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Review of lecture 3

Asymptotic confidence intervals (nlparci)

Bootstrap confidence intervals (bootstrp)

Bootstrap hypothesis testing

Figure 6: Bootstrap distibutions for comparing the two datasets shown in Figure 5
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Figure 7: Comparing the fit of two models to a single data set. Simulated data (blue circles) is obtained by adding
15% normally distributed noise to a dose-response curve with B = 0, Emax = 1, EC50 = 10−1.0, and n = 4. The
two proposed models we will consider are the reduced Hill function (equation 2), that contains two fitting parameters
(EC50 and Emax) with two fixed parameters (B = 0 and n = 1), and a slightly more complicated model (equation
1) that contains three fitting parameters (EC50, Emax, and n) with one fixed parameter (B = 0). Given that the two
models are nested, we expect that the more complicated model will fit the data at least as good as the simpler model.
Data fitting of each model to the simulated data does indeed reveal that the more complicated model (solid red line)
exhibits a larger R2 value compared to the simpler model (solid blue line). We perform a statistical test (F-test,
see main text) for the null hypothesis that the two models fit the data equally well. This test accounts not only for
the SSR of each model but the number of parameters, and we find p = 7.45 × 10−6. We therefore reject the null
hypothesis and conclude that the simpler model is insufficient to explain the data.
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How to select the best model?

Case study: Fitting data with models of varying complexity. 

Simulate data from the following model:

Fit with 4 different models:



Single dataset fits



How to rank models?

The model with the highest number of parameters will 
typically give the best fit. 

But introducing more parameters increases model 
complexity, and the requires us to estimate values of all the 
additional parameters from limited data. 

Increasing the number of parameters also makes the model 
more susceptible to noise.  



Quantifying model complexity: Defining Risk

50 4. Smoothing: General Concepts
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FIGURE 4.6. The LIDAR data from Example 4.5. The estimates are regressograms,
obtained by averaging the Yis over bins. As we decrease the binwidth h, the estimator
becomes less smooth.

where r is a smooth function. A simpler, but less general model is the additive
model

permeability = r1(area) + r2(perimeter) + r3(shape) + ε

for smooth functions r1, r2, and r3. Estimates of r1, r2 and r3 are shown in
Figure 4.8. !

4.1 The Bias–Variance Tradeoff

Let f̂n(x) be an estimate of a function f(x). The squared error (or L2) loss
function is

L
(
f(x), f̂n(x)

)
=

(
f(x) − f̂n(x)

)2
. (4.8)

Squared error at a point:

Average over many experiments: mean squared error (or risk)
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FIGURE 4.7. The BPD data from Example 4.6. The data are shown with small
vertical lines. The estimates are from logistic regression (solid line), local likelihood
(dashed line) and local linear regression (dotted line).

The average of this loss is called the risk or mean squared error (mse)
and is denoted by:

mse = R(f(x), f̂n(x)) = E
(
L(f(x), f̂n(x))

)
. (4.9)

The random variable in equation (4.9) is the function f̂n which implicitly
depends on the observed data. We will use the terms risk and mse inter-
changeably. A simple calculation (Exercise 2) shows that

R
(
f(x), f̂n(x)

)
= bias2x + Vx (4.10)

where
biasx = E(f̂n(x)) − f(x)

is the bias of f̂n(x) and
Vx = V(f̂n(x))

is the variance of f̂n(x). In words:
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FIGURE 4.7. The BPD data from Example 4.6. The data are shown with small
vertical lines. The estimates are from logistic regression (solid line), local likelihood
(dashed line) and local linear regression (dotted line).

The average of this loss is called the risk or mean squared error (mse)
and is denoted by:

mse = R(f(x), f̂n(x)) = E
(
L(f(x), f̂n(x))

)
. (4.9)

The random variable in equation (4.9) is the function f̂n which implicitly
depends on the observed data. We will use the terms risk and mse inter-
changeably. A simple calculation (Exercise 2) shows that

R
(
f(x), f̂n(x)

)
= bias2x + Vx (4.10)

where
biasx = E(f̂n(x)) − f(x)

is the bias of f̂n(x) and
Vx = V(f̂n(x))

is the variance of f̂n(x). In words:



Bias-Variance tradeoff

52 4. Smoothing: General Concepts
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FIGURE 4.8. The rock data from Example 4.7. The plots show r̂1, r̂2, and r̂3 for
the additive model Y = r̂1(x1) + r̂2(x2) + r̂3(x3) + ε.

risk = mse = bias2 + variance. (4.11)

The above definitions refer to the risk at a point x. Now we want to sum-
marize the risk over different values of x. In density estimation problems, we
will use the integrated risk or integrated mean squared error defined
by

R(f, f̂n) =
∫

R(f(x), f̂n(x))dx. (4.12)

For regression problems we can use the integrated mse or the average mean
squared error

R(r, r̂n) =
1
n

n∑

i=1

R(r(xi), r̂n(xi)). (4.13)
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FIGURE 4.9. The bias–variance tradeoff. The bias increases and the variance de-
creases with the amount of smoothing. The optimal amount of smoothing, indicated
by the vertical line, minimizes the risk = bias2 + variance.

We will now show that the mse of this estimator takes the form

mse ≈ Ah4 +
B

nh
(4.18)

for some constants A and B. The first term corresponds to the squared bias
and the second term corresponds to the variance.

Since X is Binomial, it has mean nph. Now,

f(x) ≈ f(0) + xf ′(0) +
x2

2
f ′′(0).

So

ph =
∫ h/2

−h/2
f(x)dx ≈

∫ h/2

−h/2

(
f(0) + xf ′(0) +

x2

2
f ′′(0)

)
dx = hf(0)+

f ′′(0)h3

24

and hence, from (4.17),

E(f̂n(0)) =
E(X)
nh

=
ph

h
≈ f(0) +

f ′′(0)h2

24
.

Therefore, the bias is

bias = E(f̂n(0)) − f(0) ≈ f ′′(0)h2

24
. (4.19)

More complexity                         Less complexity



Bias-variance tradeoff for the simulated data

Simulate many independent replicates, and fit them 
individually. 



Bias-variance tradeoff for the simulated data



The guiding principle: ‘Parsimony’

Even though the 5th order polynomial fits the model the 
best (lowest SSR), it has high variance. 

In contrast, the linear model has the lowest variance, but a 
high bias. 

The goal is to pick the model that does the best job with 
the least number of parameters. 



Methods for choosing an optimal model

In general, we don’t know the ‘true’ model, so we can’t 
calculate the risk. Therefore, we need some way to rank 
model.

The general idea is to give models preference if they reduce 
SSR, but penalize them if they have too many parameters. 

Two main techniques.

1. Akaike’s information criterion (AIC): Based on an 
information theory-based approximation for risk

2. F-test: Based on asymptotic statistical theory of the 
distribution of normal errors 



Akaike’s information criterion

AIC = - 2ln(L) + 2k + 2k(k+1)/(n-k-1)

For least squares regression: AIC = SSR + 2k + 2k(k+1)/(n-
k-1)

n = number of data points, k = number of parameters

Lower AIC is better.

For the i-th model among candidate models

Δi = (AIC)i - (AIC)min

wi = exp(-Δi/2)/Σ exp(-Δi/2)



F-test 

Can only use for nested models (eg: the linear, quadratic 
and quintic polynomial models). Cannot compare the 
saturable model with any of these using F-test. 

Compute the F-statistic

is intuitively obvious when comparing the fit of the Hill function (solid blue line) to that of a horizontal line (solid
red line) in Fig. 3a.

Number of data points, N 15
Number of model parameters, m 3
SST 2.03
SSR 0.128
F -score 89.23
p-value 3.96×10−9

Is p < 0.05? Yes
Reject null hypothesis

As a more general application of the F-test, consider the simulated dose-response data in Fig. 8. We wish to deter-
mine whether this data can be adequately captured by a fixed-slope Hill function (equation 2 with two parameters,
EC50 and Emax), or if it is fitted better with the variable-slope Hill function (equation 1 with the additional parameter
n). As before, the null hypothesis is that the simpler of the two models is sufficient to fit the data, and the alternate
hypothesis is that the more complicated model fits the data significantly better. The F -score in this case is defined
as:

F =
SSR0 − SSR1

SSR1
·
N −m1

m1 −m0
, (11)

where the simple model has m0 parameters and the more complicated model has m1 parameters. We compute the
F -score and a p-value based on the F -distribution with (m1 −m0, N −m1) as shown below:

Number of data points, N 20
Number of model parameters m0 = 2 m1 = 3
Sum of squared residuals SSR0 = 0.881 SSR1 = 0.318
F -score 30.1
p-value 7.45 × 10−6

Is p < 0.05? Yes
Reject null hypothesis

Based on the low p-value, we reject the null hypothesis, and conclude that the variable slope model provides a better
fit to the data.

It is important to note that rejecting the null hypothesis provides evidence that the complex model, which has more
parameters, provides more explanatory power compared to the simpler model, which has fewer parameters. It fol-
lows that there may be other complex models that are able to fit the data. Critical for using the F-test to compare the
fit of multiple models to a single data set is that the models are nested. In our case, setting n = 1 in the 3-parameter
model reduces that model to the 2-parameter model and therefore the models are nested. It may occur that the mod-
els are not nested in which case alternate tests can be used, such as the AIC (see Motulsky and Christopoulos [3]).
However, these tests cannot determine a p-value for a null hypothesis, rather these tests provide relative probability
measures for which model is correct. These tests are therefore less powerful.

11

Null hypothesis: Simple model is sufficient.

Look up table for associated p-value. If p<0.05, reject null 
hypothesis at 5% significance level. 



Example: Application of F test

is intuitively obvious when comparing the fit of the Hill function (solid blue line) to that of a horizontal line (solid
red line) in Fig. 3a.

Number of data points, N 15
Number of model parameters, m 3
SST 2.03
SSR 0.128
F -score 89.23
p-value 3.96×10−9

Is p < 0.05? Yes
Reject null hypothesis

As a more general application of the F-test, consider the simulated dose-response data in Fig. 8. We wish to deter-
mine whether this data can be adequately captured by a fixed-slope Hill function (equation 2 with two parameters,
EC50 and Emax), or if it is fitted better with the variable-slope Hill function (equation 1 with the additional parameter
n). As before, the null hypothesis is that the simpler of the two models is sufficient to fit the data, and the alternate
hypothesis is that the more complicated model fits the data significantly better. The F -score in this case is defined
as:

F =
SSR0 − SSR1

SSR1
·
N −m1

m1 −m0
, (11)

where the simple model has m0 parameters and the more complicated model has m1 parameters. We compute the
F -score and a p-value based on the F -distribution with (m1 −m0, N −m1) as shown below:

Number of data points, N 20
Number of model parameters m0 = 2 m1 = 3
Sum of squared residuals SSR0 = 0.881 SSR1 = 0.318
F -score 30.1
p-value 7.45 × 10−6

Is p < 0.05? Yes
Reject null hypothesis

Based on the low p-value, we reject the null hypothesis, and conclude that the variable slope model provides a better
fit to the data.

It is important to note that rejecting the null hypothesis provides evidence that the complex model, which has more
parameters, provides more explanatory power compared to the simpler model, which has fewer parameters. It fol-
lows that there may be other complex models that are able to fit the data. Critical for using the F-test to compare the
fit of multiple models to a single data set is that the models are nested. In our case, setting n = 1 in the 3-parameter
model reduces that model to the 2-parameter model and therefore the models are nested. It may occur that the mod-
els are not nested in which case alternate tests can be used, such as the AIC (see Motulsky and Christopoulos [3]).
However, these tests cannot determine a p-value for a null hypothesis, rather these tests provide relative probability
measures for which model is correct. These tests are therefore less powerful.
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Figure 6: Bootstrap distibutions for comparing the two datasets shown in Figure 5

0.01 0.1 1

0

0.5

1
R
2
=0.81 m=2

R
2
=0.93 m=3

x (dose)

y 
(r

e
sp

o
n

se
)

Figure 7: Comparing the fit of two models to a single data set. Simulated data (blue circles) is obtained by adding
15% normally distributed noise to a dose-response curve with B = 0, Emax = 1, EC50 = 10−1.0, and n = 4. The
two proposed models we will consider are the reduced Hill function (equation 2), that contains two fitting parameters
(EC50 and Emax) with two fixed parameters (B = 0 and n = 1), and a slightly more complicated model (equation
1) that contains three fitting parameters (EC50, Emax, and n) with one fixed parameter (B = 0). Given that the two
models are nested, we expect that the more complicated model will fit the data at least as good as the simpler model.
Data fitting of each model to the simulated data does indeed reveal that the more complicated model (solid red line)
exhibits a larger R2 value compared to the simpler model (solid blue line). We perform a statistical test (F-test,
see main text) for the null hypothesis that the two models fit the data equally well. This test accounts not only for
the SSR of each model but the number of parameters, and we find p = 7.45 × 10−6. We therefore reject the null
hypothesis and conclude that the simpler model is insufficient to explain the data.
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