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Microtubule (MT) dynamics




Microtubule:
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Growing and shrinking MT

Some Movies.....

http://www.youtube.com/watch?v=PCI_GUHJJaY




MT dynamics
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Figure adapted from
Januleviciusll Biophysical Journal Volume 90 February 2006 788-798




Growing and shrinking tips




Balance equations
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Catastrophe and rescue

Shrinking
MT tip
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Growing
MT tip




Tip fluxes:




Balance equations
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Spatial Exchange kinetics
terms




Steady state equations:




Behaviour

Distance from centrosome, x




Behaviour

Distance from centrosome, x




Experimental work (Komarova)

Life cycle of MTs: persistent growth in the cell interior,
asymmetric transition frequencies and effects of the

cell boundary

Yulia A. Komarova'2*, lvan A. Vorobjev2 and Gary G. Borisy!

Journal of Cell Science 115, 3527-3539




Now back to the begining




Polymer size distribution




Filament size distribution

It 1s very common 1n math-biology to
consider size classes and formulate
equations for the dynamics of size
distributions (or age distributions, or
distribution of some similar property).




Number of filaments of length ; :
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Shrinking
of longer
filament

Growth Monomer
of shorter loss or
filament gain




Steady state size distribution for
constant pool of monomer

dx (¢
() =k'ax,_, — (k™ +ak™)x, +k x

dt

Find the steady state size distribution (assume
that a, k+, k- are constant.)

Express this in terms of 7 = a k+/k-




To consider

The solution will havesome arbitrary
constant(s). This means we need some
additional constraint(s)..

What do we use?

(Consider the case that polymerization has
to be started by cluster of n monomers)




Broader context

“Motion between size classes”




Keeping track of how many 1n class 1
*

Rate of Rate

Rate loss

change in = entry + from class

class i from i toi-1
class i-1 and i+ 1/




Other balance equations




Continuous version
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Consider a small segment
between x and Ax

Concentration = ¢(z, t),

Number = ¢(z,t)AAz,

d(Number)
dt

= |Rate in — rate out] + rate produced




Balance equation

d(Number)
dt

= [Rate in — rate out] + rate produced

d(AAzc)
dt

= AlJ(z) — J(z + Az)]| + (AAz)o
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Nonconstant “tube’” diameter

d(A(z)Axc)

7 = [A(z)J(z) — A(z + Az)J (z + Az)] + (A(z)Az)o
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Transport at velocity v

What 1s
> the flux?




Transport at velocity v
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Volume Av At

Concentration ¢ so (cAv At) molecules

cross during time At
Flux J=vc




Convective flux (transport)

S

Convective flux = J,. = ve.




Transport equation

Convective flux = J,. = ve.




Diffusion: Fick’s Law

*+

Flux proportional to concentration gradient

D = diffusion
coefficient




Diffusion




Boundaries

Typrcal Bourdary Condibms
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Discrete Diffusion Equation
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X x+Ax

oc(z,t) D
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Discrete Diffusion Equation
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Discrete Diffusion Equation




Higher dimensions

J = (Jg, Jy, Js)
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Higher dimensions
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Higher dimension: Ditfusion
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Higher dimension: transport




Polymer size distribution




Si1ze classes




Discrete size classes




Balance equation

dp;
d_pt =ckfpi—1 — (Ckf +k;)pi + krpiy1




