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a b s t r a c t

Cytotoxic T lymphocytes (CTLs) play a dominant role in the pathogenesis of autoimmune diabetes,
commonly denoted Type 1 Diabetes (T1D). These CTLs (notably CD8þ T cells) recognize and kill insulin-
secreting pancreatic b cells, reducing their number by "90%. The resulting reduction of insulin secretion
causes the defective regulation of glucose metabolism, leading to the characteristic symptoms of
diabetes. Recognition of b cells as targets by CTLs depends on the interactions between MHC-peptide
complexes on the surface of b cells and receptors (TCRs) on T cells. Those CTLs with high affinity
TCRs (also called high avidity T cells) cause most of the harm, while those with low affinity TCRs
(also called low avidity T cells) play a more mysterious role. Recent experimental evidence suggests that
low avidity T cells accumulate as memory T cells during the disease and may be protective in NOD mice
(a strain prone to developing T1D), delaying disease progression. It has been hypothesized that such low
avidity T cells afford disease protection either by crowding the islets of Langerhans, where b cells reside,
or by killing antigen presenting cells (APCs).

In this paper, we explore the hypothesized mechanisms for this protective effect in the context of a
series of models for (1) the interactions of low and high avidity T cells, (2) the effect of APCs and (3) the
feedback from b cell killing to autoantigen-induced T cell proliferation. We analyze properties of these
models, noting consistency of predictions with observed behaviour. We then use the models to examine
the influence of various treatment strategies on the progression of the disease. The model reveals that
progressive accumulation of memory low avidity autoreactive T cells during disease progression makes
treatments aimed at expanding these protective T cell types more effective close to, or at the onset of
clinical disease. It also provides evidence for the hypothesis that low avidity T cells kill APCs (rather than
the alternate hypothesis that they crowd the islets).

Crown Copyright & 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

It has been demonstrated that CD8þ T cells play a crucial role
in the pathogenesis of Type 1 Diabetes (T1D) (Han et al., 2005a).
Such cytotoxic T lymphocytes (CTLs) destroy around 90% of b cells
in the pancreas, leading to the abolishment of insulin production
and elevation of blood glucose. There are several stages in the
disease progression that ultimately lead to autoimmune attack by
CTLs. Here we are mainly concerned with the final stage when
CD8þ and CD4þ T cells target and kill b cells.

Naive T cells mature in the thymus and migrate to the lymph
nodes where they encounter antigen presenting cells (APCs).

Receptors on the surface of T cells (TCRs) then interact with
APC surface complexes. These peptide-MHC complexes (p-MHC)
consist of a 9-amino acid peptide ‘‘antigen’’ held in the cleft of a
major histocompatibility complex (MHC) molecule. Interactions
of appropriate strength, duration and frequency between TCRs
and p-MHC complexes subsequently lead to T cell activation
and proliferation. Some of the progeny become terminally
differentiated CTLs and some become memory cells (Sallusto
and Lanzavecchia, 2001).

T cells have thousands of identical receptors on their surfaces
(Viola and Lanzavecchia, 1996). Binding and unbinding a given
TCR to a given p-MHC is reversible, with specific association
and dissociation rates konðmM$1s$1Þ and koff (s$1), respectively.
The ratio 1=KD, where KD ¼ koff =kon (mM), describes the relative
affinity of these receptors to a given peptide. It is often easiest to
measure a population average of such interactions, and the term
‘‘avidity’’ is used to describe the average strength of association
of a T cell population as a whole.
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Research on T1D has been greatly aided by studies of an animal
model, the nonobese diabetic (NOD) mouse. These mice are prone
to a form of autoimmune diabetes that closely resembles human
T1D. The causes of T1D are still obscure, but it has been proposed
that defective clearance of dead b cells (after normal develop-
mental wave of apoptosis, or after infection or injury) can set
the stage (O’Brien et al., 2002a, b; Marée et al., 2005, 2006a).
Priming of CD8þ T cells occurs in the pancreatic lymph nodes,
where b cell derived autoantigen is presented on APCs. Extensive
work with artificially constructed peptide libraries (Anderson
et al., 1999; Han et al., 2005a; Lieberman et al., 2003, 2004) led
to the discovery and identification of a dominant autoantigen
in NOD mice, a fragment consisting of amino acids 206-214 of
islet specific glucose-6-phosphatase catalytic subunit-related
protein (IGRP206$214, henceforth abbreviated IGRP in this paper).
The function of this protein is still unclear, but it is suspected that
its native location (embedded in the endoplasmic reticulum of b
cells) may be associated with its diabetogenic potential.

Recent work (Han et al., 2005b) has experimentally identified
three arbitrary levels of T cell avidity for IGRP206$214=MHC: low,
intermediate, and high. Han et al. (2005b) described three
clonotypes that fall within each of these three different levels
of avidity (denoted 17.6, 17.4 and 17.5, respectively). High
and intermediate avidity T cells are the most pathogenic and
damaging to b cells, whereas the effect of low avidity T cells
remains obscure. In the progression of T1D, high to intermediate
avidity T cells eventually come to dominate the population.
The process leading to this outcome, called avidity maturation,
is believed to result from competitive survival of T cell clones with
high affinity TCRs at the expense of their low avidity counterparts
(Han et al., 2005b; Marée et al., 2006b).

Recent experimental evidence from the Santamaria Laboratory
suggests that low avidity T cells play a protective role in NOD mice
(Tsai et al., 2008). In particular, it has been shown experimentally
that treatments aimed at expanding the pool of low avidity
T cells are effective in treating diabetic NOD mice. FACS analysis
has revealed that this pool of low avidity T cells contains a
significantly expanded sub-pool of memory cells (Han et al.,
2005b), whereas the high and intermediate avidity T cell pools are
primarily composed of naive and effector cells.

One of our goals is to explore how low avidity memory T cells
might obstruct the progression of the disease (see Fig. 1). Here we
examine the following two hypotheses suggested by Tsai et al.
(2008):

(I) The population of low avidity T cells expand with treatment
and infiltrate the islets. Then they crowd these islets and
interfere with the ability of other clones of autoreactive T cells
to kill b cells.

(II) Memory cells that accumulate solely in the low avidity T cell
pool, kill APCs presenting IGRP206$214=MHC complexes on
their surface, both in vitro and in vivo, thereby inhibiting the
activation (mediated by APCs) of their high and intermediate
avidity counterparts in the lymph nodes.

We discuss alternative scenarios for their protective effect in the
Discussion.

Another goal is to assess the relative efficacy of various
treatment strategies and to explain why some are ineffective
when applied to prediabetic NOD mice, and much more effective
at the acute diabetic stage. Our models are related to those
of Marée et al. (2006a) and Mahaffy and Edelstein-Keshet (2007)
in general, but we focus here on more recent experimental
observations.

The paper is organized as follows. In Section 2, we introduce
the general model framework and derive its essential features
from the underlying biology. In Section 3, we explore a two-
variable reduced model for the competition of low and high
avidity T cell populations. We later extend this model to include
first APCs (Section 4) and then b cells (Section 5). Discussion and
physiological significance of these results are given in Section 6.

2. Model framework

A schematic diagram summarizing our model framework is
shown in Fig. 1. We consider the following cell types: (a) high
avidity T cells (consisting mostly of naive and effector cells with
only a small fraction of memory cells for self-renewal); (b) low
avidity T cells (enriched for memory cells); (c) b cells and (d) APCs.
The population levels of these cells are denoted by E;M;B and A,
respectively. We also include the level of autoantigen peptide, P,
stemming from dead b cells. Here, various phenotypes within
low/high avidity T cell clones are lumped together.

The following assumptions are based on experimental
observations (Han et al., 2005a, b; Marée et al., 2006b).

1. Low avidity T cells do not kill b cells, but they compete with
other T cells. Since this pool is enriched for memory cells, they
are long-lived (low decay rate) and proliferate rapidly in the
presence of high level of autoantigen. Due to their low avidity,
they require more peptide for activation.
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Fig. 1. A scheme showing proposed hypotheses for the effect of low avidity T cells.
The thick lines represent confirmed activation and inhibition exerted by the
corresponding factors, while thin lines represent hypothetical influences to be
investigated by the model. E represents high and intermediate avidity T cells that
are mostly naive and effector cells, while M represents low avidity T cells that are
enriched for memory cells. The lines corresponding to hypotheses (I) and (II) are
shown.
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2. High avidity T cells are largely effector cells (or their naive
precursors) that kill b cells. They are short-lived (high decay
rate). A small fraction of memory cells in this pool allows for
self-renewal. Due to their high avidity, these cells can become
activated at lower levels of peptide.

3. Activation of high and low avidity T cells depends on the
amount of peptide present. Increasing the peptide level leads
to increased activation up to some saturation level.

4. According to hypothesis (I), high avidity T cells kill b cells, while
low avidity T cells crowd the islets and inhibit b cell killing.

5. According to hypothesis (II), low avidity T cells induce APC
death by apoptosis.

6. The rate of change of b cells is slow relative to other rates while
the rate of change of autoantigen is fast. This assumption can
be restated as follows: b cells initially compensate for T cell
mediated killing by regeneration, so that the b cell population
is not seen to change rapidly. However, the peptide produced
from dead b cells accumulates rapidly, possibly due to defects
in the clearance of dead cells (see, e.g., Marée et al., 2005).

The equations for low avidity memory cells (M), high avidity
effector cells (E), APCs, (A), b cells (B), and peptide autoantigen (P)
are of the general form:

dM
dt

¼ sm þMFðM; E;A; PÞ (1)

dE
dt

¼ se þ EGðM; E;A; PÞ (2)

dA
dt

¼ sa $ AQ1ðMÞ (3)

dB
dt

¼ B½Q2ðBÞ $ KðM; E;BÞ( (4)

dP
dt

¼ BKðM; E;BÞ $ dPP (5)

Here sm and se are the thymus input for both types of T cells,
sa is the bone-marrow input for APCs. F and G represent the
net population growth rates (of M and E, respectively) resulting
from combined rates of activation, proliferation, turnover and
competition. The function Q1 represents normal turnover and
(hypothetical) deletion of APCs by low avidity T cells (if any),
while the function Q2 represents b cell replication, neogenesis and
turnover. The killing of b cells by high avidity effector T cells and
the inhibition of this killing process exerted by low avidity T cells
are portrayed by the function K. Finally, the term dPP denotes
peptide clearance. Based on Fig. 1 and the assumptions listed
above, the following inequalities must hold:

(i) APCs are required for T cell activation. Therefore

qF
qA

;
qG
qA

X0

(ii) Inter and intra specific competition between high and low
avidity T cells require that

qF
qM

;
qG
qM

;
qF
qE

;
qG
qE

p0

(iii) Killing of APCs by low avidity T cells and killing of b cells by
high avidity T cells imply

dQ1

dM
;

qK
qE

X0

(iv) Normal b cell homeostasis implies that b cell growth is
‘‘density dependent’’ and decreases as b cell density or mass

increases. Hence

dQ2

dB
p0

(v) According to hypothesis (I), b cell killing by high avidity
T cells is inhibited by low avidity T cells. It follows that

qK
qM

p0

The general model (1)–(5) together with the latter inequalities
will form the framework for formulating simpler, more specific,
models in the following sections.

3. Two-dimensional model for T cell competition

3.1. Model reduction

It is instructive to consider a two-variable submodel for T cell
competition with the following simplifications. First, we use the
fact that the dynamics of b cells is very slow on the time scale
of T cell activation, due to homeostatic mechanisms that regulate
the b cell population. In that case, B ) constant. However, as b
cells are killed, peptide rapidly accumulates due to clearance
defects, indicating fast peptide dynamics (Assumption 6); this
justifies a quasi-steady state (QSS) approximation for the peptide,
given by

P ) RE

for some constant R40. For simplicity, we also assume that

7. The total number of APCs in the lymph nodes is roughly
constant.

8. Thymus input is relatively small compared to other dynamics
during the heightened level of T cell populations.

These simplifications lead to a reduced two-variable model for E
and M,

dM
dt

¼ MFðM;EÞ (6)

dE
dt

¼ EGðM; EÞ (7)

The role of the peptide has been subsumed in the effector cell
population. It follows that, with this reduction, qG=qE and qF=qE
could be either positive or negative, since the effector cell
population leads (indirectly) to activation as well as to competi-
tion in both equations.

In these equations, we have omitted the small input of naive
T cells from the thymus, sm and se, by Assumption 8. This
simplification makes the model considerably more transparent for
the purposes of our analysis, without significantly affecting its
overall qualitative behaviour. (The simplification essentially
subtracts a background population of autoreactive T cells that
are found in normal individuals.)

3.2. Model properties

We first proceed to explore properties of this model in
an ‘‘axiomatic approach’’ (in the sense of Shochat et al., 2007).
First, since not all NOD mice develop diabetes, it follows that
system (6)–(7) should possess at least two stable steady states:

* A ‘‘healthy’’ state at S1 ¼ ð0;0Þ. This state corresponds to
nondiabetic NOD mice, or mice that have been treated and
recovered from the disease. (It may also represent acutely
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diabetic mice that have lost their b cell function, leading to
eventual decline in T cell repertoires. Hence the transient
dynamics leading to this state are important.)

* A heightened autoimmune ‘‘diseased’’ state S2 ¼ ðM2; E2Þ
(where E2bM240, i.e., expansion in the population of both
clones of T cells is observed). This state corresponds to acutely
diabetic NOD mice. For S2 to be a steady state, we need
FðS2Þ ¼ GðS2Þ ¼ 0.

The existence of such stable steady states is a minimal prerequisite
for any model that describes both healthy and autoimmune
compromised situations. Stability of these steady states implies that

FM +
qF
qM

!!!!
SS

o0; GM +
qG
qM

!!!!
SS

o0 (8)

where partial derivatives are evaluated at the given steady state.
In Appendix A, we show that S2 is stable if and only if

DmjS24DejS2 and DejS2o
M2

E2

FMðS2Þ
GMðS2Þ

!!!!

!!!! (9)

where Dm is the slope of the tangent line to the nullcline FðM; EÞ ¼
0 and De is the slope of the tangent line to the nullcline
GðM; EÞ ¼ 0.

System (6) and (7) can also have other steady states in which
either low avidity T cells are absent, U1 ¼ ð0;E1Þ, or high avidity
T cells are absent, U2 ¼ ðM2;0Þ (where E1;M240). Some of
these can be stable, unstable or saddle points. In Appendix A, it is
shown that U1 and U2 are stable whenever FðU1Þ;GEðU1Þo0,
and GðU2Þo0, respectively, and saddle or unstable otherwise. By
comments following Eq. (7), GE can have either sign.

Cyclic fluctuations of T cell populations have been found to be
directly correlated to pathogenesis of T1D in NOD mice (Trudeau
et al., 2003). The possible significance of cyclic behaviour in
relapse and remission of diabetes has been pointed out recently
by von Herrath et al. (2007). Cyclic dynamics were explored in a
previous modeling work (Mahaffy and Edelstein-Keshet, 2007).
Such cycles can be understood in the context of a Hopf bifurcation,
a hallmark of the birth of a limit cycle in the corresponding model.
In Appendix A, we derive the necessary and sufficient conditions
for the existence of a Hopf bifurcation point H ¼ ðh1;h2Þ, satisfying
FðHÞ ¼ 0 and GðHÞ ¼ 0. These conditions are

DmjH4DejH and DyjH ¼
h1
h2

FM
GM

!!!!

!!!! (10)

Generic features of the model so far allow us to link properties
of the functions F and G to steady state properties. However, the
detailed dynamics are much more important. Diabetes can occur
when a transiently high level of effector cells causes significant b
cell killing before eventually decaying to a low level. Here the
system eventually evolves to the autoimmune-free state (denoted
by S1), but the consequences are dire. To predict whether this
happens or not, it is essential to understand the full dynamics
of the model. To do so, we must make more detailed assumptions
about the functions F and G, as done in the next section.

3.3. Explicit form of the two-variable model

For further analysis, we adopt the following forms for the T cell
growth rates, F̃ and G̃:

F̃ðM; E; PÞ ¼ am f̃ mðPÞ $ dm $ !ðM þ EÞ

G̃ðM; E; PÞ ¼ ae f̃ eðPÞ $ de $ !ðM þ EÞ (11)

with P ) RE (from the peptide QSS). Terms in formulae (11)
denote (1) peptide-dependent T cell proliferation after activation
(maximal rate ai); (2) T cell death rate (di); and (3) inter and intra

specific competition of T cells (!ðM þ EÞ). (As in De Boer and
Perelson, 1994; Marée et al., 2006b, we have assumed the same
level of competition ! for all T cells to avoid competitive exclusion.)

For peptide-dependent rates of activation, we take

f̃ mðPÞ ¼
Pn

Kn
m þ Pn and f̃ eðPÞ ¼

Pn

Kn
e þ Pn

with nX2. Here Km is the level of peptide that leads to activation
of 50% of naive low avidity T cells (at the rate of am), and similarly
for Ke. As there is no simple way of calibrating the absolute
amounts of autoantigen peptide in vivo, we rescale these
functions, by substituting P ) RE and defining ki ¼ Ki=R, for
i ¼ m; e. We thus obtain

f mðEÞ ¼
En

knm þ En
and f eðEÞ ¼

En

kne þ En

Now ki represents the effective number of high avidity T cells that
lead to activation of half of the naive i-type T cells. Observe that
varying the parameter R has an influence on the two threshold
parameters km and ke. In other words, in this model, decreasing
(increasing) the production of endogenous peptide per effector
cell is effectively the same as decreasing (increasing) the avidity of
both populations of T cells. The model equations, based on these
choices, is then

dM
dt

¼ am
En

knm þ En

 !
M $ dmM $ !MðM þ EÞ

¼ MFðM; EÞ (12)

dE
dt

¼ ae
En

kne þ En

 !
E$ deE$ !EðM þ EÞ

¼ EGðM; EÞ (13)

Furthermore, according to Assumptions 1–3, it follows that

de4dm; am4ae; km4ke (14)

The first inequality stems from the fact that the variable E
represents mostly effector T cells, and very few memory cells. The
average life expectancy of this population is thus much shorter
than that ofM (which mainly consists of long-lived memory cells).
The makeup of the two populations also implies that M has a
much higher self-renewal potential than E, accounting for the
second inequality. The third inequality stems from the fact that
high avidity T cells are more acutely sensitive to peptide. Typical
graphs of the activation rates giðEÞ + aif iðEÞ, for i ¼ m; e, satisfying
inequalities (14), are shown in Fig. 2(b).

In this basic model, only competition between cells of type M
and E is considered. We use this simplest variant to explore
features of this competition before attempting to investigate
hypotheses I and II about subtler roles of low avidity T cells.

3.4. Phase plane analysis

Eqs. (12) and (13) can be fully analyzed with phase-plane
methods. As shown in Fig. 3, steady states are located at
intersections of nullclines, given by

(I) M-nullclines:

M ¼ 0 and M ¼
am

!
f mðEÞ $

dm
!

$ E + egmðEÞ

(II) E-Nullclines:

E ¼ 0 and M ¼
ae

!
f eðEÞ $

de
!
$ E + egeðEÞ
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We are primarily interested in the steady states S1 and S2, but
others can influence basins of attraction, and thus be of relevance
to the dynamics.

* The intersection of M ¼ 0 and E ¼ 0 nullclines generates the
steady state S1 ¼ ð0;0Þ at which both T cell populations are
at their normal ‘‘healthy’’ baseline level (previously denoted
‘‘healthy state’’).

* The autoimmune ‘‘diseased’’ state, S2, is at the intersection of
M ¼ egmðEÞ and M ¼ egeðEÞ, at which both M and E are elevated.
We consider this in greater detail below.

* The nullclines M ¼ 0 and M ¼ egeðEÞ can intersect each other at
up to two points, depending on the values of !, ae and de. When
M ¼ 0 and M ¼ egeðEÞ, geðEÞ ¼ 0, i.e., h1ðEÞ + de þ !E ¼ aef eðEÞ +
h2ðEÞ. Fig. 2(a) shows that positive steady states can occur in
this case. We may either have no equilibrium points, one

equilibrium point (U1 ¼ ð0;E1Þ) or two (U1;1 ¼ ð0;E1;1Þ and
U1;2 ¼ ð0;E1;2Þ) depending on parameter values.

* At the intersection of E ¼ 0 and M ¼ egmðEÞ, there is an unstable
and physiologically irrelevant steady state at U2 ¼ ð$dm=!;0Þ.

Existence of the autoimmune state S2 (with M; E40) requires that

amfmðEÞ $ dm ¼ aef eðEÞ $ de ¼) gmðEÞ $ geðEÞ ¼ dm $ deo0 (15)

Inequality (15) follows from the fact that dmode, and implies
that gmðEÞ $ geðEÞ must be negative. In Appendix A, we disclose
conditions on the parameters that lead to two, one or no such
intersections. As far as treatment strategies are concerned,
manipulations of the system that increase effector cell turnover
rate de, or change the difference in the activation rates
gmðEÞ $ geðEÞ, can lead to the disappearance of the autoimmune
state.

One basic configuration of the phase plane for system (12)
and (13) is shown in Fig. 3. For this basic case, there are four
biologically relevant steady states, S1, S2, U1;1, and U1;2, the first
two of which are stable. From the trajectories on this sketch
(thin lines with arrows), we see that the initial values of M and E
will determine whether the system evolves towards health (S1)
or disease (S2). This raises the question of whether treatment
strategies can be devised to bring the state of the system, initially
at or close to S2, to a new state close enough to S1 that it would
evolve to the healthy state. In practice, for a range of biologically
relevant parameter values, we find that the basin of attraction
of S1 is a very narrow strip along the M axis left of U1;1 (see, for
example, Fig. 4(a)–(c)), making this possibility unlikely.

3.5. Estimating parameters and scaling the model

In order to be more accurate about the qualitative behaviour
described in Fig. 3, we must estimate ranges of the relevant
parameters. Our basic strategy in estimating values of the
parameters is briefly highlighted here, with detailed calculations
shown in Appendix B.

Detailed kinetic parameters are not available biologically.
Some values for turnover rates (dm; de), rates of proliferation,
etc., have been previously estimated in Marée et al. (2006b) and
Mahaffy and Edelstein-Keshet (2007). Where relevant, we assign
similar values. The levels of circulating CTLs at the height of
autoimmunity, together with known turnover rates of effector and
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Fig. 2. Typical graphs of the functions obtained by solving for the equilibrium points of system (1) and (2). (a) Graphs of the functions h1ðEÞ and h2ðEÞ. (b) Graphs of the
functions gmðEÞ and geðEÞ.

M

E
S1

S2

U1,2U1,1

Fig. 3. Behaviour of the reduced model (12) and (13) governed by the nullclines for
M (thick solid lines) and E (dashed lines). Points labeled with solid rectangles (S1
and S2) are the healthy and the autoimmune ‘‘diseased’’ states, respectively (both
stable). Other steady states labeled with open rectangles are unstable, but their
number, location, and types of stability help to carve out the basins of attraction of
S1 and S2. Parameter variations that affect the shapes and heights of the nullclines
(see Fig. 4) will change the locations and stability of the steady states, and thus the
essential behaviour of the model. Thin lines represent typical trajectories that
evolve towards the healthy or diseased states.
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memory cells, allow us to estimate the rates of proliferation
(am;ae) and competition (!) (see Appendix B).

We have no direct information about the absolute peptide (or
p-MHC) levels for activating T cells, so the parameters ke and km
are difficult to determine. However, indirect evidence for relative
functional avidity of T cell clones allows us to estimate the ratio
km=ke. Based on this fact, it is helpful to consider a substitution
M ¼ kem and E ¼ kee to obtain a scaled version of the model given
by system (A.8) and (A.9) in Appendix A. The rescaled model has
the advantage of replacing the (unknown) avidity parameters km
and ke by their ratio km=ke. A summary of the estimated values
of parameters is given in Table 1.

3.6. Analysis of the model

For the default parameter values, given in Tables 1 and 2, it can
be shown (using previously derived stability conditions) that S1 is
always stable, U1;1 is always unstable (or a saddle), while U1;2 is
stable when it is the only existing autoimmune state (case (a))
and a saddle in the presence of S2 (case (b)). The stability of S2,
on the other hand, depends on its location along the nullcline
Gðm; eÞ ¼ 0, as described by conditions (9). But for a large range
of physiologically reasonable km=ke values in the range
2pkm=kep10, S2 is stable (see Appendix A for more details).
The coexistence of these healthy and autoimmune states is
essential if the model is to account for both healthy and diabetic
NOD mice.

3.7. Parameter variations and bifurcations

3.7.1. Phase plane configurations
Fig. 4(a)–(i) displays a variety of possible phase plane

configurations for parameter values within their biological ranges.
Case (a) corresponds to the sketch shown in Fig. 3, while other
panels represent cases where only a single parameter has been
altered from the default set. In each panel, steady states lie at the
intersections of the solid and dashed lines, but only those in the
first quadrant (m; eX0) are biologically relevant. Steady states
are labeled with symbols as in Fig. 3. Note the proximity of S1
(at (0,0)) to a neighboring unstable state (open rectangle) in
Fig. 3(a)–(c). This proximity restricts the basin of attraction of S1
to a very small region, very close to the origin. Cases in which the
origin is the only point of intersection, correspond to eliminating
the diseased states (S2 or U1;2) and represent a desirable
treatment outcome.

We begin by investigating the influence of the avidity ratio
km=ke by considering the dynamics for two distinct values shown
in Fig. 4(a) and (b). In both cases, we observe the coexistence
of the healthy state (at (0,0)) and an autoimmune state with
sizable population of high avidity T cells (solid rectangles).
Changing the value of km=ke can lead to movement and exchange
of stability between the two states U1;2 and S2. For km=ke"11 there
are no memory cells at the peak of autoimmunity (Fig. 4(b)), while
for km=ke"10, some small level of such cells persists (state S2 in
Fig. 4(a)).
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Next, we investigate the effects of changing the proliferation
rates, whose default values are in the range of am ) 10 and ae ) 6
day$1. Increasing the proliferative rate of low avidity T cells
to higher values (e.g., to am ¼ 30day$1 as in Fig. 4(c)) shifts
(but does not eliminate) the diseased state S2. Now that state
contains much higher levels of memory cells, and some-
what lower levels of effector cells. The overall dynamics is not
significantly altered. In contrast, decreasing the proliferative rate
of high avidity T cells to ae ¼ 1day$1 (Fig. 4(d)) eliminates the
diseased state (and any other elevated autoimmune state)
altogether. This stems from the feedback exerted by these T cells
onto their own and other T cells’ activation (via formation of
autoantigen, implicit in the reduced model).

We have investigated the effects of changing the turnover rates
of the two types of T cells, whose default values are dm ) 0:01
and de ) 0:3day$1 (Fig. 4(e) and (f)). There is little room
for decreasing the (already low) mortality rate dm. However, we
may consider possible treatments, wherein memory T cells are
artificially expanded in an APC-independent manner. As in Tsai
et al. (2008), this could mean injecting ‘‘artificial APCs’’ laden with
peptide, that expand the memory cell pool (and kill effector cells,
or leave these unaffected). To consider this scenario, we modify

the (scaled version of) model Eq. (12) to

dm
dt

¼ m am
en

ðkm=keÞn þ en
þ rm $ dm $ !,ðmþ eÞ

" #

(See Appendix A for the definition of !, and note that onlyM and E
were scaled, for convenience, whereas time still carries conven-
tional units.) In Fig. 4(e), we implement this variant with rm ¼ 4
(units of day$1), the rate of treatment-induced expansion of
memory cells. This can lead to much higher levels of M in both
‘‘health’’ and ‘‘disease’’ (as shown in Fig. 4(e), where several
intersections appear in the first quadrant). However, by compar-
ison, increasing the death rate of high avidity T cells to de ¼
4day$1 eliminates all first quadrant intersections including the
diseased state (Fig. 4(f)).

The panels of Fig. 5(a)–(f) illustrate the same ideas by showing
the time behaviour of both T cell populations (m in dashed, e in
solid lines on logarithmic scale) over time (linear scale in days). In
each panel, two different initial conditions are shown. In some
cases, e.g., panels (a)–(c) and (e), the ultimate result depends on
the initial state; some situations evolve towards an elevated level
of effector cells (‘‘autoimmunity’’), while others resolve to very
low values of m and e (‘‘health’’). In certain cases, the parameter
change has resulted in lower levels of effector cells at auto-
immunity (e.g., panels (c) and (e)), but has not eliminated the
disease completely. Only in cases (d) and (f) has the diseased state
been eliminated entirely, consistent with our description above.

3.7.2. Bifurcation diagrams
The effect of an entire range of parameter variation is best

summarized with bifurcation diagrams. Using such diagrams,
we can consider potential effects of ‘‘treatments’’ that target one
or another aspect of the system so as to enable the harmless
low avidity T cells, m, to expand and compete with the harmful
effector cells, e. For this reason we consider only parameter
variations that could ameliorate this protective influence. In
Fig. 6(a)–(f), we display the bifurcation diagrams of e with respect
to parameters of interest, with all other parameters set at their
default values.
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Table 1
Values of the standard parameters appearing in each model

Symbol Meaning Value Range

Md , Ed # of memory, effector cells (disease) 0:5, 10- 105 cells [1042105], 106

am , ae APC-dependent expansion rate of M, E 11, 5.79 day$1 [10–20], [5–10]

am , ae ) am=Ad , ) ae=Ad 2:75, 1:45- 10$5 (cell dayÞ$1 [2.5–5], ½1:2522:5( - 10$5

dm , de M, E turnover rates 0.01, 0:03day$1

Km , Ke Peptide level for 1
2 max activation of M, E

km ¼ Km
R

Effector level for 1
2 max activation of M 106 cells ½121:4( - 106

Km
Ke

¼ km
ke

Avidity ratio 10 [2–11]

! Competition parameter 5:23- 10$6 (cell dayÞ$1 ½5210( - 10$6

! ) !Ad 2:092day$1 [2–4]

da Turnover rate of APCs 0:3day$1 [0.24–0.46]

sa Influx of APCs from bone marrow 3- 105 cell/day ½324( - 105

ka Killing rate of APCs 8:5- 10$6 (cell dayÞ$1 ½829( - 10$6

Ad # of APCs at autoimmune state 4- 105 cells
Bh # of b cells at healthy state 5:8- 105 cells ½526( - 105

s b cell renewal rate 662:86 cell/day [560–1000]
kB 1

2 max renewal rate ofb cells 9:21- 103 cells ½7:5211( - 103

d b cell turnover rate 0:001day$1 [0.001–0.007]

k Killing rate of b cells 0:14- 10$6 (cell dayÞ$1 ½0:1220:15( - 10$6

m0 Per b cell saturation parameter 1:72- 10$6 cells$1 ½1:67220( - 10$6

m1 Per memory cell saturation parameter 3:376- 10$4 cell$1 ½1:123:6( - 10$4

R Peptide accumulation rate 2:845- 10$4 peptide-units/cell2 ½2:723:2( - 10$4

Table 2
Values of the scaled parameters appearing in each model

Symbol Value

!, 0.523
kb 0.0159
a,
m 2.75
k, 0.014
a,
e 1.45
m,
0 1

k,a 0.85

m,
1 33.76

!, 0.2092

R, 165
s, 0.0011
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1(a) Fig. 6(a) summarizes the results of varying the ratio km=ke.
Here solid (dashed) lines represent stable (unstable) steady states.
For values 0okm=keo2, only the healthy state S1 is stable, and
there are no T cells in circulation (m ¼ 0; e ¼ 0). For significantly
larger values of km=keX11, two stable steady states coexist, a
healthy state S1 and a diseased state U1;2. The level of m in both
states goes to zero (not shown), while nonzero level of effector
cells remains in the diseased state.

1(b) Close to km=ke ) 2, a diseased state S2 appears and
becomes stable. For larger km=ke values, e.g., km=keX3, the two
stable states S1 and S2 are separated by a saddle (dashed lines
close to zero). Interestingly, the switch in behaviour occurs near a
Hopf bifurcation point where an unstable periodic orbit exists at
some narrow range of the parameter. This periodic orbit (vertical
dotted lines in Fig. 6(a)) acts as a separatrix between the two
stable states S1 and S2. The behaviour of the effector cells within
the range of km=ke corresponding to the above unstable periodic
orbit is comparable to the results obtained by Mahaffy and
Edelstein-Keshet (2007) and is illustrated in the time plot of Fig. 7.

2. Rates of activation, am and ae, have very different effects on
the model. Varying am over 40-fold has minimal effect on the
diseased state (not shown). In the range 0pamp6 (day$1), only

high level of effector cells occurs (m ¼ 0). Beyond that, for am46
(day$1), the growth in memory cell population only lowers, but
does not eliminate the level of effector cells. On the contrary,
decreasing the effector cell activation rate, i.e., varying ae over the
range 0paep6 (day$1), has much more dramatic results, as
shown in Fig. 6(b). At ae ) 4day$1, S2 and U1;2 exchange stability,
and memory cells (not shown) go extinct. Below ae ) 1:5day$1, a
fold bifurcation eliminates the effector cells, leaving only one
globally stable healthy state.

3. Fig. 6(c) demonstrates that a similar effect can be obtained
by increasing the death rate of effector cells. Here we varied de
over the range 0odeo4 (which includes its default value of
0:3day$1). As this death rate is increased, exchange of stability
between S2 and U1;2 occurs at de ) 1:8day$1, while memory cells
(not shown) are driven extinct. Beyond this value, effector cells
decrease to lower levels, and disappear to a fold bifurcation at
de ) 3:7day$1. At this point, the diseased state S2 disappears and
S1 becomes a global attractor. By comparison, decreasing dm
within its normal range of 0odmo0:01 (day$1), has little effect
(not shown), since the default value of this parameter is quite
small. Thus the system is more sensitive to changes in the effector
cell death rate than to changes in the memory cell death rate.
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4. The parameter R represents the feedback amplification
factor between existing effector cells and activation of new T cells
via autoantigen peptide production. Fig. 6(d) shows that decreas-
ing R substantially below 1 peptide-units/cell, leads to the loss of
the diseased state to a fold bifurcation. Scaling analysis reveals
that increasing R is equivalent to decreasing the competition
parameter ! and both km and ke while keeping the ratio km=ke
constant.

5. The behaviour of the system under variations of the
hypothetical memory cell expansion rate rm is shown in Fig. 6(e).
Increasing rm over the range 0prmp3 (day$1) causes incremental

expansion in memory cells (not shown) at the expense of effector
cells. At rm ¼ 4day$1, a fold bifurcation eliminates the diseased
state altogether.

6. It is also possible to target APCs and thereby alter the
maximum level of activation am and ae for both populations
of T cells. APCs are not an explicit variable yet in the model, but we
can approximate the effect of killing APCs by increasing T cell
competition (for ‘‘sites on APCs’’) while reducing am and ae. We
did this by scaling the maximum activation terms am and ae by a
factor a, while scaling the competition term !, by the reciprocal
1=a, where the parameter a is proportional to the level of APCs.
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Fig. 6(f) shows the bifurcation diagram of e with respect
to a. As a decreases, the diseased state is lost to a similar fold
bifurcation.

3.7.3. Biological implications
Results of the elementary two-variable model lead to several

insights and implications for treatment. We number these points
in accordance with the numbering of the results above.

1(a) According to our model, the disparity in avidity has to be
large enough for effector cells to take over and cause disease.
Otherwise, if keXkm=2, effector cells will not be activated strongly
enough to compensate for their higher death rate, and the disease
will not take hold. In contrast, if the difference in avidities is very
large, e.g., ke5km=10, then memory cells will be out-competed
and eliminated. This finding can be connected to a puzzling
experimental observation that treatments aimed at expanding
low avidity cells work much better at the acutely diabetic phase.

The T cell clones 17.5, 17.4, and 17.6 studied by Han et al.
(2005b) represent a sequence of clones of decreasing avidities.
Experimentally, it has been found that the most avid ones
(have lowest ke value), namely 17.5, tend to be weeded out by
central tolerance and then undergo further peripheral deletion
(Fig. 4 in Han et al., 2005b). This means that the average value of
ke for circulating T cells changes from initially low (highly avid) to
slightly higher values, as the 17.4 clone becomes more dominant.
This effect leads to a net decrease in km=ke between birth and the
stage of acute diabetes as far as the pool of circulating T cells is
concerned. (This need not be the case for islet-associated T cells.)
According to our result 1(a) above, that decrease could lead to the
appearance of memory cells (where previously none could exist).
Thus a strategy that involves expanding memory cells would
fail initially (because km=ke410, and there are no memory cells
around to expand). However, at later stages (once km=kep10), a
few memory cells are present, and thus memory cell expansion
could be an effective treatment strategy. This explains why
treatments aimed at expanding low avidity T cells are seen to be
very effective at the acute phase of the disease, and not at all in
the earlier, prediabetic stage.

1(b) Finding a Hopf bifurcation and a periodic orbit that
induces a series of fluctuations in the T cell levels (Fig. 7), is
reminiscent of the dynamics quantified by Trudeau et al. (2003)
and modeled by Mahaffy and Edelstein-Keshet (2007). These
oscillations have increasing period and amplitude, and eventually
settle down to the disease-free state. Even though the populations
of T cells eventually decay to near-zero level, the transiently
elevated level of e could severely kill or damage b cells, possibly
leading to full blown diabetes. Recall the implications to relapse-
remission of the disease proposed by von Herrath et al. (2007).

2. We found that lowering the APC-mediated rate of expansion
of effector cells, ae, is much more effective at eliminating the
disease than increasing the APC-mediated expansion of low
avidity memory cells am to bias competition. Changing memory
cell expansion by a factor of over 40, only reduces circulating
effector cell levels by a factor of 5 and does not eliminate the
disease. This suggests that killing APCs (which reduces both ae

and am) is a better treatment strategy than solely increasing am.
3. Our investigation of treatments that target the mortality

rates (dm and de) of T cells reveals that strategies that increase
effector cell mortality are much more effective than those that
reduce memory cell mortality. It remains to be seen whether such
treatments can be devised.

4. The parameter R represents an aggregate of many processes,
from the apoptosis of b cells to the processing and presentation
of their components as p-MHC on APCs. Reduction of R could
presumably be accomplished by protecting pancreatic islets, e.g.,
by crowding out effector cells. This motivates a later discussion
of such a role for low avidity T cells. R could also be reduced
by treatments that lead to more rapid and effective clearance
of apoptotic b cells, as this would effectively shut down
the positive feedback cycle that is set up via autoantigen in
autoimmunity. Previous work has indicated that macrophage
clearance of apoptotic cells is defective (e.g., in NOD mice). Thus
treatments that address such defects can be beneficial by
indirectly reducing R.

5. We found that a plausible treatment strategy of expanding
memory cell pool by artificial means can lead to better prognosis,
by competitively reducing effector cell levels and eventually
eliminating the disease. In the context of the simple model, the
expansion rate, rm, has to be significant (on average, a single
memory cell producing four or more progeny per day) for a
complete cure. An important point is that this expansion can only
be affected at a stage of the disease when memory cells are
present. This suggests either waiting for the average avidity to
decline (see point 1(a)), or better still, manipulating other
parameters to shift the system into a regime where memory cells
are present.

6. Treatments that target APCs affect multiple aspects of the
model. Overall, a large enough depletion of APCs can eliminate
autoimmunity by reducing the proliferation rates and increasing
competition between T cells. Our model suggests that this is a
viable strategy for a ‘‘cure’’, provided that a sufficiently large APC
depletion can be executed.

4. Including APCs in the model

We extend the two-variable model of system (12) and (13) by
including APCs as a dynamic variable. This allows us to test
hypothesis II which suggests that low avidity T cells delete APCs
(we also examine Result 6 in an expanded setting). Accordingly,
we consider an equation for A, the level of APCs, as follows:

dA
dt

¼ sa $ kaMA$ daA (16)
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where sa is the basal rate of production of APCs from precursors,
assumed constant, da is the turnover rate of APCs, and kaX0 is the
killing rate of APCs per low avidity T cell, if any. Estimates for the
parameters in this model are derived in Appendix B. To account
for the effects of APCs on T cells, we have modified Eqs. (12) and
(13) in the following two ways: (1) We first considered the case
that ai ¼ aiA, for i ¼ m; e, i.e., the activation of T cells is directly
proportional to the level of APCs. (2) We also considered the above
together with ! ¼ !=A (and similar variants) to indicate that the
competition is affected by the availability of sites on APCs.

In the absence of memory cells, APCs settle at the steady state
level Ad ¼ sa=da40. We used this value to rescale the variable
so that a ¼ A=Ad, where 0oap1, as shown in Appendix A
(Eqs. (A.10)–(A.12)). We first examined the dynamics of this
model for rm ¼ 0, and asked how the killing rate, ka, affects its
behaviour. Surprisingly, varying ka over several 10-fold factors has
negligible effect on the level of e in the diseased state, ed, but
dramatic effects on the level of md (diagrams not shown). Indeed,
plots of ed vs ka are nearly indistinguishable from ed"C for some
constant C, whereas md shows an inversely proportional beha-
viour to ka, i.e., md"1=ka. The trend is observed for both cases (1)
and (2) above. This trend can be explained by noting that at
steady state, in terms of the scaled variables, Eq. (16) implies
ad ¼ 1=ð1þ kamdÞ, while the modified Eqs. (12) and (13) lead to
the revised steady-state model adða,

ef eðedÞ $ a,
mfmðedÞÞ ¼ de $ dm.

In the parameter regime of the model, the latter constraint is
closely approximated by the curve ad ) de=ða,

ee
2
dÞ. This means that

large changes in ad hardly affects the value of ed, but do affect the
value of md much more strongly. This result suggests that the
efficacy of killing of APCs by low avidity T cells ordinarily has little
protective role, as increasing its per-cell APC-killing rate quickly
damps out the level of the low avidity population with minimal
change in the effector population level.

We then asked how a treatment that amplifies low avidity
T cell population via rm, i.e., artificially enhancing proliferation
(with no APC involvement), would affect the behaviour. Fig. 8

displays the bifurcation diagram of e (according to system
(A.10)–(A.12)) with respect to the expansion parameter rm when
both activation and competition are affected by a (Case 2). Case 1
is qualitatively quite similar. The resemblance to Fig. 6(e) is
apparent. Healthy and autoimmune states coexist up to some
memory cell expansion rate. Beyond that value, the diseased state
disappears. In this treatment scenario, expanding low avidity
T cells successfully reduces the level of APCs and effector cells
significantly. The APC-independent expansion of low avidity
T cells is essential for this to work. Overall, we conclude from
this analysis that including APCs as a dynamic variable does
not significantly change the previous qualitative predictions of the
reduced model. If low avidity T cells kill APCs, treatments that
make this killing more efficacious are seen to be futile, but
expanding those low avidity cells artificially can be beneficial.

5. b cell model

The detailed dynamics of b cells is not well characterized. It
has been demonstrated recently that new b cells appear in NOD
mice after birth, but their source remains controversial. While
some experimental evidence suggests b cell neogenesis from
precursor cells (such as stem cells and ductal cells) (Bonner-Weir,
2001; Finegood et al., 1995; Thyssen et al., 2006), others suggest b
cell replication from already existing proliferative b cells (Bock
et al., 2003; Dor et al., 2004; Finegood et al., 1995; Jo et al., 2007;
Sreenan et al., 1999; Teta et al., 2005). We considered several
variants of an equation for the population of b cells in order
to further test both hypotheses pertaining to the role of low
avidity T cells, notably their putative protective effect in islets.
Of all variants tested, the one found most satisfactory closely
follows a model developed by the group of Vered Rom-Kedar
(with Roi Malka, PhD student, Weizmann Institute) in an un-
related biological setting. We revised it to arrive at the equation
for b cells,

dB
dt

¼ s
B

kB þ B
$ dBþ

kEB
1þ m0Bþ m1M

(17)

where s is the maximal number of new b cells generated per day,
kB is the b cell level for half-maximal renewal rate, d is the
turnover rate of b cells per day, k is the killing rate of b cells by
effector cells per day, m0 is a per-b cell saturation parameter for b
cell killing, while m1M is the inhibition term exerted by the
very small fraction of low avidity T cells on the killing of b cells
in the islets. The first two terms in Eq. (17) represent normal
b cell dynamics, and possess two steady state (B ¼ 0 and
Bh ¼ ðs$ kBdÞ=d). We note that as the number of b cells decreases
(e.g., due to killing in an autoimmune attack or after an apoptotic
wave), the growth rate per b cell (term 1) increases (Sherry et al.,
2006; Finegood et al., 1995; Teta et al., 2005). In this sense, the
first term could represent enhanced growth rate at low population
due to stress-dependent effects.

The two states of interest, according to this model, are the
healthy state ð0;0;BhÞ, where Bh is the number of b cells in
nondiabetic NOD mice, and the diseased state ðMd; Ed;BdÞ, where
EdbMdX0 and Bd40. By rescaling the variable B by Bh so that
b ¼ B=Bh (and rescaling M and E by Ke, see Eqs. (A.13)–(A.16) in
Appendix A), the level of b cells becomes bh ¼ 1 in the healthy
state and bd ¼ Bd=Bh in the diseased state. As shown schematically
in Fig. 9, bd lies at the intersection of the curves q1ðbÞ + k,eb=ð1þ
m,
0bþ m,

1mÞ and q2ðbÞ + s,b=ðkb þ bÞ $ db. Since "90% of b cells
are killed during the autoimmune attack, it is expected that
bd ) 0:1bh. In Appendix B, we use this latter result together with
some additional experimental results obtained in Teta et al.
(2005), Magami et al. (2002), Bock et al. (2003), Marée et al.
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(2006a), Jo et al. (2007), Dor et al. (2004) and Finegood
et al. (1995) to estimate the remaining parameters appearing in
Eqs. (A.15) and (A.16).

5.1. Biological implications and treatments

Our two main objectives in this section are: (1) to determine
the effects of low and high avidity T cells on the general dynamics
of b cells; and (2) to examine those treatments that are linked to
hypotheses (I) and (II) described above. In order to do so, we use
the parameter values listed in Table 1 and system (A.13)–(A.16).
The main obstacle facing us here is that we do not have any prior
knowledge of the values of the parameters s, ¼ s=Bh, kb ¼ kB=Bh

and R, ¼ RBh appearing in this system. Bifurcation diagrams can
be used, however, to determine the parameter-regimes in which
the model is most consistent with experimental results. Fig. 10(a)

shows the bifurcation diagram of b with respect to the ratio s,=kb.
It demonstrates that in order to attain an autoimmune state in the
range of bd ) 0:1 (with m ) md ¼ 0:5 and e ) ed ¼ 10), the ratio
s,=kb should be in the range of ½0:07;0:08( (day$1). (An expanded
range would correspond to a less acute loss of b cells which is
seen in some cases of T1D.) Similarly, we may estimate the
parameter regime for R, and obtain the range ½159;186( in
peptide-units/cell.

Using these fitted values, we are ready to determine how the
model behaves in view of hypotheses (I) and (II). Since hypothesis
(I) suggests that the expanded population of low avidity T cells
crowd the islets and inhibit the killing of b cells, we investigate
the influence of the expansion parameter rm on the general
dynamics of b cells.

Fig. 10(b) shows similar features to those observed previously
in the two-variable and the APC models discussed earlier; the
bifurcation diagram reveals that the level of b cells in the diseased
state increases rapidly as rm increases until the diseased state
disappears, leaving the healthy state as the only stable steady
state. The loss of the diseased state is reminiscent of the
disappearance of high avidity T cells, demonstrated in Figs. 6(e)
and 8. The rapid increase, however, seemed to be not very
consistent with the experimental observation.

The model shows sensitive dependence on rm which makes
hypothesis (I) less likely to occur. Hypothesis (II), on the other
hand, produces results more consistent with the experiment.
In view of case 2 discussed in Section 3, hypothesis (II) can be
modeled by scaling !, by a factor of 1=awhile scaling am and ae by
a factor of a, where a is the fraction of APCs circulating in the
lymph nodes. The resulting bifurcation diagram of b with respect
to a, shown in Fig. 10(c), is very similar to what we have
seen previously. The coexistence of the healthy state ð0;0;1Þ and
diseased state ðmd; ed; bdÞ persists until the level of APCs, a,
becomes sufficiently small. The figure also shows two connected
branches of stable steady states corresponding to the diseased
states S1 (semi-horizontal branch) and U1;2 (semi-vertical branch)
obtained from the two-variable model. We may conclude that
within a 2-fold decrease in the value of a, a slow increase in the
level of b cells in the diseased state, bd, is observed. One could also
observe a significant increase in bd when a decreases by over
2-fold as the diseased state first enters the semi-vertical branch
and then disappears to a fold bifurcation at a ) 0:25. This feature
suggests that hypothesis (II) is the likely candidate for the type of
effect low avidity T cells may exert in T1D.

The bifurcation diagram corresponding to the parameter m1

displays results similar to those obtained for the parameter ka in
the previous section (results not shown). The plot of bd with
respect to this parameter shows that bd"C1, for some constant C1,
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Fig. 9. Graphs of the functions q1 (dashed line) and q2 (solid line). They represent,
according to Eq. (17), the killing and natural dynamics of b cells, respectively. The
points bh ¼ 1 and bd ) 0:1 represent the level of b cells in the healthy and
autoimmune diseased states, respectively.
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Fig. 10. Bifurcation diagrams of B with respect to the parameters (a) s,=kb; (d) rm; and (c) a. Stable (solid lines) and unstable (dashed lines) steady states are shown. Panel
(a) shows a physiologically reasonable parameter range for r, while (b) and (c) elucidate the effects of hypotheses (I) and (II).
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while the plots of ed and md show that ed"m1=ðC2 þ m1Þ and
md"1=m1for some constant C2.

6. Discussion

We have explored in this paper the role of high and low avidity
populations of IGRP-reactive T cells in the progression and
treatment of Type 1 Diabetes (T1D). To do so, we introduced
a two-variable model describing the dynamics of these two
competing populations of T cells. The model is compatible with
the idea that the low avidity T cells are immunoregulatory. We
showed that two coexisting stable steady states are attained:
a healthy state (from which we subtracted any normal basal
background level of autoreactive T cells), and an autoimmune
state in which the size of the high avidity T cell population is large.

Other well-known autoantigens in T1D include insulin,
proinsulin, GAD, HSP65 and others. The paradigm described by
this model has been confirmed to work also for a much smaller
CD8þ T cell subpopulation targeting a subdominant epitope on
dystrophia myotonica kinase, a diabetes-relevant autoantigen that
is expressed systemically (Tsai et al., 2008). Given the observa-
tions on these two very different autoreactive T cell subsets, it
is reasonable to expect that our model would extend to most
other autoantigenic specificities in diabetes and, possibly, to other
autoimmune diseases. As described below, we are extending the
analysis to consider the possible roles of competing subdominant
T cell clones in a follow-up manuscript.

We have examined two hypotheses proposed for how low
avidity T cells play a protective role in T1D (Tsai et al., 2008). In
principle, there are other possibilities for the underlying mechan-
ism that were not discussed in this paper. These include the
release of immunosuppressive mediators, niche competition
for IL-2, bystander suppression, expansion of natural regulator
T cells, and/or promotion of a regulatory phenotype of APCs.
We can reject many of these based on experimental evidence from
the Santamaria Laboratory. First, immunoregulation by the low
avidity clones is cell contact-dependent (at least in vitro),
excluding immunoregulatory cytokines or competition for IL-2
(between regulators and effectors) as mediators of suppression.
Second, the immunoregulatory low avidity clones do not produce
or secrete immunoregulatory cytokines (e.g., TGFb, IL-4, IL-10).
We also have evidence that the expansion of low avidity memory-
like cell pool is not accompanied by the expansion, or recruitment
to the site of immunoregulation, of natural Tregs (i.e., CD4þ

CD25þFoxP3þ cells). Furthermore, we have documented that
these memory low avidity clones can readily kill APCs, both
in vitro and in vivo, i.e., that they play an immunoregulatory role.

We cannot exclude the possibility that the interaction between
these T cells and the APCs may also promote a regulatory
phenotype of APCs. However, if this effectively leads to a
reduction in the activation parameters ai, it will qualitatively
produce similar outcomes to our models. Based on such evidence,
we have considered here only two main hypotheses; namely, low
avidity T cells either (I) crowd the islets in the pancreas, or (II) kill
APCs responsible for activating T cells. To test these hypotheses,
we initially used the two-variable model, then extended it to three
variables, first by including APCs, and then by including b cells.
In reality, the two versions of the three-variable models are not
mutually exclusive and further exploration of more complete
versions are forthcoming.

Our results reveal that hypothesis (II) is more plausible. In
particular, we found a discrepancy between the observed
experimental results and the outcome of hypothesis (I) applied
to the three-variable b cell model. Testing whether low avidity
T cells crowd the islets, we have observed that the level of b cells

in the diseased state, bd, rapidly increases with increasing
expansion rate of low avidity T cells, rm (i.e., bd was quite sensitive
to variations in rm, a feature not observed experimentally).
This suggests that the killing of APCs by low avidity T cells is
the dominant effect, since bd is less sensitive to variations in the
number of APCs. Only when the number of APCs is reduced by
over 2-fold in the model, does the healthy state become globally
stable, a result more consistent with experiments.

It has been suggested by Han et al. (2005b) that autoimmune
inflammation preferentially fuels the local expansion of the
highest avidity and the most pathogenic T cell pool, but systemic
tolerance selectively decreases the size of this pool causing
prevalent recruitment of low avidity clonotypes at the primary
autoimmune response. In other words, the avidity ratio km=ke
between the two populations of circulating T cells is not a
constant quantity but rather a dynamic one that decreases with
the depletion of the high-avidity (17.5) pool. We have established
that, before selective tolerance, the avidity ratio between the two
populations is large and the size of low avidity T cell population in
the autoimmune state is either zero or very small. Therefore, any
treatment aimed at expanding the size of this population at this
stage will not be effective as has been demonstrated experimen-
tally (Tsai et al., 2008). On the other hand, the model shows that
the depletion of the highly avid pool of cells (which is equivalent
to increasing ke) elevates the level of low avidity T cells, enabling
certain treatments at the later stage of the disease to expand this
population. This explains why treatments applied at this later
stage will be more effective.

Strategies for treating autoimmune diseases include manip-
ulation (and expansion of) regulatory T cells. Our model is
compatible with this goal, and indeed, the new avenue described
by Tsai et al. (2008) points to the promise of a philosophically
similar strategy, showing that this can restore normoglycemia in
newly diabetic mice. However, while the memory-phenotype
autoreactive T cells that arise from low avidity naive precursors
are immunoregulatory, they differ from conventional Tregs
(FoxP3þCD4þCD25þ T cells), but share some similarities with
them. For example, they cannot make IL-2 and do not proliferate
in response to antigenic stimulation in vitro in the absence of
exogenous cytokines.

Thehealthy and autoimmune states discussed in this paper
represent the long term behaviour of the models considered. The
models provide insights as to what types of treatment strategies
could work. However, we are still far from a well-characterized
and sufficiently complete model to adequately test treatment
regimes (doses, frequency and types of interventions). For this,
we are currently considering more detailed and more complete
simulation models that build on those described here. For
example, it has been observed experimentally (unpublished
work) that treatments targeting IGRP-reactive T cells could either
downgrade or expand T cells with other specificities. The outcome
depends on the type, timing, and details of the treatment.
An extended model consisting of both IGRP-reactive T cells and
CTLs with other specificities is currently under development.
That expanded model is being used to generate more realistic
scenarios, and to investigate specific treatment regimes with the
eventual goal of optimizing the type, dose and the frequency
of treatment protocols.

It is important to note that the transient behaviour (and not
just the existence of the diseased states) is quite influential. For
example, as in Trudeau et al. (2003) and in the previous model by
Mahaffy and Edelstein-Keshet (2007), we showed that large cyclic
fluctuations in effector cells can occur in certain cases (see Fig. 7).
Even though the system eventually reaches the healthy state, the
fluctuations may cause enough damage to the number of b cells
to cause acute T1D. When designing a treatment strategy, it is
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important to do so carefully to avoid such cyclic fluctuation
regimes. As mentioned earlier, we can also connect such cyclic
dynamics to the phenomena of remission and relapse that have
been described by von Herrath et al. (2007). The autoimmune
disease process activates high-avidity clones, which turn into b
cell killers and then die, but also turns low avidity clones into
APC-killer memory-phenotype cells which then attempt to shut
down the process. Once the suppressors go away, a new wave of
disease-promoting and disease-suppressing events can arise. The
fact that the disease generates a negative feedback regulatory loop
that attempts to counter disease progression could be considered
a relapsing-remitting event. (That said, as in many other nonlinear
phenomena, cyclic dynamics occur only in specific ranges of
parameter settings, and was not our primary focus here.)
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Appendix A. Theoretical results

A.1. Stability analysis, two-variable model

The Jacobian matrix of system (6) and (7) is

J ¼
F þMFM MFE

EGM Gþ EGE

 !

At the equilibrium point S1 and S2, these are

JS1 ¼
FðS1Þ 0

0 GðS1Þ

 !

and JS2 ¼
M2FMðS2Þ M2FEðS2Þ
E2GMðS2Þ E2GEðS2Þ

 !

At S1, the eigenvalues are l1 ¼ FðS1Þ and l2 ¼ GðS1Þ, so S1 is a
stable node whenever FðS1Þ;GðS1Þo0 and unstable otherwise. For
stability of S2, we require

trðJS2 Þ ¼ M2FMðS2Þ þ E2GEðS2Þo0 (A.1)

detðJS2 Þ ¼ M2E2½FMðS2ÞGEðS2Þ $ FEðS2ÞGMðS2Þ(40 (A.2)

But M2; E240, so inequality (A.2) reduces to

FMðS2ÞGEðS2Þ $ FEðS2ÞGMðS2Þ40 (A.3)

By inequalities (8) and (A.3), we have

FMðS2ÞGEðS2Þ þ jGMðS2ÞjFEðS2Þ40

¼)jGMðS2ÞjFEðS2Þ4$ FMðS2ÞGEðS2Þ ¼ jFMðS2ÞjGEðS2Þ

In other words,

FEðS2Þ
jFMðS2Þj

4
GEðS2Þ
GMðS2Þ

(A.4)

Similarly, by inequality (A.1), we have

E2GEðS2Þo$M2FMðS2Þ ¼ M2jFMðS2Þj¼)GEðS2Þo
M2

E2
jFMðS2Þj

If Dm and De are the slopes of the tangent lines to the
nullclines FðM; EÞ ¼ 0 and GðM; EÞ ¼ 0, respectively, then these

slopes satisfy

Dm ¼
dM
dE

¼ $
FE
FM

¼
FE
jFMj

; De ¼
dM
dE

¼ $
GE

GM
¼

GE

jGM j
(A.5)

It follows from (A.4) and (A.5) that the steady state S2 is stable if
and only if the inequalities in (9) are satisfied.

At U1 and U2, the Jacobian is

JU1
¼

FðU1Þ 0

E1GMðU1Þ E1GEðU1Þ

 !
and

JU2
¼

M2FMðU2Þ M2FEðU2Þ
0 GðU2Þ

 !

The eigenvalues for U1 are l1 ¼ FðU1Þ and l2 ¼ E1GEðU1Þ. This
implies that U1 is stable whenever FðU1Þo0 and GEðU1Þo0. At U2,
the eigenvalues are l1 ¼ M2FMðU2Þ, which is negative in view of
inequalities (8), and l2 ¼ GðU2Þ. Thus U2 is stable whenever
GðU2Þo0.

When trðJS2 Þ ¼ 0 and detðJS2 Þ40, the eigenvalues become pure
imaginary and the equilibrium point S2 turns into a Hopf
bifurcation point. This is equivalent to (10).

A.2. Explicit two-variable model

Existence of the diseased state (S2): Fig. 2(b) reveals that
inequality (15) is satisfied whenever EoE. Let gðEÞ +
amfmðEÞ $ aef eðEÞ. Then gð0Þ ¼ gðEÞ ¼ 0 and gðEÞo0, for 0oEoE.
By the Mean Value Theorem, the function gðEÞ must possess a
local minimum at E ¼ eE. Since

g0ðEÞ ¼
namkmE

n$1

ðknm þ EnÞ2
$
naekeE

n$1

ðkne þ EnÞ2

it follows that

amkm

ðknm þ eE
n
Þ2

$
aeke

ðkne þ eE
n
Þ2

¼ 0 ()
ðkne þ eE

n
Þ

ðknm þ eE
n
Þ

" #2
¼

aeke
amkm

(A.6)

But the quadratic expression in (A.6) is a strictly increasing
function of eE and

kne
knm

p ðkne þ eE
n
Þ

ðknm þ eE
n
Þ

" #2
o1

Thus

kne
knm

o aeke
amkm

o1 ()
km
ke

" #n$1

4
am

ae
41 (A.7)

must hold. Inequality (A.7) is useful in specifying a lower bound
on the ratio ðkm=keÞ which is not known experimentally. Since
there is only one positive solution to Eq. (A.6), the point E ¼ eE is
the only local minimum in the interval ½0;E(. If gðeEÞ4dm $ de, then
no equilibrium points exist; at gðeEÞ ¼ dm $ de, there is a bifurcation
point beyond which two equilibrium points exist.

Scaling the two-variable model: We scaleM and E in system (12)
and (13) by applying the substitution m ¼ M=ke and e ¼ E=ke. The
resulting equations are given by

dm
dt

¼ m am
en

ðkm=keÞn þ en
$ dm $ !,ðmþ eÞ

$ %
(A.8)

de
dt

¼ e ae
en

1þ en
$ de $ !,ðmþ eÞ

$ %
(A.9)

where !, ¼ !ke. Notice that the relative avidities of the T cells in
both populations is expressed in this model by the ratio km=ke
appearing in Eq. (A.8). System (A.8) and (A.9) has been used in
plotting all the figures of Section 3.7.
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Scaling the APC model: By setting m ¼ M=ke, e ¼ E=ke and
a ¼ A=Ad ¼ Ada=sa, we obtain

dm
dt

¼ m a,
ma

en

ðkm=keÞn þ en
þ rm $ dm $

!,

a
ðmþ eÞ

$ %
(A.10)

de
dt

¼ e a,
ea

en

1þ en
$ de $

!,

a
ðmþ eÞ

$ %
(A.11)

da
dt

¼ dað1$ k,ama$ aÞ (A.12)

where a,
i ¼ aisa=da, for i ¼ m; e, !, ¼ !keda=sa, and k,a ¼ kake=da.

Scaling the b cell model: By setting m ¼ M=Ke, e ¼ E=Ke, b ¼
B=Bh and p ¼ P=Ke, where Bh ¼ ðs$ dkBÞ=d is the healthy state of B,
we obtain

dm
dt

¼ m am
pn

ðKm=KeÞn þ pn
þ rm $ dm $ !,ðmþ eÞ

$ %
(A.13)

de
dt

¼ e ae
pn

1þ pn
$ de $ !,ðmþ eÞ

$ %
(A.14)

db
dt

¼ s,
b

kb þ b
$ dþ

k,e
1þ m,

0bþ m,
1m

" #
b (A.15)

p ¼
R,be

1þ m,
0bþ m,

1m
(A.16)

where s, ¼ s=Bh, kb ¼ kB=Bh, k, ¼ kKe, !, ¼ !Ke, m,
0 ¼ m0Bh, m,

1 ¼
m1Ke and R, ¼ RBh. In this case, the healthy steady state of b is
bh ¼ 1 and the ratio Km=Ke ¼ km=ke.

Appendix B. Parameter Estimation

Here we show details of estimates for parameters appearing in
system (12) and (13). We used previous parameter estimates
in Mahaffy and Edelstein-Keshet (2007) to deduce that am )
11day$1. This value agrees with the experimental estimate of
10–20 day$1 (Veiga-Fernandes et al., 2000).

The turnover rates of M and E are dm ¼ 0:01 and de ¼ 0:3 day$1

(Marée et al., 2006b). Finally, the total number of low and high
avidity T cells at the autoimmune state is estimated experimen-
tally to be Md ) 104 $ 105 and Ed ) 106 cells (Mahaffy and
Edelstein-Keshet, 2007). These data together with inequalities
(14) can help us evaluate the remaining parameters in system (12)
and (13). Assume that Edbke, which is the case for diabetic NOD
mice. It follows that at steady state

am
End

knm þ End
$ dm $ !ðMd þ EdÞ ¼ 0 (B.1)

ae $ de $ !ðMd þ EdÞ ¼ 0 (B.2)

Using Eqs. (B.1) and (B.2), we may conclude that

am
End

knm þ End
¼ dm þ ae $ de (B.3)

There are three cases to consider.

1. Edbkm. In this case Eq. (B.1) becomes

am $ dm ¼ !ðMd þ EdÞ () Ed )
am $ dm

!
But from inequalities (14) and (B.3), we have 0oam $ ae ¼

dm $ deo0; which is a contradiction. Therefore this case is
rejected.

2. Ed ) km. This implies that am
2 $ dm ) !ðMd þ EdÞ()Md þ Ed )

am=2$dm
! , hence, by Eq. (B.2),

am

2
) dm $ de þ ae (B.4)

3. Ed5km. It follows from Eq. (B.3) that

amE
n
d

knm
¼ dm $ de þ ae ()

amE
n
d

knm
$ dm ¼ !ðMd þ EdÞ (B.5)

In view of Eqs. (B.2) and (B.4) and the parameter values stated
above (including Md and Ed), case 2 reveals that

am

2
$ ae ¼ dm $ de

Md þ Ed ¼
ae $ de

!

8
>><

>>:

9
>>=

>>;
¼)

½10220(
2

$ ae ¼ $0:29

ae $ 0:3
!

¼ 0:5- 105 þ 106

8
>><

>>:

9
>>=

>>;

where square brackets hereafter will symbolize parameter
ranges. It follows that ae ) ½5210( cell$1 and ! ) ½5210( - 10$6

(cell dayÞ$1. By using these values and setting n ¼ 2, we deduce
from Eq. (B.5) in case 3 that km ) 1:4- 106 in T cell units (the two
extreme values of am and ae generate the same value for km).

The parameters km and ke are aggregate quantities represent-
ing many complex interactions at the molecular level between
TCRs and p-MHC. It is not easy to measure these values directly.
However, we can use information about functional avidity to
estimate their ratio. According to Han et al. (2005b), the
IGRP206$214 concentration that gives the half-maximum response
for IL-2 (cytokine) secretion are as follows: "1000mg=ml for the
17.6 clone, "135mg=ml for the 17.4 clone and "1mg=ml for
the 17.5 clone. The ratios of these allow us to estimate km=ke ) 10.
While the absolute value of either of these is unknown, our
rescaling of the equations bypasses the problem by considering
only the ratio km=ke.

For the model that includes APCs we must estimate ai ) ai=Ad,
for i ¼ m; e. It has been stated in Chu and Lowell (2005) that the
steady state value of an antigen specific dendritic cells (DCs) is
roughly Ad ¼ 4- 105cells. Thus am ) ½2:525( - 10$5 and ae )
½1:2522:5( - 10$5ðcell dayÞ$1. According to Kamath et al. (2000,
2002), the half life of APCs (DCs) is ) ½1:522:9( days. Hence
their turnover rate is da ) lnð2Þ=½1:522:9( ¼ ½0:2420:46(day$1. For
ka ¼ 0 in Eq. (16), the solution for AðtÞ is

AðtÞ ¼
sa $K expð$datÞ

da

From data in Chu and Lowell (2005), Að4Þ ¼ 3- 105 and Að6Þ ¼
5- 105 (time in days), we deduce that sa ) ½324( - 105 cell/day
and K ¼ ½5214( - 105. Since Ad ) 4- 105 cells, we conclude that

Ad ¼
sa

da þ kaMd
¼) ka ) ½8$ 9( - 10$6ðcell dayÞ$1

For b cell parameters, we used Teta et al. (2005), Magami et al.
(2002) and Kulkarni (2004), to estimate d ) ½0:00120:007(. Bock
et al. (2003), estimated that the total islet volume in mice is
around 2mm3 of which b cells occupy 65–80% (see also Marée
et al. (2006a)). Thus the range of b cell population in healthy mice
at steady state is approximately Bh ) 4- 105 - 2- ½0:6520:8( )
½5$ 6( - 105cells; which is consistent with the range of values
obtained in Jo et al. (2007). There are no available experimental
data to determine the value of s (Bonner-Weir, 2001) and kB.
However, Fig. 10(b) suggests that s ) ½56021000( cells/day and
kB ) ½7:5211( - 103 cells. (It follows that the replication rate r )
s=ðkB þ BdÞ is roughly ½0:00820:015( cell$1 which is consistent
with the estimate in Dor et al. (2004).) We have used the same
technique to estimate R ) ½2:723:2( - 10$4 peptide-units/cell.
Finally, it has been suggested that b cells are killed at a rate of
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4300 cells/day (Kurrer et al., 1997). Therefore

kEdBh

1þ m0Bh þ m1Md
¼ 4300 ¼)

k
1þ ½526( - 105m0 þ 0:5- 105m1

¼
4300

½526( - 1011
) ½728( - 10$9

According to Mahaffy and Edelstein-Keshet (2007), k ) 0:14-
10$6 (cell dayÞ$1. Therefore we expect m0 ) ½1:67$ 20( - 10$6

cell$1 and m1 ) ½1:123:6( - 10$4 cell$1.
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