. 2.8, we plot separately the two functions on the RHS ofEqn. (2.15) given by

f1(x) =
αx2

1+(1+σ1)x2+σ2x4 (sigmoid curve), f2(x) = γx−1 (straight line) (2.16)

for three values of the slopeγ. It is evident that the value ofγ determines the number of
intersection points of the sigmoid curve and the straight line, and hence, also the number
of steady states of Eqn. (2.15). Whenγ is large (e.g. steepest line in Fig 2.8), the two
curves intersect only once, at a low values ofx. Consequently, for that situation, very little
repressor protein is available. Asγ decreases, the straight line becomes shallower. Here
we see again the classic situation ofbistability, where three steady states coexist. The
outer two of these are stable, and the middle is unstable [Exercise 2.8]. This graphical
argument is a classic mathematical-biology modeling tool that reappears in many contexts.
When three intersections occur, the amount of repressor available then depends on initial
conditions: on either side of the unstable steady state, thevalue ofx will tend to either the
low or the highx steady state. This situation is also shown in the time plot produced by a
full simulation, in Fig. 2.9(a). Finally, asγ decreases yet further, two of the steady states
are lost and only the highx steady state remains.

From Fig. 2.9(a) we see that any initial value ofx will be attracted to one of the two
outer stable steady states. Indeed, the gene and its productact as a switch. We summarize
this behaviour in the bifurcation plot of Fig. 2.9(b) withγ as the bifurcation parameter.
We find that the presence of three steady states depends on thevalues ofγ. The range
14≤ γ ≤ 16 corresponds to switch-like behaviour. In Exercise 2.9, we consider how this
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and other experimental manipulations of theλ repressor system might affect the observed
behaviour, using similar reasoning and graphical ideas.

2.4 Models for the cell division cycle

SOme of the original literature includes [12, 20, 21]. Here we mostly discuss the theoretical
paper by Tyson and Novak [19].

G1

S-G2-M

START

FINISH

High cyclin

High APC

Figure 2.10. The cell cycle and its check points (rectangles) in the simplified model
discussed herein. The cycle proceeds clockwise from START.A high activity level of cyclin promotes
the START and its antagonist, APC, promotes the FINISH part of the cycle.

Cell division is conventionally divided into several phases. After a cell has divided,
each daughter cell may remain for a period in a quiescent (non-growing)gap phase called
G0. Another, active (growing), gap phaseG1 precedes theS (synthesis) phase of DNA
replication. TheG2 phase intervenes betweenS phase andM phase (mitosis). During M
phase the cell material is divided. Here we will be concernedwith two checkpoints of the
cycle, after G1, signaling START cell division and after S-G2-M signalling FINISH the
cycle (see Fig. 2.10.) Importantly, the START checkpoint depends on the size of the cell.
This requirement is essential for a balance between growth and cell division, so that cells
do not become gigantic, nor do they produce progeny that are too tiny. (In fact mutations
that produce one or the other form have been used by Tysonet al. as checks for validating
or rejecting candidate models.)

Control of the cell cycle is especially tight at thecheckpoints mentioned above. For
example, the division process seems to halt temporarily at theG1 checkpoint to ascertain
whether the cell is large enough to continue to progress through the cycle or whether a
process other than mitosis is called for (e.g., terminal cell differentiation or the alternative
“meiotic” path to cell division). Once this checkpoint is passed, the cell has irreversibly
committed to undergoing division and the process must go on.

Regulation of the cell cycle resides in a network of molecular signaling proteins. At
the center of such a network are kinases whose activity is controlled by cyclin To sum-
marize, in phase G1 there is low Cdk and low cyclin levels (cyclin is rapidly degraded).
START leads to induction of cyclin synthesis and buildup of cyclin and active Cdks that
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persist during the S-G2-M phases. The DNA replicates in preparation for two daughter
cells. At FINISH, APC is activated, leading to destruction of cyclin and loss of CdK ac-
tivity. Then the daughter cells grows until reaching a critical size where the cycle repeats
once more.

2.4.1 Modeling conventions

Before describing the simplest model for the cell cycle, letus collect a few definitions
and conventions that will be used to construct the model. A number of these have been
discussed previously, and we gather them here to prepare forassembling the more elaborate
model.

Let C denote the concentration of a hypothetical protein participating in one of the
reactions, and suppose thatQ is the concentration of a regulatory substance that binds toC
and leads to its degradation. Then the standard way to model the kinetics ofC is

dC
dt

= ksyn(substrate)− kdecayC− kassocCQ. (2.17)

Hereksyn represents a rate of protein synthesis ofC from amino acids,kassoc is rate of
association ofC with Q, andkdegrd is a (basal) rate of decay ofC.

Now suppose that some substance is simply converted from inactive to active form
and back. Recall our discussion of activation-inactivation in Section 2.1.2. We consider
the same ideas in the case of phosphorylation and dephosphorylation under the influence of
kinases and phosphatases. We can apply the reasoning used for Eqn. (2.5) to write down
our first equation. Moreover, scaling the concentration ofC in terms of the total amountCT

[Exercise 2.3c] leads to

dC
dt

=
K1Eactiv(1−C)

J1+(1−C)
− K2EdeactivC

J2+C
. (2.18)

HereJ1,J2 are saturation constants,K1,K2 are the maximal rates of each of the two reac-
tions andEi are the levels of the enzymes that catalyze the activation/inactivation. Such
equations and expressions appear in numerous places in the models constructed by the
Tyson group for the cell division cycle.

2.5 Hysteresis and bistability in cyclin and its antagonist
An important theme in the regulatory network for cell division is that cyclin and APC
are mutually antagonistic. As shown in Fig 2.11, each leads to the destruction (or loss
of activity) of the other. To study this central module, Novak and Tyson considered the
interactions of just this pair of molecules. This simplifying step ignores a vast amount of
specific detail for clarity of purpose, but leads to insightsin a modular approach promised
above.

Let us use the following notation: LetY (cYclin) denote the level of active Cyclin-
Cdk dimers, andP,Pi the levels of active (respectively inactive) APC complex. It is assumed
that the total amount of APC is constant, and scaled to 1, i.e.thatP+Pi = 1. Then based on
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Fig. 2.11 and the background of Section 2.4.1, the simplest model consists of the equations

cyclin:
dY
dt

= k1− (k2p+ k2ppP)Y, (2.19a)

APC:
dP
dt

=
ViPi

J3+Pi
− VaP

J4+P
. (2.19b)

cyclin

A
 active APCinactive APC

PPi

Y

Figure 2.11. The simplest model for cell division on which Eqs.(2.21)are based.
Cyclin (Y) and APC (P) are mutually antagonistic. APC leads to the degradation of cyclin,
and cyclin deactivates APC.

The rates of the reactions are not constant. That is because aprotein called hereA,
(and for now held fixed) is assumed to enhance the forward reaction, activating APC and
cyclin (Y) enhances the reverse reaction, deactivating it. Tyson andNovak assume that:

Vi = (k3p+ k3ppA), Va = k4mY.

Here,m denotes the mass of the cell, a quantity destined to play an important role in the
model(s) to be discussed2. Recall that cell mass (for now considered fixed) is known to
influence the decision to pass the START checkpoint. Thus, the model becomes

dY
dt

= k1− (k2p+ k2ppP)Y, (2.20a)

dP
dt

=
(k3p+ k3ppA)Pi

J3+Pi
− k4m

YP
J4+P

. (2.20b)

By conservation of the total amount of APC, and the scaling wehave used,

Pi = 1−P.

2The reader will note that cell massm is introduced already in the simplest model as a parameter, and that
as the models become more detailed, the role of this quantitybecomes more important. In the final models we
discuss,m is itself a variable that changes over the cycle and influences other variables. L.E.K.
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Hence,

dY
dt

= k1− (k2p+ k2ppP)Y, (2.21a)

dP
dt

=
(k3p+ k3ppA)(1−P)

J3+(1−P)
− k4m

YP
J4+P

. (2.21b)

This constitutes the first minimal model for cell cycle components, and our first task will
be to explore the bistability in this system.
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Figure 2.12. The YP phase plane for Eqs.(2.21)and parameter values as shown
in the XPP file in Appendix A.H.1. Parameters with units of 1/time are: k1 = 0.04,k2p =
0.04,k2pp = 1,k3p = 1,k3pp = 10,k4 = 35, Other (dimensionless) parameters are: A=
0,J3 = 0.04,J4 = 0.04. Here the cell mass is as follows: (a) m= 0.3. There are three
steady states, a stable node at low Y high P (0.038, 0.96), a stable node at high Y low P
(0.9,0.0045), and a saddle point at intermediate levels of both (0.1, 0.36). (b) m= 0.6.
The nullclines have moved apart so that there is a single (stable) steady state at(Y,P) =
(0.9519,0.002): this state has high level of cyclin, and very little APC.

Figure 2.12 shows the typical phase-plane portrait of Eqs. (2.21), with theY andP
nullclines in dashed and solid lines, respectively. There are three steady states identified
with the checkpoints at G1 and at S-G2-M. As the cell grows, its massm increases. As
shown in Fig. 2.12(a), this pushes theP nullcline to the left so that eventually, two points
of intersection with they nullcline disappear. (Just as this occurs, the saddle pointand G1
steady state merge and vanish. This explains the termsaddle-node bifurcation applied
to such a transition, also called afold bifurcation.) Parameter values of this model are
provided in [19] and in the XPP file in Appendix A.H.1. We find that, at the bifurcation,
transition to S-G2-M is very rapid once the GI checkpoint hasbeen lost.

We show the bifurcation diagram for Eqs. (2.21) in Fig. 2.13(a), with cell massm as
the bifurcation parameter,. Then in Fig. 2.13(b), we identify steady states and the transi-
tion between them with parts of the cell cycle. We see the property of hysteresis that is
characteristic of bistable systems: the parameterm has to increase to a high value to trig-
ger the START transition, and then cell mass has to decrease greatly to signal the FINISH
transition. Here the latter is associated with cell division at whichm drops by a factor of 2.
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Figure 2.13. (a) Bifurcation diagram for the simplest model of Eqs.(2.21)with
cell mass m as the bifurcation parameter. The diagram was produced using XPP file in
Appendix A.H.1. (b) Here we have labeled parts of the same diagram with corresponding
phases of the cell cycle. Based on [19].

2.6 Activation of APC
Up to now, the quantityA in (2.21b) has been taken as constant.A represents a protein
called Cdc20 that increases sharply during metaphase (M) inthe cell cycle. Next, Novak
and Tyson assume thatA is turned on in a sigmoidal kinetics by cyclin, leading to an
equation with a Hill function of the form:

dA
dt

= k5p+ k5pp
(mY/J5)

n

1+(Ym/J5)n − k6A. (2.22)

The terms include some basal rate of production and decay, aside from the cyclin-dependent
activation term.

Novak and Tyson first assume that the timescale of APC kinetics (and specifically
of the Cdh1 protein in APC) is short, justifying a QSS assumption. That is, we takeP≈
Pss(A,Y,z), i.e. P follows the other variables with dependence on a host of parameters here
abbreviated byz,

P= Pss(A,Y,z).

The details of the expression forPss are discussed in Exercise 2.10 and are based on the
Goldbeter-Koshland function previously discussed. With this simplification, the equations
of the second model are

dY
dt

= k1− (k2p+ k2ppPss)Y, (2.23a)

dA
dt

= k5p+ k5pp
(mY/J5)

n

1+(Ym/J5)n − k6A. (2.23b)

with Pssas described above. We show a few of theYAphase plane portraits in Figure 2.14.
It is seen that for small cell mass, there are three steady states: a stable spiral, a stable
node, and a saddle point. All initial conditions lead to either one of the two stable steady
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states. Asm increases past 0.49, a small limit cycle trajectory is formed. That cyclic loop
trajectory (shown in Fig 2.14(b)) is unstable, so trajectories are forced around it to either of
the attracting steady states (one inside, and one close to the origin.). We show more details
of the events close to this type of bifurcation in the schematic sketch in Fig. 2.16. When
m increases further on, pastm= 0.8, the saddle point and stable node formerly near the
sharply bent knee of theA nullcline has disappeared. This means that the phase G1 is gone,
replaced by a stable limit cycle that has grown and become stable. This type of bifurcation
is a saddle-node/loop bifurcation. (See Fig. 2.17 for details.)
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Figure 2.14. The YA phase plane for the model(2.23). The Y nullcline is the solid
dark curve, and the A nullcline is the dashed curve. The steady states correspond to phases
G1 and S-G2-M as labeled in (a). Phase plane portraits are shown for (a) m= 0.3, (b)
m= 0.5 (Here there is an unstable limit cycle, that exists for0.4962< m< 0.5107. To
plot this loop, we have set∆t as a small negative timestep, i.e. integrated backwards in
time.) (c) m= 0.9: there is a large loop trajectory that has formed via a saddle-node/loop
bifurcation. (d) Here we show only the nullclines (drawn schematically) and how their
intersections change in the transition between parts (b) and (c) of the figure. Note that two
intersections that occur in (b) have disappeared in (c).

In the model of Eqs. (2.23), for a small cell, the phase G1 is stable. As we have
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seen above, the growth of that mass eventually leads to “excitable” dynamics, where a
small displacement from G1 results in a large excursion (Fig2.14(b)) before returning
to G1. When the mass is even larger, G1 disappears altogetherand a cyclic behaviour
ensues. However, this is linked to division of the cell mass so thatm falls back to low level,
reestablishing the original nullcline configuration and returning to the beginning of the cell
cycle.

2.6.1 The three-variable YPAmodel

We are now interested in exploring the three-variable modelwithout the QSS assumption
onP. Consequently, we adopt the set of three dynamic equations

dY
dt

= k1− (k2p+ k2ppP)Y, (2.24a)

dP
dt

=
(k3p+ k3ppA)(1−P)

J3+(1−P)
− k4m

YP
J4+P

, (2.24b)

dA
dt

= k5p+ k5pp
(mY/J5)

n

1+(Ym/J5)n − k6A. (2.24c)

with the same decay and activation functions as before. We keep m, all k’s and J’s as
constants at this point. The model is more intricate than that of (2.21), and the bifurcation
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Figure 2.15. (a) Bifurcation diagram for the full YPA model given by Eqs.(2.24)
produced by the XPP file and instructions in the Appendix A.H.3. Bifurcations labeled on
the diagram include a fold (saddle node, SN) bifurcation, a subcritical Hopf (SbH) and a
saddle-node loop (SNL) bifurcation. The open circles represent an unstable limit cycle, as
seen in Fig 2.14(b) of the QSS version of the model. The filled circles represent the stable
limit cycle analogous to the one seen in Fig 2.14(c). (b) The course of one cell cycle is
superimposed on the bifurcation diagram. The cell starts atthe low cyclin state (G1) along
the lower branch of the bistable curve. As cell mass increases, the state drifts towards the
right along this branch until the SNL bifurcation. At this point a stable limit cycle emerges.
This represents the S-G2-M phase, but as the cell divides, its mass is reset back to a small
value of m, setting it back to G1.
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plot hence trickier to produce (but see instructions in Appendix A.H.3). However, with
some persistence this is accomplished, yielding Figure 2.153.

Let us interpret Figure 2.15. In panel 2.15(a), we show the cyclin levels against cell
massm, the bifurcation parameter. (Cell mass increases along thelower axis to the right, as
before.) Labeled on the diagram in 2.15(a) are several bifurcations (see caption), the most
important being the saddle-node/loop bifurcation (SNL). Once cell mass grows beyond
this critical value ofm≈ 0.8, the lower G1 steady state disappears, and is replaced by a
stable limit cycle. This is precisely the kind of transitionwe have already seen in Fig 2.14
(between the configurations in 2.14(b) and 2.14(c)).

Figure 2.15(b), we repeat the bifurcation diagram, but thistime we superimpose a
typical “trajectory” over one whole cell division cycle: the system starts in the lower right
part of the diagram at G1, progresses to higher cell mass, passes the START checkpoint,
duplicates DNA in the S-G2-M phase and then divides into two progeny, each of whose
mass is roughly 1/2 of the original mass. This meansmdrops back to its low value for each
progeny, and daughter cells are thereby back at G1.

a < acrit a > acrit a >> acrit

Figure 2.16. Subcritical Hopf bifurcation. For a low value of some parameter a,
the system has a stable spiral. Beyond some critical value, a> acrit , an unstable limit cycle
with some finite diameter suddenly appears. Then, as a continues to decrease, the limit
cycle shrinks and vanishes, and the spiral becomes unstable. See also Fig??.

To fix ideas we illustrate the two bifurcations in Figs 2.16 and 2.17. The first,
Fig. 2.16, shows what happens in the phase plane as some parametera goes through a
subcritical Hopf bifurcation. (We have seen an example of this in Chapter??, Fig ??;
here we review this idea in the new context.) Note the sudden appearance of an unstable
limit cycle with finite amplitude, that in general persists while shrinking in diameter for
some range of the bifurcation parameter. Fig. 2.17 shows howa saddle-node/loop bifur-
cation can lead to the birth of a stable limit cycle, just as wehave seen in the context of the
model discussed above.

3This plot shares many features with a bifurcation diagram for the QSS version of Fig 2.14 (not shown), but
with somewhat different bifurcation values. L.E.K.
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a < acrit a = acrit a > acrit

Figure 2.17. Saddle-node/loop bifurcation here involves an unstable spiral and a
saddle point. As some bifurcation parameter, a, changes, the transitions shown here take
place. When a= acrit , there is a heteroclinic trajectory that connects the saddle point to
itself. For larger values of a, a limit cycle appears and the heteroclinic loop disappears.
At first appearance, the period of the limit cycle is very long(“infinitely long”) due to the
very slow motion along the portion of the trajectory close tothe saddle point.

2.6.2 A fuller basic model

The models considered so far have included only the skeletalforms of the regulatory cell
division components. Including some additional interactions [19, p 255] results in a slightly
expanded version suitable for describing the cell cycle of budding yeast. The notation
for this model is provided in Table 2.1 and interactions between these are illustrated in
Figure 2.18.

The equations are given by the following:

cyclin:
dY
dt

= k1− (k2p+ k2ppP)Y, (2.25a)

APC:
dP
dt

=
(k3p+ k3ppAA)(1−P)

J3+(1−P)
− k4m

YP
J4+P

, (2.25b)

Total A:
dAT

dt
= k5p+ k5pp

(mY/J5)
n

1+(Ym/J5)n − k6AT , (2.25c)

Active A:
dAA

dt
= k7IP

AT −AA

J7+AT −AA
− k6AA− k8[Mad]

AA

J8+AA
, (2.25d)

IEP:
dIP
dt

= k9mY(1− IP)− k10IP, (2.25e)

cell mass:
dm
dt

= µm

(

1− m
ms

)

. (2.25f)

Eqs (2.25a) and (2.25b) for cyclin and APC have not changed since the previous
model. As in theYPAthree-variable model, APC is activated by the substanceA (specif-
ically Cdc20). However, we now distinguish between the active form, AA, and the total
amount,AT of Cdc20. This protein is assumed to be inactive when first synthesized. The
basal synthesis rate, shown ask5p in (2.25c) is enhanced in the presence of high cyclin or
when the cell mass is large (Hill function in the second term), as in the previous model.
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Table 2.1. Names of variables and their identity in the cell cycle models.

Symbol Identity Activities and notes

Y CyclinB - controls Cdk kinases (binding partner)
- high at START of cell cycle
- antagonist of APC
- whenY is low, cell divides.

P Cdh1 - associated with APC (Anaphase promoting complex)
- labels other proteins for destruction (including cyclin)
- antagonist of cyclinB

A Cdc20 - has an active form (AA) and an inactive form
- AA acts as the activator for Cdh1
- AT is total Cdc20.

Ip IEP - hypothetical activator of Cdc20 [19].

m mass - the mass of the cell
- grows up to some maximal size if permitted
- influences regulators of cell division
- gets reset to low value once cell divides.

A turnover ratek6 has been assumed. However, to exert its action, activation is required.
The activated form ofA, now denotedAA is tracked in (2.25d). Note the resemblance of
this equation to the form of a standard activation equation described previously in (2.4).
The same turnover, at ratek6 has been assumed forAA as forAT . The intermediates IEP
activatesA and Mad has the opposite effect on Cdc20 (Fig. 2.18), with Madtaken as a pa-
rameter in the model. (IEP is needed to get the right lag time,but was not identified with a
specific molecule in [19].) The equation for IEP, (2.25e) hassimple activation-deactivation,
that are assumed to be affected by both cyclin and cell massm.

Furthermore, from (2.25f) we see that cell mass is now a dynamic variable (rather
than a parameter as before). The mass has a self-limited growth up to some maximal size
ms. (Compare with the form of a logistic equation and note thatm increases whenever
m< ms so long as case cell division does not occur.) A key further assumption is that a low
value ofY causes cell division. A cell division event results in the mass of the cell being
halved, and this occurs every time that the cyclin concentration falls below some threshold
value (e.g.Ythresh= 0.1).

As before, we here abandon hope of making analytical progress with a model of this
complexity and turn to numerical simulations with parameter values obtained from [19]
(See XPP code in Appendix A.H.4.) Simulations of the system (2.25) produce the figures
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G1

S-G2-M

START

FINISH

IE                IEP

AT

cYclin

AA

Mad

aPc

Figure 2.18. The full model of the cell cycle depicted in Eqs.(2.25). At its core is
the simpler YPA module, but other regulatory parts of the network have been added. See
Table 2.1 for definitions of all components.

shown in Fig 2.19. We note the following behaviour: At the core of the mechanism there
is still the same antagonism between cyclin and APC: Now bothvary periodically over the
cell cycle, but they do so out of phase: APC is high when cyclinis low and vice versa. The
total and active Cdc20, as well as the IEP shown in the third panel. Careful observation
demonstrates thatAT cycles in phase cyclin, but activation takes longer, so thatAA peaks
just asY is dropping to a low level.AA andIP are in phase. Cell mass is a saw-tooth curve,
with division coinciding with the sharp drop in cyclin levels.

Exercises
2.1. Suppose thatS,ki > 0 for i = 0,1,2 in Eqn. (2.1).

(a) Find the solutionR(t) to this equation.

(b) Find the steady state of the same equation.
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Figure 2.19. Time behaviour of variables in the extended model of Eqs.(2.25).
Plots produced with the XPP file in Appendix A.H.4.

(c) Show that the steady state response depends linearly on the strength of the
signal.

(d) What happens if initiallyS= 0, and then at timet = 0 S is turned on? How
can this be recast as an initial value problem involving the same equation?

(e) Now suppose thatS is originally ON (e.g.S= 1), but then, att = 0, the signal
is turned OFF. Answer the same question as in part (d).

(f) Based on your responses to (d) and (e), what would happen if the signal is
turned on at some timet1 and off again at a later timet2? Sketch the (approxi-
mate) behaviour ofR(t).

(g) Create a simple XPP file and compare your answers to results of simulations.

2.2. Consider the simple phosphorylation-dephosphorylationmodel given by (2.2a). What
is the analogous differential equation forR? Find the steady state concentration for
Rp and show that it saturates with increasing levels of the signal S. [Hint: eliminate
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R using the fact that the total amount,R+Rp is conserved.] Assume thatk1,S,k2

are all positive constants in this problem.

2.3. (a) Redraw Fig. 2.1 with parameterski labeled on the various arrows. Explain
what are the assumptions underlying Eqn. (2.3). Show that conservation leads
to (2.4).

(b) What would be the corresponding equation for the unphosphorylated formR?

(c) Rescale the variableRby the (constant) total amountRT in Eqn. (2.4).

(d) Solving for the steady state of the equation you got in part (c) leads to a
quadratic equation. Write down that quadratic equation forRp,SS. Show that
your result is in the form of (2.7) (Once the appropriate substitutions are made).

(e) Solve the quadratic equation, (2.7), in terms of the coefficientsa,b,c, and then
rewrite your result in terms of the parametersu,v,K,J. This (somewhat messy
result) is the so-called Goldbeter-Koshland function.

(f) According to Novak and Tyson [19], the Goldbeter-Koshland function has the
form

G(u,v,J,K) =
2γ

β+
√

β2−4αγ
.

for α,β,γ similar expressions ofu,v,J,K. How does this fit with your result?
Hint: recall that the an expression with radical denominator can be rational-
ized, as follows

1
p+
√

q
=

p−√q

(p+
√

q)(p−√q)
=

p−√q

p2−q
.

2.4. Consider the adaptation module shown in Fig. 2.1c and given by Eqs. (2.8).

(a) Show that the steady state level ofR is the same regardless of the strength of
the signal.

(b) Is the steady state level ofX also independent of signal? Sketch the (approx-
imate) behaviour ofX(t) corresponding to the result forR and S shown in
Fig. 2.2(b)

(c) Use the XPP file provided in Appendix A.G.2 to simulate this model with a
variety of signals and initial conditions.

(d) How do the parameterski in Eqs. (2.8) affect the degree of adaptation? What
if X changes very slowly? very quickly relative toR? (Experiment with the
simulation or consider analyzing the problem in other ways.)

2.5. Here we consider Eqs. (2.8) using phase-plane methods,and assuming thatS is
constant.

(a) Sketch theX andRnullclines in theXRplane.

(b) Show that there is only one intersection point, i.e. a unique steady state, and
that this steady state is stable.

(c) Explain how the phase plane configuration changes whenS is instantaneously
increased, e.g. fromS= 1 to S= 2.
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2.6. Consider the genetic toggle switch by Gardner et al [3],given by the model equa-
tions Eqs. (2.11).

(a) Consider the situation thatn= 1 in the repression term of the function (2.10)
and in the model equations. Solve for the steady state solution(s) to Eqs. (2.11).

(b) Your result in (a) would have led to solving a quadratic equation. How many
solutions are possible? How many (biologically relevant) steady states will
there be?

(c) Consider the shapes of the functionsIx shown in Fig. 2.5. Using these shapes,
sketch the nullclines in the phase plane forn= m= 1 and forn,m> 1. How
does your sketch inform the dependence of bistability on these powers?

(d) Now suppose thatn= m= 3 (as in Fig 2.6). How do the valuesαi affect these
nullcline shapes? Supposeα1 is decreased or increased. How would this affect
the number and locations of steady state(s)?

(e Explore the behaviour of the model by simulating it using the XPP file in Ap-
pendix A.G.3 or your favorite software. Show that the configuration shown in
Fig. 2.6 with three steady states depends on appropriate choices of the integer
powersn,m, and comment on these results in view of part (c) of this exercise.

(f) Further explore the effect of the parametersαi . How do your conclusions
correspond to part (d) above?

2.7. Consider the genetic toggle switch in the situation shown in Fig. 2.6.

(a) Starting withu= 2, what is the minimal value ofv that will throw the switch
to v (i.e., lead to the highv steady state)?

(b) Fig. 2.6 shows some trajectories that “appear” to approach the white dot in the
uvplane. Why does the switch not get “stuck” in this steady state?

(c) Suppose that the experimenter can manipulate the turnover rate ofu so that it is
du = 1.5 (rather thandu = 1 and in (2.11)). How would this affect the switch?

2.8. Consider the chemical scheme proposed by Hasty et al [4]in (2.12).

(a) Write down the differential equations for the variablesx,y,u,v,d correspond-
ing to these chemical equations. (To do so, first replace the capitalized rate
constants associated with the reversible reactions with forward and reverse
constants (e.g.K1 is replaces byκ1,κ−1 etc).)

(b) Hasty et al assume that Eqs. (2.12a) arefast, i.e. are at quasi-steady state. Show
that this leads to the following set of algebraic equations for these variables:

y= K1x2, (2.26a)

u= K2dy= K1K2dx2, (2.26b)

v= σ1K2dy= σ1K1K2dx2, (2.26c)

z= σ2K2uy= σ2(K1K2)
2dx4. (2.26d)

(c) Show that this QSS assumption together with the conservation equation (2.13)
leads to the differential equation forx given by (2.14).
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(d) Show that the equation you obtained in part (c) can be rewritten in the dimen-
sionless form (2.15).

(e) Run the XPP code in Appendix A.F with the default values ofparameters, and
then changeγ to each of the following values: (i)γ= 12 (ii) γ= 14, (iii) γ= 16,
(iv) γ = 18. Comment on the number and stability of steady states.

(f) Connect the behaviour you observed in part (e) with the bifurcation diagram
in Fig 2.9(b).

2.9. Consider theλ repressor gene model by Hasty et al [4], and in particular themodel
(2.15) discussed in the text. Suppose an experimenter carries out the following ex-
perimental manipulations of the system. State how the equation would change, or
which parameter would change, and what would be the effect onthe behaviour of
the system. Use graphical ideas to determine the qualitative outcomes (The manip-
ulations may affect some slope, height, etc. of a particularcurve in Fig. 2.8.)

(a) The experimenter continually adds repressor at some constant rate to the sys-
tem.

(b) The experimenter inhibits the turnover rate of repressor protein molecules.

(c) Repeat (b), but this time, the experimenter can control the turnover rate care-
fully and incrementally increases that rate from a low degradation level via
intermediate level, to high level. What might be seen as a result?

(d) The experimenter inhibits the transcription rate in thecell, so that repressor
molecules are made at a lower rate when the gene is active.

2.10. In the cell cycle model of Section 2.6, it is assumed that the variableP given by
Eqn. (2.21b) is on quasi-steady state (QSS). Here we explorethat relationship.

(a) Assume thatdP/dt = 0 in (2.21b) and show that you arrive at a quadratic
equation. Note similarity to Exercise 2.3d.

(b) Write down the solution to that quadratic equation.

(c) Show that you arrive at the Goldbeter-Koshland function, as in Exercise 2.3.

G(Va,Vi ,Ja,Ji)=
2VaJi

(Vi−Va+VaJi +ViJa+
√

(ViVa+VaJi +ViJa)2−4(Vi−Va)VaJi

2.11. Here we further explore the YP model of Eqs. (2.21) shown in Fig 2.12. Use the
XPP file provided in Section A.H.1 (or your favorite software) to investigate the
following:

(a) Replot the YP phase plane and add trajectories to the two diagrams shown in
Figs. 2.12(a) and 2.12(a).

(b) Use your exploration in part (a) to determine the basin ofattraction of each of
the steady states in Figs. 2.12(a).

(c) Follow the instructions provided in Section A.H.1 to reproduce the bifurcation
diagram in Fig. 2.13.

2.12. Consider the three variableYPAmodel for the cell cycle given by Eqs. 2.24
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(a) Simulate the model using the XPP file provided Appendix A.H.3 (or your fa-
vorite software) for values of the cell mass in the ranges of interest shown
in Fig 2.15, i.e. for low, intermediate, and larger cell mass. Sketch the time
behaviour ofY,P,A for these simulations.

(b) Follow the instructions in Appendix A.H.3 to reproduce the bifurcation picture
for this model.

2.13. Consider the following set of equations:

dx
dt

= αx− y− x(x2+ y2), (2.27a)

dy
dt

= x+αy− y(x2+ y2). (2.27b)

This set of equations represents the classic (supercritical) Hopf bifurcation, in which
a stable limit cycle appears and gradually grow in diameter at a rate

√
α−αcrit .

(a) Explore this system numerically for a range of values ofα to find its stable
limit cycle.

(b) Now consider the related system that has a subcritical Hopf bifurcation

dx
dt

= αx− y+ x(x2+ y2), (2.28a)

dy
dt

= x+αy+ y(x2+ y2). (2.28b)

Study this system using the same methods and compare your results. You
should find that an (unstable) limit cycle appears with nonzero diameter, and
shrinks as the bifurcation parameter increases.

2.14. Use the XPP file provided in Appendix A.H.4 (or your favorite software) to simulate
the model of Eqs. (2.25). Compare the time behaviour of APC and cyclin obtained
in this model (e.g. in the first panel of Fig 2.19) with the corresponding behaviours
obtained in the two and the three variable models.
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Chapter 3

Simple polymers

3.1 Simple models for polymer growth dynamics

3.1.1 Simple aggregation of monomers

We first look at simple aggregation where monomers can be added anywhere on the grow-
ing polymer. An example of this type could be highly branchedpolymer where every site is
accessible for further addition, as shown in Fig 3.1. An example of this type was proposed
by [11] to describe the aggregation of amyloid monomers intofibrils. Let us define the
following variables:

c(t) = number of monomer subunits in the volume at timet,

F(t) = amount of polymer (in number of monomer equivalents) at timet,

A(t) = total amount of material (in number of monomer equivalents)at timet.

( F is given a value that corresponds to the concentration of that much liberated monomer
in the same reaction volume.)

Assume: The rate of growth depends on a product ofc andF, with rate constant
kf > 0 (forward reaction rate) and the rate of disassembly or turnover is linearly propor-
tional to the amount of polymer, with rate constantδ. Note thatA = c+F is constant
[Exercise 3.1(a)]. Our model equations are then:

dc
dt

=−kf cF+ δF, (3.1a)

dF
dt

= kf cF− δF. (3.1b)

EliminatingF by settingF = A− c leads to a single equation for monomers:

dc
dt

= (−kf c+ δ)F = kf (A− c)

(

δ
kf
− c

)

(3.2)

39
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δ

kf

polymer

monomer

Figure 3.1. A branched polymer. Any site on the polymer is competent for addition
on new monomers. Hence the more polymer, the faster it grows for a given monomer
concentration.

It follows that there is a critical concentration of monomers,ccrit = δ/kf , that plays a role
in the dynamics. Let us exploit this fact to write Eqn. (3.2) in the simpler form,

dc
dt

= kf (A− c)(ccrit − c) . (3.3)

Wheneverc < ccrit , andc < A, the expression on the right hand side is positive so that
dc/dt is positive. This implies thatc increases in that case4. We cannot violatec< A (so
the term(A−c) has to be positive), but ifccrit < A, then it is possible thatccrit < c< A. In
that case, the product on the RHS of (3.3) is negative, andc decreases.

A plot of qualitative behaviour

In panels (a) and (b) of Fig 3.2, we plotdc/dt (on the vertical axis) versusc (on the hori-
zontal axis) prescribed by Eqn. (3.3). In panel (b) of Fig 3.2, we show what happens in the
case thatA< ccrit .

The analysis so far has revealed that a non-trivial level of polymer occurs only if
A> ccrit . In that case, the system evolves toc(t)→ ccrit ,F(t)→ A− ccrit . We summarize
several additional observations that can be made from simple examination of the form of
Eqn (3.3) (without the need to fully solve this in closed form).

Steady state behaviour

Steady states of Eqn. (3.2) occur whendc/dt= 0. We observe that the amount of monomer
left in solution is either

c̄= ccrit =
δ
kf

, or c̄= A.

4Recall that thesign of the derivative indicates whether a quantity is increasing or decreasing. Such arguments
will be formalized and used insightfully in Chapter 1. L.E.K.
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Figure 3.2. Polymerization kinetics in simple aggregation. State space plots of
(3.3) (also called phase portraits) showing monomer (c) and polymer (F) levels for con-
stant total amount (A). (a) A> ccrit = δ/kf : in this case, c, will always approach its critical
concentration,̄c = ccrit = δ/kf , (b) A< ccrit : here there will be only monomers, and no
polymers will form. The grey region is an irrelevant regime,since the level of monomer
cannot exceed the total amount of material, A. Time plots of the two cases, produced by
XPP (c) for A> ccrit , (d) for A< ccrit . Parameter values: kf = 1,δ = 1,A= 3. XPP code
can be found in Appendix A.A.

The amount of polymer at this steady state is (by conservation), F ≡ F̄ = A− ccrit = A−
δ/kf , or F̄ = 0. Beyond the critical concentration, i.e. forc> ccrit , adding more monomer
to the system (which thus increases the total amountA) will not increase the steady state
level of monomer, only the polymerized form.

Initial rise time

The initial rate of the reaction, when the mixture just starts to grow: Suppose that initially,
there is only a little bit of polymer to seed the reaction, i.e. F(0) = ε, c(0) = A− ε ≈ A
for some smallε > 0. Then a good approximation of the polymer kinetics is givenby
substitutingc≈ A into the above equation to get

dF
dt
≈ kf (A− ccrit )F = KF.
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whereK = kf (A−ccrit ) is a positive constant. Then the initial time behaviour of filaments,
F(t) = εexp(Kt), is exponentially growing providedA> ccrit .

Decay behaviour if monomer is removed

If the monomer is “washed away” from a mature reaction, i.e. effectively settingc= 0 in
Eqn. (3.1b) leads to gradual disassembly of polymer, since then

dF
dt
≈−δF.

The polymer will decay exponentially with rate constantδ, i.e. F(t) = F0exp(−δt). This
can be useful in determining values of parameters from data.

The full kinetic behaviour

Having identified main qualitative features of the system, and a few special cases such as
early time behaviour, we turn to a full solution. Here we use software to numerically inte-
grate the system of equations (3.1) and show the behaviour for a specific set of parameter
values. We show this behaviour in panels (c) and (d) of Fig. 3.2. There are many soft-
ware packages that can easily handle such differential equations. Here we use XPP (code
provide in Appendix A.A).

Summary and observations

It is useful to gather the results of our simple analysis. We will find that such observations
will help us later in distinguishing between one type of aggregation reaction and another.

3.1.2 Linear polymer growing at their tips

Here is a slightly different scenario, in which nucleation occurs only at some sites. For
example, we consider a linear polymer with growth exclusively at the end(s) of the fila-
ments, as shown in Fig 3.3. We keep the previous assumption that disassembly takes place
by some bulk turnover of the polymer, i.e., not necessarily by monomer loss at the ends.
We guide the reader through exploration of this case in Exercise 3.3, with main concepts
summarized here more briefly.

We will define:

n= Number of filaments (or filament tips) at which polymerization can occur.

We assume at this stage that the number of filament tips,n, is constant, and that neither
breakage nor branching takes place. Then the appropriate model is

dc
dt

=−kf cn+ δF, (3.4a)

dF
dt

= kf cn− δF. (3.4b)



3.1. Simple models for polymer growth dynamics 43

δ

kf
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Figure 3.3. A linear polymer. Growth occurs at filament ends (on-rate kf ) and
turnover takes place at rateδ.

As before, conservation holds [Exercise 3.3a], and elimination of F leads to the monomer
equation:

dc
dt

=−kf cn+ δ(A− c) = δA− c(kf n+ δ). (3.5)

The ratioδ/(nkf ) is dimensionless: it represents the ratio of the critical concentration to
the concentration of tips.) However, properties of Eqs. (3.4) differ in several ways from
that of our previous example.

Steady state

In Exercise 3.3c, we show that there is only one steady state,with monomer level

c̄=
δA

kf n+ δ
≡ βA where β =

δ
kf n+ δ

. (3.6)

The factorβ so defined clearly satisfiesβ < 1 sincen,kf > 0. This means that such steady
state exists in all cases, unlike the previous situation, inwhich it was contingent on a suffi-
ciently high amount of material.

The linear structure and turnover kinetics of the polymer considered here has the
following further implications: As shown in Fig 3.5, the ratio of polymer to monomer at
steady state is constant. That ratio does not depend on the total amount of material, only on
the reaction rates and the number of filament ends. Provided there are initial fiber ends on
which to polymerize, growth of polymer occurs for any level of monomer. Increasing the
total amount of material will increase both monomer and polymer proportionately. A large
number of small filaments will grow to larger overall mass than a few long filaments, since
more tips are available for polymerization.

One way to control the relative proportion of the polymerized form is to increase the
number of “ends” at which polymerization occurs. This observation is germaine to actin,
where specific agents lead to the creation of “new ends” at which polymerization occurs,
or to the capping/uncapping of such ends to slow or accelerate polymerization.
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Figure 3.4. Polymerization kinetics in filament elongation with growthoccurring
only at filament tips, given by Eqs.(3.4). Here the number of tips, n is assumed to be
constant. (a) the flow is always towards a unique steady state, which is inside the domain.
(b) time plot produced with XPP code (See Appendix A.B). Parameter values were kf =
1,δ = 1,n= 5 and initial conditions were c(0) = 2.9,F(0) = 0.1

(b)

c
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0
ccrit
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Figure 3.5. Steady state values of polymer and monomer as the total amount of
material A is slowly increased (direction of arrows). (a) Inthe case of simple aggregation,
Eqs.(3.1), discussed in Section 3.1.1, for monomer concentration c= ccrit ≤ A no poly-
merization will occur. Thereafter, the monomer level will be constant and excess material
will all be incorporated into polymer. (b) In a linear polymer with irreversible addition of
monomer only at filament ends as in Eqs.(3.4) of Section 3.1.2, there will be a constant
ratio of monomer and polymer. As A increases, both will increase. The slope of the line in
(b) is nkf /δ. Increasing the number of filament tips, n, will mean that more of the material
is in polymer form.

A comparison of the steady state behaviour of the two models thus far considered is
given in Fig. 3.5. Here we show the distinct predictions for steady state behaviour for the
two distinct polymer types as the total amount of material,A is gradually increased.
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3.1.3 New tips are created and capped

New ends can be formed in a number of ways: (1) by spontaneous nucleation of filaments
from monomers (2) by breakage of long filaments to produce shorter ones with more ends,
or (3) by agents that lead to branching of the filaments. We here concentrate on the third
mechanism.

Assume that the filaments sprout new tips at some constant rate,φ. This allows poly-
merization to accelerate. If new tips form without limit, nosteady state will be possible. A
control measure that limits explosive growth of new tips is needed, so we assume that the
tips are capped at some rateκ. Kinetics of this type describe the polymerization of actinin
presence of the nucleator Arp2/3 that leads to filament branching, and capping protein that
stalls elongation at some tips [17]. Then the system of interest is

dn
dt

= φF−κn, (3.7a)

dc
dt

=−kf cn+ δF. (3.7b)

wherec is the monomer concentration 0≤ c ≤ A and F is filament length, as defined
in Section 3.1.1. In Eqn. (3.7a) we see the creation of new tips along a filament (with
rate φ per unit filament per unit time), and the first-order decay rate κn. In (3.7b) we
have monomer being used up at each tip (fueling the extensionof the filament) and being
recycled from filament degradation. Note that tips do not carry a mass, as they are a site on
an existing filament. The filament density equation is unchanged (here omitted), andF can
be eliminated (F = A− c) as before leading to

dn
dt

= φ(A− c)−κn, (3.8a)

dc
dt

=−kf cn+ δ(A− c). (3.8b)

This is a system of two differential equations in the variablesn(t),c(t). whose time be-
haviour is shown in the simulations of Fig 3.6. For low tip capping rateκ, the polymer
will form, as in Fig 3.6(a). Whenκ is too high, the filaments initially start to grow, but
eventually decay, as shown in Fig 3.6(b).

This system can also be studied in thecn phase plane (Figure 3.7(a,b).) It is evident
that there are up to two steady states,n = 0,c = A,F = 0 (unstable) and a stable steady
state at

c̄=
δ
kf

κ
φ
, F = A− c̄, n=

φ
κ

F,

that is physically meaningful only ifA > δκ/kf φ (Fig. 3.7(a)). If this inequality is not
satisfied, then only the trivial equilibrium is relevant andeventually, only monomer will
remain (see Fig 3.7b and also Fig. 3.6b). In this sense, thereexists an “effective critical
concentration”, whose value depends not only on the polymerization forward and back
kinetics, but also on the creation and removal of tips that act as nucleation sites.
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Figure 3.6. Polymerization kinetics for the model(3.8) where new tips are cre-
ated and capped. (a) For low capping rate,κ = 0.1 polymer is formed. (b) Forκ = 1,
the polymerization cannot be sustained, and eventually, only monomers are left. Other pa-
rameter values used were kf = 1,δ = 1,φ = 0.2,A= 3. Simulations done with XPP file in
Appendix A.D. See also Fig 3.7 for another way to plot the sameinformation using aphase
plane diagram.
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Figure 3.7. Plane plots showing nullclines and steady states for the polymeriza-
tion model in the case where filaments are broken to produce new tips, and tips are then
capped. The horizontal axis is c, and the vertical axis is n. See Fig 3.6 for the corre-
sponding time plots. (a): For low capping rate,κ = 0.1 polymer is formed. (b):κ = 1,
the polymerization cannot be sustained, and eventually, only monomers are left. Other pa-
rameter values used were kf = 1,δ = 1,φ = 0.2,A= 3. See Section A.D for XPP file that
produced these phase plane diagrams.
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QSS on filament ends

If new tips are formed and removed rapidly relative to other kinetics, than a QSS on the
variablen leads ton≈ (φ/κ)(A− c) so that

dc
dt

=−kf cn+ δ(A− c) =−kf c
φ
κ
(A− c)+ δ(A− c)= kf (A− c)

(

δ
kf
− φ

κ
c

)

(3.9)

Thus, the dynamics of this case is similar to those discussedin Section 3.1.1 in the limit of
rapid tip dynamics, but with a different “effective critical concentration”,c′crit = δκ/(kf φ).

3.1.4 Initial dynamics

The initial behaviour of this system starting withc≈ A, and someF = ε 6= 0 depends on
whether there are also exposed filament ends att = 0. There are two possibilities:

Case A: Some exposed tips at t = 0: In Fig 3.6, we illustrate the case wheren(0) 6= 0. In
Exercise 3.10b we ask the reader to show that close tot = 0, filaments grow linearly and
tips grow quadratically.

Case B: No exposed tips at t = 0: If tips are initially all capped so thatn(0) = 0, then new
tips must first form, before any polymerization can take place. In that case, close tot = 0,
tips grow linearly and then filaments grow quadratically [Exercise 3.10c].

Implications

In this type of polymer reaction, with creation and capping of filament tips, either linear
or quadratic initial polymerization rise time behaviour can occur. Washout decay is not
changed from the description in Section 3.1.2. The effective critical concentration in such
kinetics,c′crit = δκ/(kf φ), depends on turnover of both filaments and (exposed) tips, as
well as branching and monomer on-rate. This means that any one of these parameters can
influence the long-term behaviour.

Exercises

3.1. (a) Show that the polymer equations (3.1) imply that thetotal amount of monomer
and polymer are conserved.

(b) Verify the equation for the rate of change ofc obtained by eliminatingF .

(c) Explain how the diagram fordc/dt versusc is obtained from the differential
equation forc.

3.2. Use the XPP file provided in Appendix A.A to explore the polymerization by ag-
gregation discussed in Section 3.1.1. Show that you get results as in Fig 3.2. What
parameter(s) or value(s) should you vary to get the cases shown in panels (c) and (d)
of that figure?
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3.3. (a) Show that the polymer equations (3.4) imply that thetotal amount of monomer
and polymer are conserved.

(b) Show thatF can be eliminated from Eqn. (3.4a) to arrive at Eqn (3.5).

(c) Show that (3.4) has a single steady state solution, and that the level of monomers
at that steady state is given by (3.6). What is the corresponding level of poly-
mer at that steady state?

(d) Show that if the number of “tips”,n, is constant, the steady state levels of
monomer and polymer are proportional to each other.

3.4. Consider two special cases for the model (3.4) of polymer growing atn tips where
n> 0 is constant.

(a) First, consider the early time behaviour. Explain why this model implies that
some polymer is needed initially so that further polymerization will occur.

(b) Assume that close to the beginning of the reaction,c≈ A, andF ≈ ε. Find the
approximate behaviour ofF(t) at this early time. Show thatdF/dt≈C so that
F grows linearly with time.

(c) What is the value of the constantC you found in part (b)?

(d) Now consider the case that monomer is continuously removed from a polymer-
ized mix that had been at its steady state. What will happen tothe polymer?

3.5. Use the XPP code provided in Appendix A.B to explore the model for polymers
growing at their tips discussed in Section 3.1.2. Show that you get the results given
in Fig 3.4. How does the behaviour change if there are more tips (n= 10)? If the
rate of growth is slower (kf = 0.2) ?

3.6. Consider modifications of the model (3.4) as follows:

(a) Show that if the polymerization at filament tips is reversible (with rate constant
kr for loss of monomer from tips), then this shifts the steady state to

c̄=
δA+ krn
kf n+ δ

, F̄ = A− c̄. (3.10)

(b) Show that if filaments do not turn over as a whole, but rather addand lose
monomers at their ends, then the kinetics are different. Explore this model by
settingδ = 0 and replacingkf cnby (kf c− kr)n in the relevant equation.

(c) Show that the revision in (b) introduces a critical concentration,ccrit = kr/kf .

3.7. Consider Eqn. (3.3). What are the units of each of the variables? Suppose we define
new variables,t∗ = δt andc∗ = c/A whereA is the total amount of monomer in the
system. (Note thatA,δ are positive constants carrying units. What are those units?)

(a) Explain why the new variables,t∗,c∗ are “dimensionless”, i.e. are unit-less
parameters.

(b) Substitutet = t∗/δ,c= c∗A into Eqn. (3.2) and simplify the equations. Show
that you obtain (after dropping the *’s).

dc
dt

= (1−αc)(1− c). (3.11)

What is the value of the parameterα and what does it represent?
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(c) Use the results of analysis of Eqn. (3.3) to draw conclusions about the be-
haviour of the dimensionless model, given by Eqn. (3.11).

3.8. For aggregating molecules, it may be the case that monomer addition or loss can
only occur from the surface of a dense growing “pellet”. Thiscase is a variation
on the theme described in the model (3.1) of Section 3.1.1. Here we examine this
variant.

(a) Since the variableF has units proportional to mass, and assuming a 3D (roughly
spherical) aggregate, show that the surface area of a singlepellet would be pro-
portional toF2/3.

(b) Argue that this leads to the modified model

dc
dt

= (−kf c+ δ)F2/3 = kf (A− c)2/3
(

δ
kf
− c

)

.

(c) Show that the steady state monomer and polymer level is unchanged in this
situation.

(d) Show that the initial growth (close tot = 0) and the “and washout kinetics”
follow a power rather than exponential behaviour.

(e) Adapt the XPP code given in Section A.A to studying and characterizing the
behaviour of this variant of the model.

3.9. Consider the model (3.8) for polymer filaments with tipsthat are created and capped.

(a) What is the corresponding differential equation forF?

(b) Find the steady state(s) of (3.8).

(c) Draw the qualitative state space plot (analogous to Fig.3.2a,b) forc corre-
sponding to the equation (3.9).

(d) For Eqn. (3.9), which steady statec is stable? (unstable?)

3.10. Consider the model (3.8) for polymer filaments with tips that are created and capped.

(a) Use the XPP file in Section A.D to simulate this model and recreate the time
plots shown in Fig 3.6.

(b) If n(0) 6= 0, show that close tot = 0, filaments grow linearly and tips grow
quadratically.

(c) If tips are initially all capped (n(0) = 0), show that close tot = 0, tips grow
linearly and filaments grow quadratically.
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Chapter 4

Introduction to
nondimensionalization and
scaling

This chapter is an introduction to the topic of dimensionless variables.

4.1 Simple examples

We start with simple models consisting of one differential equation in order to establish
the motivation in an elementary setting. We first discuss thelogistic population growth
equation, and then move on to models in a chemical setting.

4.1.1 The logistic equation

A well-known model for the density-dependent growth of a populationN(t) is thelogistic
equation ,

dN
dt

= rN

(

1− N
K

)

. (4.1)

Here r > 0 is the intrinsic growth rate in units of 1/time, andK > 0 is thecarrying
capacity, in the same units asN. This equation is a limited-growth version of theMalthus
equation discussed in Exercise 4.??.

Dividing both sides byK and regrouping terms leads to

1
K

dN
dt

= r
N
K

(

1− N
K

)

, ⇒ d
dt

(

N
K

)

= r
N
K

(

1− N
K

)

. (4.2)

In this form, it is evident thatN only appears in in the groupingN/K. We can simplify
the equation and reduce the number of constants by treating this as a single new quantity.
Accordingly, suppose we define a new variable,

y(t) =
N(t)
K

.

Note that in this form, the population is measured in “multiples” of the carrying capacity.
Thusy is a pure number, a dimensionless variable carrying no units, even if originally we
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had assigned units toN such as number of organisms per unit area of habitat. Making the
substitutionN=Ky into Eqn (4.2) (or Eqn (4.1), for that matter), leads to the new equation,

dy
dt

= ry(1− y). (4.3)

We can go further with Eqn (4.3) and scale time so as to reduce the remaining parameter
(r). To do so, we would define a new dimensionless variables= rt . Then the substitution
t = s/r into Eqn (4.3) will eliminate the remaining parameter, leading to

dy
ds

= y(1− y). (4.4)

[Details in Exercise 4.1]. This elementary first example already illustrates thatintroduction
of dimensionless variables reduces the number of parameters that characterize a problem.
Observe that in Eqn. (4.4), there are no free parameters left. This means that we can
understand the essential behaviour of such an equation by studying this single prototype
rather than considering all possible results for multiple values of the parametersr,K for the
unscaled version, Eqn (4.1). The behaviour of Eqn. (4.4) is explored in Section??.

4.2 Other Examples

We present a few additional examples and show how each can be nondimensionalized. Here
we will also see steps to take when it is not immediately transparent which combinations of
choices for scales are appropriate. Some of these examples arise in previous models (e.g.
from Chapter 3) and others will be analyzed in later material.

Example 4.1 (Macrophages and dead cells). Find a dimensionless formulation for the
following set of equations arising in a model for macrophages (m(t)) removing dead cells
(a(t)) and killing some cells in the process:

dm
dt

= g · (M−m)a− km, (4.5a)

da
dt

= κCm− f ma−da. (4.5b)

Here M and C are total numbers of macrophages and target cells, respectively, assumed
to be constant in this example, and given in units such as cells cm−3 (i.e. cells per cubic
cm). Time t is measured in hours. g is the rate of activation ofthe macrophages by dead
cell material, k is the rate of inactivation.κ is the rate of “bystander” killing of cells, f
is the rate of removal of dead cells by macrophages and d is some other turnover of dead
cell material. It is assumed that g,k,κ, f ,d > 0 are constants. [See Exercise 4.3a for a
discussion of the units of these parameters.]

Solution. We assume the following scalings:

m= m̄m∗, a= āa∗, t = τt∗.
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Herem̄, ā,τ are constant (dimension carrying) scales, to be chosen, andm∗,a∗, t∗ are the
numerical (dimensionless) variables. Then, substitutingthis into Eqs. (4.5) leads to

d(m̄m∗)
d(τt∗)

= g(M− m̄m∗)āa∗− km̄m∗, (4.6a)

d(āa∗)
d(τt∗)

= κCm̄m∗− f m̄m∗āa∗−dāa∗. (4.6b)

We multiple both sides of Eqn. (4.6) byτ/m̄, and sides of Eqn. (4.8) byτ/ā,

dm∗

dt∗
=

τ
m̄
[g(M− m̄m∗)āa∗− km̄m∗] , (4.7a)

da∗

dt∗
=

τ
ā
[κCm̄m∗− f m̄m∗āa∗−dāa∗] . (4.7b)

Now distribute the terms and group constants and variable terms to obtain

dm∗

dt∗
= gāτ((M/m̄)−m∗)a∗− kτm∗, (4.8a)

da∗

dt∗
= κC

m̄
ā

τm∗− f τm̄m∗a∗−dτa∗. (4.8b)

Let us use square brackets to emphasize the groupings of constant terms:

dm∗

dt∗
= [gāτ]([M/m̄]−m∗)a∗− [kτ]m∗, (4.9a)

da∗

dt∗
=

[

κC
m̄
ā

τ
]

m∗− [ f τm̄]m∗a∗− [dτ]a∗. (4.9b)

We select values for the constant scale so as to simplify as many of these groupings as
possible. In particular, we chose

[M/m̄] = 1,

[

κC
m̄
ā

τ
]

= 1, [dτ] = 1.

This choice is, to some extent arbitrary in the current example. It implies that the convenient
set of scales we have selected are

m̄= M, τ = 1/d, ā= κCm̄τ =
κCM

d
.

We now drop the *s. The equations then simplify to

dm
dt

= α(1−m)a− δm, (4.10a)

da
dt

= m−ηma−a. (4.10b)

where
α = [gāτ], δ = [kτ] = k/d, η = [ f τm̄]. (4.11)
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In Exercise 4.3b we ask the reader to rewrite these quantities in terms of the original pa-
rameters of the problem and to interpret their meanings.

Example 4.2 (Predator Prey equations). Consider the following set of equations

dx
dt

= r1x
(

1− x
K

)

−A
xy

D+ x
, (4.12a)

dy
dt

= r2y

(

1− y
qx

)

. (4.12b)

These equations have been used to model the dynamics of interacting prey (x(t)) and preda-
tors (y(t)). Assume that ri ,K,A,D,q> 0 are constants. Use dimensional analysis to reduce
these to a dimensionless form.

Solution. We define the following scalings:

x= x̄ x∗, y= ȳy∗, t = τt∗.

Here the quantities ¯x, ȳ,τ are convenient “scales” that will be chosen shortly, as in the
previous example. They are constant, whereas the numericalvaluesx∗,y∗, t∗ that carry no
dimensions are the variables. Substituting these assignments into Eqs. (4.12) leads to

dx̄x∗

dτt∗
= r1x̄x∗

(

1− x̄x∗

K

)

−A
x̄x∗ȳy∗

D+ x̄x∗
, (4.13a)

dȳy∗

dτt∗
= r2ȳy∗

(

1− ȳy∗

qx̄x∗

)

. (4.13b)

We multiply both sides of Eqn. (4.13a) byτ/x̄ and both sides of Eqn. (4.13b) byτ/ȳ and
simplify to obtain:

dx∗

dt∗
= [r1τ]x∗

(

1−
[

x̄
K

]

x∗
)

−
[

Aτ
ȳ
x̄

]

x∗y∗

[D/x̄]+ x∗
, (4.14a)

dy∗

dt∗
= [r2τ]y∗

(

1−
[

ȳ
qx̄

]

y∗

x∗

)

. (4.14b)

[See Exercise 4.4b.] We now make judicious choices that reduce the complexity of the
terms. We can chose the scales ¯x, ȳ,τ, i.e. we have three independent choices to make. It
proves convenient to set

[r1τ] = 1,

[

x̄
K

]

= 1,

[

ȳ
qx̄

]

= 1.

This is equivalent to selecting

τ = r1, x̄= K, ȳ= qx̄= qK.

The equations are thereby simplified to

dx∗

dt∗
= x∗ (1− x∗)−

[

Aτ
ȳ
x̄

]

x∗y∗

[D/x̄]+ x∗
, (4.15a)

dy∗

dt∗
= [r2τ]y∗

(

1− y∗

x∗

)

. (4.15b)
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We drop the *’s and obtain the final dimensionless set of equations

dx
dt

= x(1− x)−α
xy

δ+ x
(4.16a)

dy
dt

= νy
(

1− y
x

)

(4.16b)

where the parameters in these have the following meanings:

α =

[

Aτ
ȳ
x̄

]

=
Aq
r1

, ν = [r2τ] =
r2

r1
, δ = [D/x̄] =

D
K
.

In Exercise 4.4c, we discuss the meanings of these parameters. We also consider an alter-
nate rescaling in part (d) of the same exercise. We will studythis system further in a later
chapter. (See Eqns. (??) and their analysis in Chapter??.)

Exercises
4.1. Consider the logistic equation (4.1).

(a) Explain why it must be true thatN(t) andK have the same units.

(b) SupposeN(t) is in units of density of organisms (e.g. number per unit area)
and time is measured in years. What are the units of the termdN/dt? of r?
What are the units of the quantity 1/r and how could this be interpreted?

(c) Now consider Eqn (4.3). Define a new variablet∗ = rt wherer is the growth
rate. Show that the substitutiont = t∗/r into Eqn (4.3) will eliminate the re-
maining parameter, leading to Eqn. (4.4). This is equivalent to rescaling time
in units that have what meaning?

4.2. Suppose you have found a solutiony(t) to (4.4). Explain how you would convert this
to a solutionN(t) to (4.1). [Hint: consider a back substitution using the relationships
s= rt andy= N/K.]

4.3. (a) For the model of macrophages and target cells given by (4.5), if m andc have
units of cells cm−3 (i.e. cells per cubic cm) and time is measured in hours,
what are the units for each of the parametersg,k,κ, f ,d?

(b) Determine the values of the dimensionless parametersα,δ,η from (4.11) in
terms of the original parameters of the problem.

(c) Interpret the meanings of these dimensionless ratios.

4.4. Consider the model for predator-prey interactions given by (4.12). Suppose preda-
tors and prey are both insects, and are measured in units of m−2 (e.g. number of
individuals per square meter).

(a) What are the units of the parametersr i ,K,A,D,q?

(b) Verify the calculations resulting in (4.14).

(c) Interpret the meanings of the dimensionless ratiosα,ν,δ.
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(d) Consider an alternate rescaling ¯x= ȳ= K,τ = 1/A. Find the corresponding di-
mensionless equations and dimensionless parameter groupings. Interpret your
results.

4.5. Consider the following equations for the growth of a single species of organism:

dP
dt

=
vP

K+P
−dP. (4.17)

(a) Interpret what these equations are saying.

(b) Definex= P/P̄,s= t/τ whereP̄,τ are scales to be chosen. Use substitution to
convert Eqn. (4.17) to a dimensionless form in terms of thesescales.

(c) What is a reasonable choice forP̄? For ,τ? Are there more than one possible
scalings that make sense for this model?

(d) Use an appropriate scaling to obtain a final dimensionless equations. What
dimensionless parameter grouping(s) appear?

4.6. Consider the equation
dx
dt

= ax−bx3

(a) Show that this equation can be rescaled to the form

dx
dt

= c

(

x− 1
3

x3
)

by defining an appropriate scale ¯x for x.

(b) Show that by rescaling time, we arrive at a similar equation with c= 1.

See Section 1.0.1 for a further investigation of this cubic kinetics ODE.

4.7. Ludwig, Jones and Holling [9] studied the dynamics of the spruce budworm, here
denotedB(t). They suggested the following differential equation to describe the
growth of these insects and predation by birds:

dB
dt

= rBB

(

1− B
KB

)

−β
B2

α2+B2 . (4.18)

(a) Explain the meanings of the terms in this equation.

(b) Rewrite these equations in dimensionless form. There are two choices for
scales for the budworm density and two for time.

4.8. Hasty et al [4] derived a model for the concentration of arepressorx(t) in the lysis-
lysogeny pathway of theλ virus. A reduced version of this model is

dx
dt

=
AK1K2x2

1+(1+σ1K1K2x2+σ2K2
1K2

2x4)
− kdx+ r (4.19)

Define a dimensionless repressor concentrationx∗ = x
√

K1K2 and a dimensionless
time t∗ = t(r

√
K1K2). Show that the dimensionless equation can be written in the

form
dx
dt

=
αx2

1+(1+σ1x2+σ2x4)
− γx+1. (4.20)

Find the values of the parametersα,γ in terms of the original parameters.
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Appendix A

Appendix: XPP Files

Some instructions are provided here but readers who have never used XPP will find good
resources for the installation and usage of this freeware inan online tutorial by Ermentrout,
as well as in his written accounts. An extensive guide, with many other interesting exam-
ples, is [1]. A related text, also richly supported with XPP examples and instructions is
[2].

A.A Simulation for simple aggregation of monomers

ODE file for Fig 3.2 in Section 3.1.1

# actin1.ode
dc/dt=-kf*c*F +kr*F
dF/dt=kf*c*F -kr*F
param kf=1, kr=1
init c=0.7, F=0.1
done

A.B Simulation for growth at filament tips

ODE file for Fig 3.4 in Section 3.1.2

# actin2.ode
dc/dt=-kf*c*n +kr*F
dF/dt=kf*c*n -kr*F
param kf=1, kr=1, n=5
init c=2.9, F=0.1
done
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A.B.1 Cubic kinetics

The following file was used to produce the solution curves of Fig. 1.0.1 and the bifurcation
diagram in Fig 1.4(b).

# cubic.ode
#
# The cubic first order differential equation
#
x’= c*(x-(1/3)*xˆ3+A)
param c=1,A=0
done

In order to produce the bifurcation diagram follow these steps: Run the .ode file with initial
x value 1.5 and type “Initial condition” “Last” (I L) to continue the solution so that it is
extremely close to its steady state value (repeat I L two or three times to do this). Type
“File” “Auto” (F A). This opens a new window. Edit the panels as follows: Parameter:
there is only one parameter, so this need not be changed.Axes: select “hI-lo”. Then fill
in the range Xmin = -2, Ymin= -3, Xmax=2, Ymax=3.Numerics: Change Par Min to -2,
Par Max to 2, and Ds to 0.01. Press OK.Run: “Steady state”. This will produce part of
the diagram starting with the value ofA = 0. To continue towards negative values ofA,
grab one of the points, and edit the Numerics panel to change Ds to -0.01. This will run the
continuation in the opposite direction. For more details, see the book by Bard Ermentrout
[1].

A.B.2 Pitchfork bifurcations

The following file was used to produce the pitchfork bifurcation shown in Fig. 1.9.

# Pitchfork.ode
x’=r*x-xˆ3
param r=-0.5
init x=0
done

Instructions: Run the file in auto for some time steps. SelectF (File) A (Auto). The
parameter will already be set tor, as that is the only parameter in the problem. Select Axes,
hI-lo, and set Xmin:-0.1, Ymin:-1, Xmax: 0.25, Ymax 1. Select Numerics and change Par
Min: -0.5, Par Max: 0.25. click OK, then Run: Steady state.

To produce the subcritical pitchfork bifurcation of Fig. 1.9, the file used was

# PitchforkSub.ode

x’=r*x+xˆ3

param r=0.2
init x=0
done
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A.B.3 Transcritical bifurcation

To produce the transcritical bifurcation of Figure 1.8, thefile used was:

# TRanscritBF.ode

x’=r*x-xˆ2

param r=0.2
init x=0.2
done

A.C Systems of ODEs

A.D Polymers with new tips

ODE file for Fig. 3.7

# TipsandCap.ode
#
# Simulation for formation of new filament tips
#
#
dc/dt=-kf*c*n +delta*(A-c)
dn/dt=phi*(A-c)-kappa*n
#
aux F=A-c
#dF/dt=kf*c*n -kr*(A-c)
param kf=1, delta=1, kappa=0.1, phi=0.2, A=3
init c=2.9, n=1
@ total=20,xp=c,yp=n,xlo=0,xhi=3,ylo=0,yhi=7
done

A.D.1 Limit cycles and Hopf bifurcations

The following file was used to make the bifurcation plot of a model that has a stable limit
cycle.

# HopfBF.ode
# start at x=y=0
# start at r=0.5 and pick ds=-0.02 to first
# get the fixed pt. Then grab the HB point and
# pick ds=0.01 to get the Hopf.

x’=r*x-y-x*(xˆ2+yˆ2)
y’=x+r*y-y*(xˆ2+yˆ2)
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param r=0.5
init x=0,y=0
done

The equations were integrated first with the above initial conditions. In Auto, the Numerics
settings were changed as follows: ds: -0.02, Parmin:-0.5, Parmax: 2. Then select Run:
Steady state. This produced the line of fixed point with bifurcation point atr = 0. The
option Grab and tab key selects that bifurcation point. Hit Return. In the Numerics panel,
switch to ds:0.01, then Run Periodic.

# HopfsubBF.ode
# start at x=y=0
# pick ds=-0.02 to get steady state
# then grab HB point and Run Periodic

x’=r*x-y+x*(xˆ2+yˆ2)
y’=x+r*y+y*(xˆ2+yˆ2)

param r=0.5
init x=0,y=0
done

Auto was run in a similar way, but the direction of steps ds need not be changed. The open
dots signify an unstable limit cycle.

A.E Fitzhugh Nagumo Equations

#FitzhughNagumo1.ode
# file to produce simulations for FHN model

dx/dt = c*(x-(xˆ3)/3-y+j)
dy/dt = (x+a-b*y)/c

aux v=-x

par j=0,a=0.7,b=0.8,c=3
# Consider either c=3 or c=10
# Parameters should satisfy 1-(2/3)b<a<1, 0<b<1

# Convenient initial conditions:
init x=2.0,y=2.0

@ total=20,xp=x,yp=y,dt=0.01,xlo=-3,xhi=2,ylo=-1,yhi =2
done

Now let us make the bifurcation diagram shown in Fig??. To do so, setj = 0 and inte-
grate the equations to get as close as possible to the (stable) steady state. (e.g. use Initial
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Conditions, Mouse [I M] to start close to the nullcline intersection, then continue using
Initial Conditions, Last [I L] to get even closer. Start autoby clicking File, Auto [F A]
and set the Axes to hI-Lo with Xmin:0, Ymin:-2,Xmax:1,Ymax:2. In the Numerics panel
change Par Min:0 Par Max:1, click OK, and Run Steady state. You will get the horizontal
branch of steady state, with a bifurcation point (HB). Grab that point and Run periodic
(after decreasing ds to 0.005) to get this picture.

A.F Lysis-Lysogeny ODE model (Hasty et al)
The following XPP file was used to produce Figs. 2.12 for the Lysis-Lysogeny model.

# lysislysogeny.ode
# Based on eq 7 in Hasty et al PNAS (2000) vol 97 #5 2075-2080
# should have a bistable switch
# gamma is the bifurcation parameter (range gamma= 14-16)
#
x’= alpha*xˆ2/(1+(1+sigma1)*xˆ2+sigma2*xˆ4)-gamma*x+ 1
param gamma=18,alpha=50,sigma1=1,sigma2=5
@total=10,xlo=0,xhi=10,ylo=0,yhi=1
done

To generate the bifurcation diagram5, first integrate the ODE file starting fromx= 0 a few
times to get as close as possible to the steady statexss= 0.06845. (e.g., integrate, then
“Continue” till t = 500, which does the job. Start Auto (File, Auto). Select Axes, hI-lo,
Xmin:10, Ymin:0, Xmax:20, Ymax:1 [Note that gamma will be onthe horizontal axis, and
xss on the vertical axis.] Select Numerics, and change only Ds:-0.02, Dsmax:0.1,Par Min:
0, Par Max: 20. (Click OK.) Select Run, Steady state. This will produce the Bifurcation
plot.

A.G Simple biochemical modules

A.G.1 Production and Decay

The following XPP file was used to produce the production-decay behaviour in Fig. 2.2(a)

# ASProdDecay.ode
# Simple signal for production and decay of substance
#
R’=k0+k1*S-k2*R

# Signal gets turned on at time 0, off at time 3
# uses "Heaviside" step function to turn on or off

S=heav(t-0)-heav(t-3)

5I want to thank Bard Ermentrout for helping me with the Auto settings for this file. L.E.K.
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param k0=1,k1=1,k2=1
init R=1
@total=10
done

A.G.2 Adaptation

The following XPP file was used to produce the adaptation behaviour in Fig. 2.2(b)

# AdaptTyson.ode
# An adaptation circuit
#
R’=k1*S-k2*X*R
X’=k3*S-k4*X

# Signal gets turned up in steps at times t=0, 5, 10, 15
# uses "Heaviside" step function

S=heav(t-0)+heav(t-5)+heav(t-10)+heav(t-15)

param k1=1,k2=1, k3=1, k4=2
init R=1, X=0.5
@total=10
done

A.G.3 Genetic toggle switch

The following XPP file was used to produce the switch-like behaviour of Fig. 2.6

# AToggleSwitch.ode
#
# Based on Gardner et al Nature (2000) Vol 403 pp 339-342
# By making either n or m large enough, get
# nonlinearity that produces multiple steady states
# and a switch-like response
#
u’=alpha1/(1+vˆn)-u
v’=alpha2/(1+uˆm)-v
param alpha1=3,alpha2=3,n=3, m=3
@ total=20,xp=u,yp=v,dt=0.01,xlo=0,xhi=4,ylo=0,yhi=4
done
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A.H Cell division cycle models

A.H.1 The simplest Novak-Tyson model (Eqs. (2.21))

The following XPP file was used to produce the phase plane of Fig 2.12 and the bifurcation
diagram in Fig. 2.13.

# tysonCCJTB01.ode
# Model based on first system (eqs 2) shown in Tyson’s paper
# JTB (2001) vol 210 pp 249-263
# Y=[CycB] = cyclin cdk dimers
# P=[Cdh1]= APN Cdh1 complex (proteolytic complex)
# Y and P are mutually antagonistic

Y’=k1-(k2p+k2pp*P)*Y
P’=Factiv(P)*(1-P)-Fdecay(Y,P)*P

Factiv(P)=(k3p+k3pp*A)/(J3+1-P)
Fdecay(Y,P)=k4*m*Y/(J4+P)

# parameters with units of 1/time:
par k1=0.04
par k2p=0.04,k2pp=1
par k3p=1,k3pp=10
par k4=35
par A=0

# mass of cell (try m=0.6, m=0.3)
par m=0.3

# Dimensionless parameters:
par J3=0.04,J4=0.04

@ dt=0.005
@ xp=Y,yp=P,xlo=0,xhi=1,ylo=0,yhi=1
done

To make an AUTO bifurcation diagram, the system was first started with the parameter
m= 0.1, and integrated for many time steps to arrive at the steady statey= 0.038684p=
0.99402.m was used as the bifurcation parameter. Auto Axes were set as hI-lo, with Y on
the Y-axis, and Main Parm:m on the horizontal axis, and with Xmin:0, Ymin:0, Xmax:0.6,
Ymax:1.5.

This system was slightly fiddly, and a few first attempts at producing a bifurcation
diagram with the default AUTO numerics parameters were unsuccessful (MX type error).

AutoNumerics parameters were adjusted as follows:Ntst:50, Nmax:200, NPr:50,
Ds:0.002, Dsmin: 0.0001, Ncol:4, EPSL:0.0001, Dsmax:0.5,Par Min: 0.1, Par Max: 0.2,
Norm min:0, Norm Max: 1000, EPSU: 0.001, EPSS:0,001. The diagram was built up
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gradually by increasing the range of the plotted curve.

A.H.2 The second Novak-Tyson model

The following file was used to simulate theAY phase plane plots in Fig 2.14(a)-2.14(c).
Note that hereP is put on QSS.

# tysonCCJTB01_3QSSP.ode

# Model based on three eqns system (eqs 3) shown in Tyson’s pap er
# JTB (2001) vol 210 pp 249-263

# Y=[CycB] = cyclin cdk dimers
# P=[Cdh1]= APN Cdh1 complex (proteolytic complex)
# Y and P are mutually antagonistic
# A= Cdc14=Cdc20 - eqn (3) in this paper
# In this file we put P on QSS and look at Y and A

Y’=k1-(k2p+k2pp*P)*Y

#P’=Factiv(P)*(1-P)-Fdecay(Y,P)*P
#Factiv(P)=(k3p+k3pp*A)/(J3+1-P)
#Fdecay(Y,P)=k4*m*Y/(J4+P)

P=G((k3p+k3pp*A)/(k4*m),Y,J3,J4)

# Here is the Goldbeter-Koshland function that comes
# from solving dP/dt=0
G(Va,Vi,Ja,Ji)=2*Va*Ji/(Vi-Va+Va*Ji+Vi*Ja+ sqrt((Vi- Va+Va*Ji+Vi*Ja)ˆ2-4*(Vi-Va)*Va*Ji))

A’=k5p+k5pp* ((m*Y/J5)ˆn)/(1+(y*m/J5)ˆn)-k6*A

# parameters with units of 1/time:
par k1=0.04
par k2p=0.04,k2pp=1
par k3p=1,k3pp=10
par k4=35
par k5p=0.005,k5pp=0.2,k6=0.1

# mass of cell (try m=1, m=0.3)
par m=0.3

# Dimensionless parameters:
par J3=0.04,J4=0.04,J5=0.3,n=4
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@ dt=0.005
@ xp=A,yp=Y,xlo=0,xhi=1,ylo=0,yhi=1
done

A.H.3 The three-variable YPAmodel

The amended file below was used to produce Fig. 2.15 in Section2.6.1.

#tyson.ode
# Equations

# Equations
Y’=k1-(k2p+k2pp*P)*Y
P’=(1-P)*(k3p+k3pp*A)/(J3+1-P)-P*k4*m*Y/(J4+P)
A’=k5p+k5pp* ((m*Y/J5)ˆn)/(1+(y*m/J5)ˆn)-k6*A

# Parameters with units of 1/time:
p k1=0.04
p k2p=0.04,k2pp=1
p k3p=1,k3pp=10
p k4=35
p k5p=0.005,k5pp=0.2,k6=0.1

# mass of cell (try m=0.6, m=0.3, m=1)
p m=1

# Dimensionless parameters:
p J3=0.04,J4=0.04,J5=0.3,n=4
# Numerics
@ TOTAL=2000,DT=.1,xlo=0,xhi=2000,ylo=0,yhi=6
@ NPLOT=1,XP1=t,YP1=Y
@ MAXSTOR=10000000
@ BOUNDS=100000
@ dsmin=1e-5,dsmax=.1,parmin=-.5,parmax=.5,autoxmin= -.5,autoxmax=.5
@ autoymax=.4,autoymin=-.5

# IC
Y(0)=1
P(0)=0.5
A(0)=0.1
done

To make the bifurcation diagram shown in Fig. 2.15, follow the procedure below.

• Change the integration method to ”STIFF” (nUmerics, Method, Stiff, return, escape).
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• First ’Initial condition’, ’Go’, we can get some periodic graph at the bottom of the
drawing area. Click two peaks of the graph to find the approximate the period of the
solution. It is about 56.45.

• ’numerics’—change ’total’: 56.45, ’dt’:0.05, escape.

• erase the original graph, ’IL’ several time to make sure to get closer and closer to the
exact stable period orbit.

• open the auto window. Select the auto settings as follows:
’Parameter’—’Par1’: m;
’Axes’—’hilo’— ’Xmax’: 30, ’Ymax’: 5;
’Numerics’—’Ntst’:60,’Nmax’:200,’Npr’:500,’Epsl’: 0.000001, ’ParMax’:30;

• ’Run’—’Periodic’, two short lines appears in the left bottom corner, if necessary,
click ’abort’ to stop them.;

• ’Grab’ and enter.

• ’Numerics’—’Ds’:-0.02.

• ’Run’—’extend’, you will find the both two ends will extend, but it takes a long time,
so if necessary, click ’abort’ to stop them.

• Then we want to find the steady state. Before we do that, ’file’—’clear grab’.

• Go back to Xpp, ’Parameter’—m:10, and ’IL’ several times.

• Go back to Auto, and ’Run’—’Steady State’, a window will appear to ask you
whether want to destroy the diagram, choose ’No’, a fancy S-shaped graph will be
added to the diagram (lighter than the original one).

• To see them more clearly, ’Axes’—’fit’, ’redraw’. You might get a graph with some
space between the first set of darker lines and lighter S-shaped curve, depending on
how long you run before you click ’abort’ when you run the extension.

• ’Axes’—’fit’,’redraw’, the the former two darker line are averaged.

• There is more interesting behaviour for smaller values ofm. To see these, click file,
clear grab, and go back to XPP window. Changem to 0.3, and resimulate (Initial
Cond, Go, I L,I L,I L, I L). Return to AUTO windo, and reset the numerics so that
Parmin=0.3, Parmax = 2. Run. This will allow you to see the fold bifurction. There
is also a subcritical Hopf bifurcation atm= 0.5719. You can see this by grabbing
the Hopf point, adjusting the numerics menu to get Parmin=0.2, Parmax=0.6 and
running the periodic.

• The last graph is the same as ’Tyson.ps’.
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Figure A.1. Bifurcation diagram for the full YPA model given by Eqs.(2.24)(b)
A zoom into part of the diagram of (a). See also Fig 2.15 for another zoomed view.

A.H.4 A more complete cell cycle model

The file below was used to produce Fig 2.19. in Section 2.6.2.

# tysonCCJTB01_4.ode

# Model based on three eqns system (eqs 3) shown in Tyson’s pap er
# JTB (2001) vol 210 pp 249-263

# Y=[CycB] = cyclin cdk dimers
# P=[Cdh1]= APN Cdh1 complex (proteolytic complex)
# Y and P are mutually antagonistic
# A= Cdc14=Total Cdc20 - eqn (3) in this paper
#AA = active Cdc20 = Cdc20_A eqn (4)
# IP = [IAP] eqn(5)

Y’=k1-(k2p+k2pp*P)*Y
P’=Factiv(P)*(1-P)-Fdecay(Y,P)*P

######NOTE: CHANGE IN THE FOLLOWING FORMULA A->AA
# as per Tyson’s discussion on p 255

Factiv(P)=(k3p+k3pp*AA)/(J3+1-P)
Fdecay(Y,P)=k4*m*Y/(J4+P)

A’=k5p+k5pp* ((m*Y/J5)ˆn)/(1+(y*m/J5)ˆn)-k6*A

AA’ = k7*IP*(A-AA)/(J7+A-AA) -k6*AA -k8*Mad*AA/(J8+AA)
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IP’=k9*m*Y*(1-IP)-k10*IP

m’= mu*m*(1-m/ms)

# parameters with units of 1/time:
par k1=0.04
par k2p=0.04,k2pp=1
par k3p=1,k3pp=10
par k4=35
par k5p=0.005,k5pp=0.2,k6=0.1

par k7=1,k8=0.5,Mad=1
par k9=0.1,k10=0.02
par mu=0.01,ms=10

#Global flag: See XPP book p 36
# When Y falls below threshold, the cell divides,
# then its mass m is 1/2 its previous mass.
global -1 Y-Ythresh {m=m/2}
par Ythresh=0.1

# mass of cell (try m=0.6, m=0.3)
#par m=0.3

# Dimensionless parameters:
par J3=0.04,J4=0.04,J5=0.3,n=4
par J7=0.001,J8=0.001

init Y=0.6,P=0.02,A=1.6,AA=0.6,IP=0.6,m=0.8

@ dt=0.005,Total=300,MAXSTOR=500000,BACK= {White}
done

A.I Odell-Oster model

The following XPP file can be used to investigate the Oster-Odell cell contraction model.

#Odell.ode
# file to produce simulations for Oster and Odell (1984) mode l

L’=k*(L0*1/(Cˆ2+C0)-L)
C’=g*L-v*C+a*Cˆ2/(b+Cˆ2)

par k=1,L0=0.1,g=1,v=1,a=2.3,b=1.5,C0=0.5
@ total=20,xp=C,yp=L,xlo=0,xhi=2,ylo=0,yhi=0.3
done
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