Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

> Small GTPases and cell polarization: Rock'N Roll with Rac and Rho

> > (and Cdc42)

www.math.ubc.ca/~keshet/MCB2012/

morime

Big questions

How does a cell know when to divide?
How does it coordinate the process of division ("cytokinesis")?

How do cells move? What guides them?
How do cells sense "directional cues"?

• How does a multi-cellular organism get its form/shape? ("morphogenesis")

Subsidiary question

- How do cells polarize?
- How do cells sense "directional cues"?

Polarization (morphological)

Resting cell (symmetric)

front

Cell senses shallow gradient (or other stimuli) to decide which way to go

Signaling to actin (KEGG): www.genome.ad.jp/kegg highlights credit: A T Dawes

Abstraction:

"Layers" (or modules) of related proteins

Many interconnections

Focus on a subset

Particularly those that are involved in cell polarization

Study each layer on its own

Determine its role in polarization

Phosphoinositides

Small GTPases

Actin cytoskeleton

Then connect up to other layers and to the actin cytoskeleton

Hypothesis:

This module has inherent ability to polarize

Small GTPases

Jilkine A, Maree AFM, LEK (2007) Bull Math Biol

Rho GTPases (Cdc42, Rac, Rho)

Polarization (biochemical)

GTPases polarize rapidly in the cell

Cdc42 (red) in front Nabant et al (2004) Science **Rac** in front, neutrophil Weiner et al (2007) PLoS Biology 5 Rho (green) in back actin (red) in front (neutrophil) Bourne lab http://www.cmpharm.ucsf.edu/bourne/

Sequence of events: Resting stimulus cell

Rapid polarization

Front vs Back

Rho in the back

Cdc42 in the front

Rho GTPases (Cdc42, Rac, Rho)

Schmitz et al (2000) Expt Cell Res 261:1-12

These affect actin and myosin

Chemical polarization

Leading to cell shape changes and motion

Now look at properties of a GTPase

Related to previously studied phosphorylation cycle

More detailed:

Fig courtesy: A. Jilkine

Equations for 1 GTPase

Active

Inactive membrane

Cytosolic

$$\frac{\partial G}{\partial t} = \hat{I}_G \frac{G_m}{G_{\text{tot}}} - \delta_G G$$
$$\frac{\partial G_m}{\partial t} = -\hat{I}_G \frac{G_m}{G_{\text{tot}}} + \delta_G G - k_{\text{off}} G_m + k_{\text{on}} G_c$$
$$\frac{\partial G_c}{\partial G_c} = k_{\text{off}} G_{\text{off}} - k_{\text{off}} G_m$$

 $\kappa_{on} \mathbf{U}_{c}$

Plus diffusion..But (as we see later) this will get simplified

∂t

 $\kappa_{\text{off}} \mathbf{U}_m$ -

Why bistability?

Polarization

Bistable behaviour

The need for bistability

More than one persistent state possible: "bistability"
How to get bistability

For multi-stability to be possible, a positive feedback circuit is essential. (Alternately, an even number of negative interactions is equivalent to a positive feedback circuit.)

Ferrell, J.E., Jr., 1996. Tripping the switch fantastic. Trends Biochem. Sci. 21, 460–466.
Ferrell, J.E., Jr., 2002. Self-perpetuating states in signal transduction. Curr. Opin. Cell Biol. 14, 140–148.

Positive feedback

Bistability and switch-like behaviour possible ${\mathcal X}$

A

Double negative feedback

Bistability and switch-like behaviour possible ${\mathcal X}$

A

Only one scheme consistent with bistability

Formulating a set of equations

First consider just Cdc42 and Rho

Simplest Variant

Cdc42 |-----| Rho (mutual inhibition)

$$\frac{dC}{dt} = g_C(\rho) - \delta_C C_t$$

$$,\,g_{\rho}^{\prime}(C)<0$$

$$\frac{d\rho}{dt} = g_{\rho}(C) - \delta_{\rho}\rho,$$

$$g_C'(\rho) < 0,$$

Specific Expressions

$$\frac{dC}{dt} = \frac{I_C k_C^m}{k_C^m + \rho^m} \left(\frac{C_i}{C_{\text{tot}}}\right) - \delta_C C,$$
$$\frac{d\rho}{dt} = \frac{I_\rho k_\rho^n}{k_\rho^n + C^n} \left(\frac{\rho_i}{\rho_{\text{tot}}}\right) - \delta_\rho \rho,$$

Compare with Toggle Switch:

Gene U

Gene V

Gardner et al (2000) Nature 403

$$\frac{du}{dt} = \frac{\alpha_1}{1+v^n} - u,$$
$$\frac{dv}{dt} = \frac{\alpha_2}{1+u^m} - v.$$

Nullclines must be curved (nonlinearity)

For multiple steady states, at least one of the interactions should have some degree of "cooperativity," i.e., a Hill coefficient greater than 1.

Now add the third GTPase, Rac

$$Cdc42 \xrightarrow{+} Rac \xrightarrow{+} Rho$$

$$\frac{\partial C}{\partial t} = \frac{I_C}{1 + (\rho/\beta_\rho)^n} (C_i/C_{\text{tot}}) - \delta_C C_i$$
$$\frac{\partial R}{\partial t} = (I_R + \alpha_C C) (R_i/R_{\text{tot}}) - \delta_R R_i$$
$$\frac{\partial \rho}{\partial t} = \frac{(I_\rho + \alpha_R R)}{1 + (C/\beta_C)^n} (\rho_i/\rho_{\text{tot}}) - \delta_\rho \rho_i.$$

Bifurcation diagram

Rates and timescales: How do we find parameter values?

Parameter estimates

Michaelson et al. (2001), immunoblotting, fibroblasts: the total amount of small G-proteins is 34, 82, and 26 ng/106 cells, for Q, R, and C

The average membrane lifetime of an activated Rac molecule is 2 s (Sako et al., 2000), giving a decay rate of 0.5 /sec

Based on estimated decay rates and estimates of steady state concentrations, we compute approximate activation rates.

Parameter values

Parameter	Meaning	Values	Units
I _C	Cdc42 activation input rate	3.4	µM s ^{−1}
I_R	Rac activation input rate	0.5	$\mu M s^{-1}$
$I_{ ho}$	Rho activation input rate	3.3	µM s ^{−1}
$I_{ ho} \ eta_{ ho}$	Rho level for half-max inhibition of Cdc42	1.25	μM
β_C	Cdc42 level for half-max inhibition of Rho	1	μM
n	Hill coefficient of Cdc42-Rho mutual inhibition response	4	-
α_C	Cdc42-dependent Rac activation rate	4.5	s^{-1}
$\alpha_{ ho}$	Rac-dependent Rho activation rate	0.3	s^{-1}
$\delta_C, \delta_R, \delta_\rho$	Decay rates of activated small G-proteins	1	s^{-1}

How to estimate??

Do we "know the truth" now?

Not really! There are other ways of getting bistability

Two (simple) ways to get a bistable system:

Double Positive negative feedback feedback ${\mathcal X}$ ${\mathcal X}$ V

Even simpler model

Bistability with a single positive feedback loop

Mori Y, Jilkine A, LEK (2008) Biophys J, 94: 3684-3697.

Mori Y, Jilkine A, LEK (2011) SIAM J Appl Math

What's next?

Put in spatial distribution (diffusion)

Check if such kinetics will allow for spatial polarization

Go back to include additional signaling layers

And now: some related work with a link to experiments...

Related project: Cory Simon and Bill Bement: Rings of Cdc42 and Rho

Benink & Bement (2005) JCB 168

