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HIGHLIGHTS

e We propose a model for F-actin interacting with its nucleation promoting factors.

e The model consists of 3 PDES of the reaction-diffusion type.

¢ The model exhibits novel dynamics of waves and propagating patterns.

e A non-linear, local perturbation analysis is used to investigate pattern initiation.

e Our model depicts the minimal set of interactions that can produce these dynamics.
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Waves and dynamic patterns in chemical and physical systems have long interested experimentalists and
theoreticians alike. Here we investigate a recent example within the context of cell biology, where waves
of actin (a major component of the cytoskeleton) and its regulators (nucleation promoting factors, NPFs)
are observed experimentally. We describe and analyze a minimal reaction diffusion model depicting the
feedback between signalling proteins and filamentous actin (F-actin). Using numerical simulation, we
show that this model displays a rich variety of patterning regimes. A relatively recent nonlinear stability
method, the Local Perturbation Analysis (LPA), is used to map the parameter space of this model and
explain the genesis of patterns in various linear and nonlinear patterning regimes. We compare our
model for actin waves to others in the literature, and focus on transitions between static polarization,
transient waves, periodic wave trains, and reflecting waves. We show, using LPA, that the spatially
distributed model gives rise to dynamics that are absent in the kinetics alone. Finally, we show that the
width and speed of the waves depend counter-intuitively on parameters such as rates of NPF activation,

negative feedback, and the F-actin time scale.

Published by Elsevier Ltd.

1. Introduction

The actin cytoskeleton is an important determinant of cell shape,
function, and motility. Hence, the dynamics and assembly of
filamentous actin (F-actin) from its subunits (G-actin) is highly
regulated in living cells. Recent experimental observations have
shown remarkable spontaneously generated spatio-temporal pat-
terns of F-actin in cells such as Dictyostelium discoideum (Vicker,
20024, 2002b), neutrophils (Weiner et al., 2007), fibroblasts (Millius
et al.,, 2009) and mast cells (Wu et al.,, 2013). The patterns include
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stationary fronts, moving spots, and moving waves, providing a rich
set of “benchmark dynamics” that models for actin organization
should address. An interesting theoretical question is what minimal,
biologically grounded mechanism suffices to explain such waves
and patterns.

Actin interacts with other proteins that regulate its nucleation and
assembly. Experimental data supports the role of these regulatory
proteins (often denoted actin “nucleation promoting factors,” abbre-
viated NPFs) in producing the dynamic patterns of actin
(Bretschneider et al, 2004, 2009; Gerisch et al, 2004; Xiong et al.,
2010). Such observations have led to physical and biophysical models
that aim to understand the interactions between these signalling
proteins and actin (Weiner et al., 2007; Doubrovinski and Kruse, 2008;
Whitelam et al., 2009; Iglesias and Devreotes, 2012). However little
effort so far has been devoted to using mathematical methods to
investigate these phenomena, motivating our exploration in this paper.
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In a previous paper (Holmes et al, 2012a), we considered
signalling proteins such as small GTPases (Rac, Rho, and Cdc42)
as putative NPFs. Upstream of actin, small GTPases have been
observed to undergo spontaneous symmetry breaking leading to
wave dynamics. Polarization of Rac was shown to be required for
formation of Hem1/F-actin waves in Weiner et al. (2007).
Machacek et al. (2009) provided quantitative evidence for the
correlation of Cdc42, Rac1, and RhoA wave dynamics with F-actin
mediated edge protrusion. In Wu et al. (2013), waves of Cdc42
were shown to be correlated in both space and time with waves of
F-actin.

We describe the interactions of F-actin and its regulators by a
system of reaction-diffusion equations (RDEs) and view the
formation of waves and other dynamics as a pattern formation
process. More broadly, reaction-diffusion models have been used
to investigate pattern formation in physical or physico-chemical
processes (Cross and Hohenberg, 1993; Maini et al., 1997; Gollub
and Langer, 1999), morphogenesis and development (Turing, 1952;
Murray, 1981), or distributions of populations in a changing
environment (Segel and Jackson, 1972; Okubo and Levin, 2002;
Cantrell and Cosner, 2004; Yizhaq et al, 2005). A common
sufficient (and usually necessary) condition for patterning in these
cases is different rates of diffusion. The system discussed here, like
many biochemical regulatory systems, is characterized by not just
different, but vastly different rates of diffusion, which we exploit
to simplify model analysis.

To search the parameter space of this model and investigate the
structure responsible for initiation of patterning in different
regimes of behavior, we utilize a relatively new nonlinear stability
analysis method for such systems, the Local Perturbation Analysis
(LPA) (Walther et al., 2012). This method takes advantage of the
disparity between slow and fast diffusion timescales to reduce the
system of RDE's to a system of ODE's whose linear and nonlinear
stability properties mimic those of the RDE's. Results of this
analysis in conjunction with linear stability analysis and numerical
simulation demonstrate a rich collection of patterning behaviors
distinct from those observed in other systems. We identify the
mathematical structure responsible for these distinct dynamics
and show that this is a minimal model capable of producing such
dynamics.

In our previous paper (Holmes et al., 2012a), we presented
preliminary analysis of the actin wave model, together with some
simulation results. In this follow-up paper we have two distinct
aims. (1) To understand the regimes of behavior of the waves in
greater detail and to characterize parameter dependence of wave
attributes such as speed and width. (2) To highlight and explain
features of LPA and its mathematical properties. Our detailed
(though informal) exposition is meant to enable the reader to
use similar methods on related problems.

2. Biological and modeling background

Many previous models of actin waves (Weiner et al., 2007;
Doubrovinski and Kruse, 2008; Whitelam et al., 2009; Carlsson,
2010a; Doubrovinski and Kruse, 2011; Iglesias and Devreotes,
2012), reviewed in Carlsson (2010b) and Holmes et al. (2012a),
are based on F-actin interacting with nucleation promoting factors
such as Hem1 Weiner et al. (2007) and WASP or Scar/Wave
(Bretschneider et al.,, 2004, 2009; Gerisch et al., 2004; Xiong
et al., 2010). Some of these models consider the length or angular
distributions of F-actin, and some depict the interactions of
individual actin filaments (Carlsson, 2010a).

In contrast, we consider a simplified model that can be analyzed
mathematically. We focus on signalling proteins (small GTPases),
coupled to a minimal F-actin representation. Our motivation for so

doing is as follows: (a) small GTPases (such as Cdc42 and Rac) are
known to regulate the assembly of F-actin (Machacek et al., 2009;
Mackay and Hall, 1998; Ridley, 2006; Hall, 1998; Sit and Manser,
2011) and participate in the propagation of actin waves (Weiner
et al,, 2007; Machacek et al., 2009; Wu et al., 2013). (b) A minimal
model of small GTPases (Mori et al., 2008, 2011) exhibits wave-
based symmetry-breaking and formation of a simple polarization
pattern. (c) There is evidence for the existence of feedback between
F-actin and the small GTPases; see experimental work in Xu et al.
(2003), Sasaki et al. (2004), Sasaki et al. (2007) on the PI3K pathway
and Calderwood et al. (2000), Abram and Lowell (2009) on
integrins. (d) Combining the minimal GTPase model with a simpli-
fied F-actin model leads to a range of interesting patterns, as we
have already described in Holmes et al. (2012a). As we sought a
model of sufficient simplicity to yield mathematical insights, this
minimal model proved to be ideal.

Briefly, small GTPases are proteins that cycle between an active
state A (bound to the cell membrane) and an inactive state I (in the
cytosol, the fluid cell interior). GTPases are activated by GEFs and
inactivated by GAPs. In the previous work, we investigated the role
of these proteins in cell polarization, arriving at a simple caricature
in Mori et al. (2008) that was analyzed mathematically in Mori
et al. (2011). We showed that the A, I model sustains waves that
decelerate and stop inside the cell domain; this behavior was
termed “wave-pinning”. Here we ask whether a small extension of
the A, I model to include feedback to and from F-actin would
engender any patterns similar to those observed experimentally.
As we show in this paper, this proves to be the case.

2.1. The regulatory sub-model and its “wave-pinning” behavior

In this section, we briefly describe the regulatory sub-model.
Let A, I represent active and inactive forms of a small GTPase
protein with A bound to the membrane and I freely diffusing in the
cell interior. This A, I system plays a regulatory role for F-actin
assembly (analogous to the role of nucleation promoting factors,
abbreviated NPFs) as well as being affected by feedback from
F-actin. Equations for A, I, modified slightly from Mori et al. (2008),
are
0A ol

E :f(A,I)+DAAA, E :—f(A,I)+D1AI (1a)
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0

with D4 <D; and no flux boundary conditions. Note that we used
A, I here to denote the amount of active and inactive NPFs. In the
interconversion of A and I (which corresponds to activation and
inactivation), the total amount A+I is conserved and A enhances its
own activation. This positive feedback is represented by a Hill
function (with magnitude y, sharpness controlled by n=2, and A,
the typical level of A at which positive feedback “turns on”).
The parameter ko is the basal rate of activation and & sets the
overall rate of dynamics. Details for the choice of this function are
motivated in Marée et al. (2006), Jilkine et al. (2007), Dawes and
Edelstein-Keshet (2007), and Mori et al. (2008) based on known
and hypothesized properties of the small GTPases.

In Holmes et al. (2012b), we noted two regimes of behavior.
In one regime, arbitrarily small noise can destabilize a homoge-
neous steady state (HSS) and lead to patterning, as in classical
Turing pattern formation. In the second regime, the HSS is linearly
stable, and only a sufficiently large perturbation can lead to
patterning. This perturbation produces a region of high activity
that spreads then stalls (“wave-pinning”). The properties of this
model responsible for wave-pinning include (1) D, < D; (resulting
from membrane bound versus free diffusing character), and
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Fig. 1. (a) A schematic diagram of interactions between F-actin (F) and its regulatory proteins (NPFs). A is active, membrane-bound protein and I is its inactive cytosolic form.
We assume that A promotes actin nucleation and assembly. We also assume positive feedback from A and negative feedback from F to the rate activation of A. Total A + I is
conserved. Dashed arrow represent slow or fast diffusion (not to scale). (b) A spatially localized perturbation showing the idealization that leads to the LPA system of local
and global variables (solid), and the actual behavior in the full RD system (dotted). (c) Schematic representation of interactions of the local and global LPA variables. ug, vg
interact exactly as in the well-mixed system. u; is local, and influenced by (but does not affect) the global variables.

(2) conservation of the total A+I in the domain. Heuristically, auto-
activation of A induces a region of locally high activity. Diffusion
causes this region to spread. Depletion of I as the wave spreads
causes the wave to slow and stall in the interior of the domain.

3. Model for the full system: regulators and F-actin with
positive and negative feedback

We asked whether linking the A, I signalling model to an
F-actin equation could account for some of the dynamic F-actin
patterns and waves. In experimentally observed actin waves, it is
seen that a localized wave of actin nucleators leads and a localized
F-actin wave follows Weiner et al. (2007). This observation
suggests negative feedback from F-actin to NPFs. These ideas led
us to adopt a framework similar to the FitzHugh Nagumo model,
with nonlinear wave generation coupled to slow feedback as
depicted in Fig. 1(a). We investigate how this coupling leads to
both stationary and wave dynamics.

The model, schematically outlined in Fig. 1(a), represents the
interactions of the active (A) and inactive (I) regulatory protein
(NPF) with F-actin (F). The equations of the full model (after
nondimensionalization, see Appendix B) are

0A ol

ar =f(A,1,F) + DaAA, Fri —f(A,L,F) + DAl (2a)
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pra =ch(A,F), where h(A,F)=k,A—ksF, (2b)
Al F

fALF)= <k0 + yAg+A3> I— (sl + 52m>A. (20)

We refer to this as the full model or as the F-actin regulation
model. Neumann boundary conditions are assumed for A, I
The regulatory Kinetics f are as in (1), with the modification that
F-actin exerts a net negative feedback on its own regulators. Here
we have chosen to depict this feedback with a Michaelis-Menten
actin-dependent rate of inactivation of A. This saturating response
prevents over-damping of the entire system. The parameters s;
and s, represent the relative contributions of basal inactivation,
and inactivation due to feedback from F.

We are particularly interested in understanding how the
balance between NPF activation and actin-feedback mediated
inactivation affect wave formation and propagation. We thus focus
on the parameters ko and s, that affect this balance. Other
combinations of (in)activation parameters yield similar results.
That is, an analysis of the parameter space structure with respect
to y and s,, for example, is qualitatively the same. The parameter e

determines the relative timescales of actin and regulatory protein
dynamics, respectively, and will be considered as well. We assume
that the F-actin feedback occurs on a slower timescale, so that
e < 1. In models for wave propagation in neurons, variables that
play a similar role to F are often denoted “slow”, or “recovery” or
“refractory”. We will use similar terminology here. The balance
between feedback and activation, and the effect of relative time-
scales will be investigated in subsequent sections.

We have made a few standard simplifying assumptions in
formulating the model. We assume that the cell has spread onto
a flat surface and that its depth is uniformly thin. To leading order,
the concentration of I in the cell interior is then uniform in the
depth direction. We further neglect structures such as the nucleus
and consider a 1D strip of uniform width along the diameter of the
cell. A, I, F are then functions of a single spatial variable (x) and
time. The membrane bound/freely diffusing proteins differ only in
their rates of diffusion, avoiding the issue of multiple physical
compartments. See Holmes et al. (2012a, 2012b) for details and
justification. It is easily seen that A, I in Eq. (2) satisfy a conserva-
tion law fol (Ax, t) + I(x, t)) dx=Tpnpr = 1.

4. Methods

Here we define terminology and introduce the techniques used
to analyze the model. Consider a system of reaction-diffusion
equations

ou o%u
ot =f(U,VyP)+Duﬁ, (33)
Y _ oavip)+ DY (3b)
ot ~8v:p Vox2’
that has been nondimensionalized appropriately, so that

f, g=0(1) with no flux boundary conditions on [-1, 1]. Here, p
represents a vector of system parameters and in general, u,v could
be vector valued with D, and D, being diagonal matrices encoding
diffusion coefficients. We further restrict attention to a class of
RDEs involving fast and slow diffusing variables so that
D, <1 < D,. For example, u= (A, F) represents membrane bound
or stationary proteins and v = (I) represents cytosolic proteins. We
also frequently refer to the “well-mixed”, i.e. spatially homoge-
neous variant of this system:

du dv
i =f(u,v;p), dr 8w vip). 4

The Local Perturbation Analysis (LPA) is an effective method for
analyzing fast/slow systems of the form (3) (Walther et al.,, 2012). This
method was introduced in the Grieneisen PhD thesis (2009) and has
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been used extensively in Marée et al. (2006, 2012), Holmes et al.
(2012b, 2012a), to parameterize and explore models of signalling
networks.

LPA is an approximation of the dynamics of a pulse under the
limit where D, —0 (u is infinitely slow diffusing) and D, — oo (v is
infinitely fast diffusing, reminiscent of a “shadow system”
(Nishiura, 1982)). Let u!(t) denote the amplitude of a spatially
localized perturbation and us(t), v&(t) the essentially homoge-
neous background levels of u, v. Then u! will grow or decay
independently of u®. Inhomogeneities of v will be instantly
smoothed out, leaving only a global quantity v8. Assuming a
perturbation with negligible total mass (i.e. whose “area”
vanishes with D,), v® will be affected only by u® (see Fig. 1(c)).
Under this limiting approximation, the dynamics of the narrow
pulse-like perturbation can be approximated by ODEs for
(Wl(t), us(t), v&(0)):

du®
T (O =FE, V), (52)
dv®
W(t) =g(us,vé;p), (5b)
d 1
SO =F D) (50)

We refer to this system as the LPA-ODE's, and to the analysis of its
behavior as the Local Perturbation Analysis (LPA).

Before applying this method to the actin-regulatory model, we
collect a few results about LPA and the type of information it is
capable of providing. Details of the reasoning and validation of a
number of results are provided in the Appendix.

Let (u®, v*) denote the homogeneous steady state of (3). Then
e, v8, u)= s, v, u¥) is a fixed point of the LPA-ODE's (5). Thus
stability of the HSS to a localized perturbation (LPA stability) is
determined by eigenvalues of

fu@,v%p) f,(05,v¥;p) 0
Jip= | &, V;p) 8,5, V¥ p) 0 . (6)
0 i@, v5p)y fu,(Wf,v5ip)

In the Appendix we provide arguments to support the follow-
ing properties.

Property 1: LPA recapitulates linear stability results for the
well-mixed system (4); that is to say, eigenvalues of the linearized
well-mixed system about (u®, v$) are contained in the spectrum of
(6). These will be referred to as the well-mixed eigenvalues of Jp.

Property 2: LPA recapitulates linear stability results for the full
reaction-diffusion system (Turing stability analysis). More pre-
cisely, the remaining eigenvalues of J;p approximate Turing eigen-
values obtained by linearizing the full system of RDE's about
(us, v*). We will refer to these as the “local” eigenvalues of {/IJLP 3.

In Appendix A, we show Property 2 in a 2 x 2 system. In the
3 x 3 (A, F) system, we show this property numerically. In higher
order systems, we conjecture (but do not prove) that the same
property holds.

The advantages of the LPA method are as follows:

® [PA mirrors predictions of other stability analysis methods; it
detects the number, values, and stability of spatially homo-
geneous steady states (HSS).

® [PA predicts the response of the system to large amplitude
perturbations. This property will be illustrated by example.

® Since LPA leads to a set of ODE's (5) and harnesses standard
bifurcation techniques and software, it is substantially simpler
to implement than other nonlinear, weakly nonlinear
(Rubinstein et al., 2012), or asymptotic methods (Iron and
Ward, 2000).

Table 1

Default nondimensional parameter values used in simulations of the full model.
These values produce a reflecting pulse. Bracketed values produce a wave train. The
abbreviation NPF represents the regulatory protein. Values for most dimension-
carrying NPF parameters are based on small GTPases in Mori et al. (2008), and lead
approximately to the above dimensionless values based on scaling discussed in
Appendix B.

Parameter Value Description

Dy 0.00033 Diffusion coefficient of A

D, 0.033 Diffusion coefficient of I

ko 0.05 (0.2) Basal rate of activation of NPF

y 1 Magnitude of NPF positive feedback
Ao 04 Level of active NPF for positive feedback to occur
S1 0.5 Basal NPF inactivation rate

Sz 0.6 (1.2) F-actin-mediated NPF inactivation rate
kn 2.0 Rate of F-actin nucleation by NPF

ks 0.25 F-actin disassembly rate

€ 0.1 F-actin dynamics rate parameter

Tnpr 1 Total amount of NPF

Further, LPA is scalable to systems with many interacting
components provided their components are separable into fast
and slow diffusion classes. (Within a class, diffusivities need not be
the same.) While this scalability will not be illustrated here (given
the relatively few components of the actin waves model), we refer
the reader to Holmes et al. (2012b) for an example of a complex
system with many interacting components to which this method
was successfully applied.

While LPA makes useful predictions under specific conditions,
it also has limitations as follows:

® LPA applies only to RDEs with fast-slow variables, and not to
reaction-advection PDEs.

® LPA does not approximate the full dynamics of RDEs nor the
evolution of their solutions, only stability properties.

® The LPA approximation breaks down if the perturbation
becomes very large or spreads in space. (This leads to interac-
tions between local and global variables and boundary layer
issues).

® LPA provides no information about wave numbers of destabi-
lizing periodic perturbations (predicted by Turing analysis),
since spatial scales are absent in the asymptotic limit.

With these caveats in mind, we next apply LPA to the actin
waves model.

5. Analysis of the (A, I, F) model

Parameter values for the underlying A, I dynamics are based on
Mori et al. (2008). In absence of conclusive experimental data,
feedback from F-actin is chosen to be in a range that is neither too
strong nor too weak. All parameters are nondimensionalized as
discussed in Appendix B and listed in Table 1.

We apply the local perturbation reduction to (2) and analyze
the resulting LPA-ODE's to determine regimes of pattern initiation.
We focus on how the basal activation rate (ko) and the negative
feedback from F-actin (s;) influence dynamics. (Other parameters
were tested and found to produce similar results. For example, the
behavior relative to s is reciprocal to that relative to ko. Results for
y were similar, and are omitted for brevity.) After the LPA,
we explore the long-term dynamics of the patterns with full
RDE simulations. See Appendix D for details about numerical
implementation.
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Fig. 2. Bifurcation analysis and eigenvalues in the actin-wave model for s; =0.7, s, =0.7, & =0.1 and other parameters at default values. Left panels: analysis of well-mixed
(a) and LPA (c) ODE's plotting steady states of A and A’ respectively versus the basal activation rate kg (solid=stable, dashed =unstable). The well-mixed model has a single
stable steady state (a). The LPA system (c) has the same global branch, and additional local branches. =, BP=branch points, e, H=Hopf bifurcation. Right panels: A comparison
of maximal (with largest real parts) LPA (b) and Turing (d) eigenvalues versus ko (solid =real, dashed =imaginary parts). Symbols m, e, mark the corresponding ko values in
(c).Hopf points correspond to zero real part and branch points to zero imaginary parts of AJ*. The eigenvalues in (b) and (d) are similar and the Hopf and B bifurcations

closely relate to bifurcations of the RDE model.

5.1. The well-mixed system

A standard bifurcation analysis of the well-mixed variant of the
system (2) with respect to ko leads to Fig. 2(a), where we display
the steady state A. There is a single unique HSS that is stable for all
ko values, given the default parameter set.

5.2. Local perturbation analysis (LPA)

We set up LPA equations for the full actin-regulatory protein
model (see Eq. (C.1)). In doing so, we treat the non-diffusive
F-actin and the active protein A as slow variables and inactive
protein [ (rapidly diffusing in the cytosol) as a fast variable.
Consequently, the LPA equations have variables A%, %, F%, Al, F..

A bifurcation analysis of the LPA equations (C.1) is shown for A
versus ko in Fig. 2(c). Comparing this diagram to the diagram in
Fig. 2(a), the monotonically increasing well-mixed branch (here-
after denoted the “global branch”) appears in both as expected. We
also find new features in the LPA diagram, including a second
“local branch” emanating from branch points (BP). This local
branch represents additional states that only the local variables
can attain.

Interpreting the LPA bifurcation diagram of Fig. 2(c) from left to
right, we first find that for small ko, the global branch is stable to
small perturbations, whereas the local branch has both
unstable (dashed) and stable (solid) regions. Taken together, the
global and local branches demonstrate a response threshold: a
local perturbation large enough to elevate A above the (dashed)
threshold will be attracted to the upper (stable) local branch
while the global variables remain at their unique fixed point
(lowest, global branch). Significantly, as the background rate
of activation of regulatory protein increases, the size of the

stimulating pulse needed to produce a patterned response
decreases. This result implies that the system becomes more
sensitive to stimulation.

In the LPA diagram, we also find Hopf bifurcations (H) at which
the global branch loses stability. Here, the three “well-mixed”
eigenvalues have negative real parts (indicating stability). Thus the
instability must arise from the two remaining “local” eigenvalues,
in this case complex conjugates whose real and imaginary parts
plotted in Fig. 2(b). At H, these eigenvalues cross the imaginary
axis. This fact indicates that oscillations arise not from the kinetics
of the well-mixed system (where no interesting bifurcations take
place) but rather from the interactions of the local variables A, FL

We compared eigenvalues of the LPA system and of the full RDEs
in the limit D, -0, D, —oc. From Fig. 3(a) and (b), we see that LPA
eigenvalues provide a reasonable asymptotic approximation of
Turing eigenvalues. This confirms that Property 2 in Appendix A
holds for this three component system. The significance of this
result is that the full model exhibits responses that depend on
spatial aspects of the system that are absent in homogeneous (well-
mixed) variants of the model.

Further notice that between the branch points (BP) in Fig. 2
(b) and (c), the local eigenvalues are real and positive, indicating
simple Turing instability. Between the Hopf and branch points,
eigenvalues are complex conjugates with positive real part, corre-
sponding to a traveling wave (oscillatory Turing) instability, as
found in Yang et al. (2002) and Wang et al. (2007) for example.
The LPA thus predicts four stability regimes. (a) Between ky =0
and the bifurcation labeled H, sufficiently large perturbations
induce patterning (nonlinear instability). (b) In the range from H
to BP, a wave instability is present. (c) Between the two BP
bifurcations, a stationary Turing instability is present. (d) From H
to ko = oo, no patterning is possible.
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Fig. 4. Left: The s,, ko two-parameter continuation of the H and BP bifurcations seen in Fig. 2(c). GH and BT represent co-dimension 2 Generalized Hopf and Bogdanov-
Takens bifurcations. At BT, the solid branch switches from being a neutral saddle to a Hopf bifurcation. At GH, the criticality of the Hopf curve changes. s;=0.5, ¢ = 0.1 and all
other parameters as in Table 1. Right: the same parameter plane showing classification of the resulting long-term dynamics into one of several patterns: no pattern (o),
boundary localized ( ¢ ), reflecting pulse (+), pulse trains (%), and a single pulse ( x ). Arrows and letters indicate the parameter values corresponding to long term
simulations in Fig. 5. The LPA s,, ko two-parameter continuation of the Hopf bifurcations (curves) is superimposed.

5.2.1. Role of conservation

Consider for the moment the actin-NPF model equation (2)
with the quantity I fixed as a parameter. Then the remaining A, F
system has an activator-inhibitor structure that can be shown to
oscillate. This is the source of the Hopf bifurcation and corre-
sponding oscillatory dynamics of the local variables A', F!, for
which [ plays the role of a parameter (since I is fixed at its steady
state value). The global variables A%, ¥, F%, on the other hand,
satisfy the conservation law A® +I¥ =1 and evolve according to
the kinetics of the well-mixed system, which exhibits a single
stable steady state without oscillatory dynamics. We thus see that
a minimum of two slow variables (A, F) are required to produce the
complex pair of local eigenvalues corresponding to oscillations on
a local scale. The third fast variable (I) is necessary to suppress
these oscillations on the global scale and stabilize the well mixed
system. In this way, the A, I, F model is a minimal system
demonstrating the type of dynamics observed in our spatial
model.

5.3. Two-parameter bifurcation analysis

In order to investigate the interplay between the activation
parameter ko and the F-actin negative feedback s, we next
perform a two-parameter bifurcation analysis, tracking both the
Hopf (H) and branch point (BP) bifurcations, Fig. 4. Interesting
dynamics lie along a diagonal region in Fig. 4(a), where the
activation and feedback are roughly balanced. While Fig. 2
(c) identifies both wave and Turing instabilities for s,=0.7, there

is a region at higher s, values where only wave instabilities occur.
As s; is increased further, the Turing region shrinks and termi-
nates. This observation indicates that (a) stationary Turing
instabilities are prominent at lower s, values, (b) oscillatory wave
instabilities take over at intermediate s, values, and (c) yet higher
s, values stabilize the HSS.

For low values of s,, kg, in Fig. 4(a) the Hopf bifurcations are
sub-critical and large amplitude oscillations result immediately
upon crossing these bifurcation points. When s,, kg increase, the
Hopf branch undergoes a Generalized Hopf bifurcation (GH),
becoming super-critical. Bogdanov-Takens (BT) bifurcations repre-
sent the intersection of the Hopf and BP curves. For s, below these
bifurcation points, the H branch represents neutral saddles rather
than an oscillatory bifurcation. As s, is increased, the neutral
saddles cross through the BP curve becoming true Hopf points.

5.4. Long term evolution of patterns

In order to gain insight about how predictions of LPA and
standard stability analysis compare with actual long-term evolu-
tion of patterns, we carried out full numerical simulations of the
model equations (2). We explored the simulated behavior (with
default parameters as in Table 1), and compared the actual
patterns observed to the regimes obtained in the LPA two-
parameter continuation of Fig. 4(a). To do so, we used an auto-
mated classification algorithm (Holmes et al., 2012a) for broad
pattern classification, as shown in Fig. 4(b).
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Fig. 5. Simulations of the full model, showing A(x, t) as intensity plots versus x (vertical) and t (horizontal) axes. (a—c): transitions represented by arrows (a—c) in Fig. 4b,
(s increases from bottom to top in each column). (d-f) Exotic patterns at the boarders of regimes, as in Fig. 4b. (a) ko = 0.05, s,=0.4, 0.56, 0.6, (b) ko = 0.15, s, = 0.8,1.02, 1.1,

(€) ko=0.2, s, = 11,124, 1.3, (d) ko =0.2, s, = 0.83, (€) ko = 0.25, s, = 1.3 (f) ko

For each s,, ko grid point, a simulation is run and we indicate
one of five basic behaviors: no pattern (o), boundary localized
( ¢ ), reflecting pulse (+), pulse trains (), and a single pulse ( x ).
As suggested by the LPA continuation curves, interesting dynamics
occur along the diagonal in the s,, kg plane, where activation (ko)
and feedback mediated inactivation (s,) of the regulatory protein
roughly balance. The labeled arrows in Fig. 4(b) correspond to
simulations in Fig. 5.

We examined in greater detail some of the transitions between
pattern types. Here we comment on several examples, indicated
by the span and direction of arrows in Fig. 4(b). In each case, we
explain how the pattern changes over a parameter sweep (base to
tip of arrow). Then, we show these transitions (bottom to top) in
correspondingly labeled panels in Fig. 5. The value s, =0 corre-
sponds to pure wave-pinning and hence, to a polarized state.
(a) For relatively low values of s, and kg, a transition from static to
dynamic patterns is seen: As s, increases, the polarized state first
undergoes local oscillations at the boundary, and then transitions
smoothly into a reflecting pulse solution. (b) At larger ko, s
values, the width of the reflecting pulse decreases. Eventually, a
single pulse traverses the domain once and terminates. (c) For
larger s,, an oscillating amplitude is superimposed on the traveling
wave train. In both (b) and (c), the pulse is suppressed smoothly
with increased s, eventually leading to transient dynamics. A
few additional exotic patterns (d-f) are also shown in Fig. 5. We
found that at higher values of s, (not shown), there is complete
suppression of dynamics.

Further comparing long-term behavior with the LPA bifurcation
structure, we see that different wave regimes can be identified
with distinct regimes depicted in the LPA. Wave trains are
associated with a Turing bifurcation in which a pair of complex
conjugate eigenvalues have a positive real part (“non-stationary
Turing bifurcation”). The oscillatory nature of these waves arises as
an instability of the HSS, and is predicted by linear stability
analysis. In this sense, the wave trains occur “spontaneously” in
response to small perturbations or noise. In contrast, reflecting
waves occur either in (1) a stationary Turing regime (a single real
positive eigenvalue) or (2) linearly stable regime with a threshold
that can be breached by a sufficiently large perturbation. In the

=0.3, s =1.36 (see also Table 1).

stationary Turing regime, noise initiates patterning but without
any propagation dynamics. Once this pattern grows, nonlinear
effects become important and lead to propagation. Thus, reflecting
waves are inherently a nonlinear phenomenon, and they can be
either spontaneous or excitable. In both regimes (1) and (2), the
dynamics of reflecting waves cannot be predicted based on linear
stability analysis. We conclude that, while the LPA does not
directly predict long-term patterns, it allows some inferences
about how stability properties correlate with dynamics. In parti-
cular, LPA suggests that reflecting waves and wave trains are
initiated in fundamentally distinct ways.

5.5. Pulse width/velocity

To further characterize how patterns change as the parameters
of the model are varied, we investigated pulse width and velocity
(for reflecting pulses and pulse trains). Results for ko and s, are
shown in Fig. 6. Pulse width was computed at the half maximum
and velocity was computed by tracking the location of the
maximal value of A as a function of time and computing the slope
of the resulting line. This width increases as the activation rate ko
increases (or as the negative feedback parameter s, decreases), as
expected. Wave speed decreases as kg is increased (or as s, is
decreased) which is unusual, since wave velocities typically
increase with activation rates. Both patterns, reflecting pulses
and pulse trains, exhibit similar parameter dependence.

The dependencies of pulse velocity and width on parameters
are particularly interesting as they depart from expectation. In
classical wave propagation models such as FitzHugh Nagumo
(compared to our model in Section 6), propagation velocity
increases with an activation rate, in contrast to what we find here.
We can explain this by noting that in our model, the rate of
activation depends not only on the rate parameters kg, y, but also
on the available pool of inactive form I. As that pool is depleted,
propagation velocity falls (Mori et al., 2008). Thus there is an
inverse relationship between pulse width and velocity, larger
pulses deplete the inactive pool further, slowing propagation. So
paradoxically, increasing the rate of activation (ko) increases the
depletion of this pool and slows propagation. Similarly, it is
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Fig. 6. Pulse width (solid) and velocity (dashed) versus ko (left) and s, (right) for reflecting pulses (top) and pulse trains (bottom). Width is measured at the pulse half
maximum for A, and velocity is determined by plotting the position of the pulse maximum as a function of time and computing the slope. Parameters: (a) s, =0.8,

(b) ko =0.1, (c) s, = 1.0, and (d) ko = 0.25. All other parameters are as in Table 1.

depletion of the inactive protein limits the width of the activated
regions.

Fig. 7 supports this relationship. Fig. 7(a) shows that as the total
pool of regulatory protein, Typr is increased, the pulse width
increases commensurately. This increase in pulse width depletes
the pool of inactive NPF to roughly the same level at each value of
Tnpr (data not shown). For this reason, while pulse velocity
increases, it does so by a smaller fraction since the net activation
rate remains roughly the same.

5.6. The F-actin (refractory) time scale, e

So far, we have explored the roles of activation rate and
negative feedback parameters. Small values of ¢ correspond to a
slow F-actin response. Varying this parameter will increase or
decrease the influence of the F-actin on its regulators, which
corresponds to a change in the timescale for the slow (refractory)
negative feedback. It is well known that the timescale of
refractory negative feedback is an important determinant of
oscillatory dynamics. Hence, we here explore the role of ¢ and
characterize the conditions required for these oscillatory bifurca-
tions to occur.

In Appendices C.1 and C.2, we show that ¢ does not affect the
values of the steady state of the LPA-system g* = (A%, I°, F°, K’, Fl)
but does affect stability. Briefly, the LPA Jacobian is in the from

HiALFY Hy@ALFY
ekn —eks

Q)

Jo O
JLP - |:]:<t ]loc:| » Where Jloc -

Jo is the well mixed Jacobian (A.1), and Jj,. is the Jacobian of the
equations involving the local variables. Both H; (Eq. (C.7)) are
independent of e. J.,: does not affect eigenvalues due to the block
lower triangular structure. Since eigenvalues of J, are negative, Jjoc
alone governs the appearance of Hopf bifurcations and oscillations,
and its eigenvalues are

Ay = % (Hq —6‘](5) + %\/(H] + 6"(5)2—46‘an2. (8)

(These explicitly depend on ¢.) The conditions for a Hopf bifurca-
tion are now

I(A) = (Hy + eks)®—4ekyHy <0,  R(A)=H;—eks=0 )
which can be reformulated as
kn
e=H/ks=By, e< I—ZHZ::BZ. (10)
<S

For a fixed set of parameters excluding ¢, the above implies that
there is a maximum value ¢* where B;<B,, for which a Hopf
bifurcation exists. As an illustration, we plot e = By (ko) for two
parameter sets in Fig. 8 (a) and (c) and LPA diagrams for e =0.3 in
Fig. 8 (b) and (d). A Hopf bifurcation exists wherever the curve
¢ =B lies below the curve ¢ =B,. Where B; > B,, the B; curve
represents saddle points without oscillatory instabilities. The
associated LPA diagrams in panels (b) and (d) showing the
presence (or absence) of Hopf bifurcations are consistent with
the results of this eigenvalue analysis.

Thus, as the relative timescale of the refractory negative feed-
back = 1/e decreases, oscillatory dynamics are suppressed. Intui-
tively, the refractory timescale should be long enough that large
deviations of A' driven by activation are achieved before suppres-
sion by feedback. This timescale dependence often occurs in single
refractory feedback systems, such as the FitzHugh Nagumo (FHN)
model. While these conclusions are based on LPA, the fact that
local eigenvalues approximate eigenvalues of the linearized RDEs,
means that oscillatory linear instabilities would be seen in the
original RDE system.

This refractory timescale does not affect the branch point (BP)
bifurcations since those result purely from the presence of local
branches representing ¢ independent steady states.

We explored the effect of ¢ on long term behavior. Keeping
other parameters at their default values (Table 1), we varied ¢ from
0.001 to 0.5 in Fig. 9(a). When ¢ is small, F-actin responds slowly,
somewhat decoupling the regulatory protein equations. Conse-
quently, that system exhibits wave pinning dynamics, and static
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patterns result (panel a, top left). For large values of ¢, actin
polymerization and regulatory protein dynamics occur on the
same timescale, also resulting in static patterns (panel a, bottom
right). Patterning is most dynamic between these extremes.

Finally, we asked how ¢ affects pulse width and velocity. Results
for reflecting pulses are shown in Fig. 9b. Similar results were
found for pulse trains (not shown). Increasing e¢ by a factor of
2 results in a 20% increase in the velocity, as expected, but hardly
affects the width of the pulse (a mere 2% change). The latter result
is counterintuitive, since a larger feedback rate ¢ should suppress
the trailing edge faster, leading to smaller activated regions.

6. Comparison to FitzHugh Nagumo model

It is illuminating to compare our F-actin regulation model with
the FitzHugh Nagumo (1969) model, a well-known elementary
model for excitation waves. Both models have a nonlinear wave
generator, and a refractory negative feedback.

In the FHN system, one equation consist of nonlinear (“cubic”)
kinetics that engenders bistability and hysteresis. A second linear
equation describes the evolution of a “recovery” (or refractory)
variable whose feedback leads to cycling around the hysteretic
loop. The system has limit cycle oscillations even in the space-
independent case. Diffusion spreads the excitation in space,
spawning a traveling wave-front separating regions of low and
high activity that sweeps entirely through the domain. Refractory
negative feedback suppresses the trailing edge of that wave,
producing a traveling pulse with a spatially localized high state
separating low states on either side. For this model, pulse velocity
increases with respect to an activation rate that resembles the
activation parameter ko, and pulse width decreases as an ¢ like
refractory rate parameter increases.

In the F-actin regulation model, our results indicate that
stability properties and long term dynamics of (2) are not merely
inherited from the behavior of the space-free system. In the
parameter range of interest, and in absence of feedback (s, =0),
that underlying system has a single steady state. Turning on the
refractory feedback (s, > 0) does not induce limit cycle oscilla-
tions. Rather, diffusion plays a vital role in determining the wave
and pulse behavior. So, in contrast to the standard FHN system, the
reaction kinetics alone do not sustain oscillatory dynamics; in fact,
diffusion is required for wave formation. The reason for this is that
in contrast to the FHN system, instead of traditional bistability
associated waves, the wave generating A, I system of proteins
sustain a “wave pinning” behavior, for which diffusion is a key
ingredient. Refractory feedback interacts with this form of wave
generation to produce traveling wave and Turing bifurcations of
the full RDEs. Conservation of A+I is a key feature that gives rise to
these interesting stability properties. With I held fixed, A and F
exhibit typical activator/inhibitor oscillations on a local spatial
scale (as demonstrated by the local variables). The conservative
dynamics of I on the other hand stabilize the spatially homo-
geneous system.

Furthermore, as shown above, the long-term dynamics of the
F-actin regulation model and those of FHN differ significantly. In
our model, we find both persistent and transient dynamics in
linearly stable parameter regimes, whereas FHN shows only
transient single pulse dynamics. Second, polarized patterns,
boundary oscillations, and reflecting wave dynamics are not
exhibited by the FHN system. Third, pulse velocities depend
inversely on the regulatory protein activation parameter kg rather
than directly. Fourth, the size of an activated region is insensitive
to the refractory timescale e. Finally, our results on the relationship
between the total pool of regulatory protein, Typr, and pulse width
and velocity (Fig. 7) also demonstrate the importance of

conservation of the total amount of regulating protein (Tnpr). This
is the key structural property differentiating our model from FHN.

7. Discussion

At present, it is not certain whether actin waves are secondary
phenomena, or whether they have functional significance to cell
behavior. It has been speculated that the waves of F-actin aid cells
to explore their environment (Weiner et al., 2007; Schroth-Diez
et al., 2009), engulf particles (Gerisch, 2010), and/or organize cell
edge protrusion (Driscoll et al., 2012). Whether or not such waves
have functional significance, their existence informs models for F-
actin and its regulators. Here we have shown that a minimal
model, combining a caricature of small GTPases (the “wave
pinning” A, I system) with feedback to/from F-actin is capable of
producing a rich diversity of patterns: static polarization, reflect-
ing waves, wave trains, transient pulses, and persistent boundary
oscillations, with a variety of smooth transitions between them.
Further, it is one of the simplest models exhibiting such behavior.

In analyzing regimes of behavior of the model, we introduced
and applied the local perturbation analysis (LPA), a method for
determining nonlinear stability properties. This method rests on
the observation that for systems with a large diffusion disparity,
the response to an arbitrarily tall but spatially localized perturba-
tion can be approximated by a set of ODEs for global (fast) and
local (slow) variables. LPA bifurcation plots (Figs. 2 and 4a) then
provide useful information about growth or decay of that pertur-
bation. While the predictions are (like all stability analyses) short-
term, they help to highlight how patterning is initiated: whether
through arbitrarily small amplitude stimuli, or as threshold
responses to perturbations of some finite size. In this sense,
LPA provides a combination of linear and nonlinear stability
information.

It is worth mentioning that LPA is uniquely suited to analyze
biologically motivated systems. For one thing, it is capable of
detecting both linear and nonlinear patterning phenomena. Linear
and nonlinear methods can in some cases be combined to provide
similar or even more complete information. However this is
usually possible only in specific situations where functional forms
are amenable to analysis. Furthermore, such methods are usually
only applicable in systems involving a small number of variables.
We have applied LPA to substantially larger and more complex
systems without particular difficulty. Examples can be found in
Holmes et al. (2012b), Marée et al. (2006, 2012). Since LPA takes
advantage of existing bifurcation software, the technical/computa-
tional “cost” of its implementation is low compared to other
methods.

Applied to the actin-waves model, LPA reveals two distinct
linearly unstable regimes (both stationary Turing and oscillatory
wave instabilities, in agreement with classical linear analysis), and
a third regime whose homogeneous steady state is unstable to a
sufficiently large perturbation (not detected by linear methods).
Simulations of the full model confirmed those LPA predictions.
For example, the two-parameter LPA bifurcation diagram (Fig. 4)
predicts that interesting dynamics occur when there is a rough
balance between activation (kg) and inactivation (s,) parameters,
in agreement with simulations. Wave trains were found to
correlate with the wave instability detected by the LPA, and
reflecting waves with the stationary Turing instability and thresh-
old patterning regimes. Further analysis showed oscillatory
instabilities require the actin feedback rate (¢) to be smaller than
the protein activation rate.

While aspects of the model were motivated by the refractory
and bistable components of the FitzHugh Nagumo model, we
showed that its behavior contrasts in important ways. For one
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thing, our model has no inherent oscillatory features when the
system is well-mixed and the spatial distribution is essential.
Second, pattern regimes are significantly more diverse than those
found in the FHN model. Third, pulse width and velocities depend
in counterintuitive ways on parameters. Finally, the conservation
of A+I in our model appears to be a distinguishing feature that is
vitally important in determining these dynamics.

We can use several features of the model to suggest experi-
mental tests. Among these are the role of conservation of the
regulatory proteins and the predicted inverse relationship
between pulse width and velocity. First, we predict that any
perturbation that increases NPF activation would lead to wider,
slower waves. Consequently, increasing GEF activation or over-
expressing a GEF (which corresponds to increasing the basal
activity ko, of NPF's such as Cdc42 or Rac) should produce this
effect. Conversely, overexpressing or increasing GAP activity
(identified with increasing the rate of inactivation of GTPases, s1)
should have the opposite effect, producing thinner, faster waves.
Perturbations that magnify F-actin mediated feedback, indicative
of an increase in s, should produce this result. Overexpression of
Arp2/3, WASP, or the Wave complex (identified with an increase
in k;;) would, by enhancing F-actin production, also lead to thinner,
faster waves. Finally, overexpressing GTPases such as Cdc42 or Rac,
which is equivalent to increasing Typr should lead to wider waves
while having a modest effect on propagation velocity.
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Appendix A. Comparison of local perturbation analysis (LPA)
and linear stability (Turing) analysis

Here we provide details for the comparison of the nonlinear
LPA stability analysis method to the linear Turing stability analysis.
Consider the homogeneous steady state, (u,v®) of (3). Linear
stability to spatially nonuniform perturbations is determined by
eigenvalues of

D, O
| fu Sy . 2| Fu
Jie= {gu gv}(usw (k) { 0 D,

These eigenvalues are growth rates of a small periodic perturba-
tion of the form cos (kzx). Define [4¥]; to be those eigenvalues.
Note that (u8, v&, u') = (us, v*,u%) is a fixed point of the LPA-ODE's
(5). Thus stability of the HSS to a localized perturbation (LPA
stability) is determined by eigenvalues of (6), reproduced below

. (A1)

fu@,v%p) f,(0%,v%;p) 0
Jip= | &, VD) g, v p) 0 (A2)
0 i, vipy (w5, v*;p)

Property 1: LPA recapitulates linear stability results for the well-
mixed system (4).

Verification: notice that (5a) and (5b) decouple and represent
the well-mixed system (4). As a result, (A.2) is block lower
triangular with the top left block representing Jo (A.1). So {/1?},-
are eigenvalues of (A.2) Nicholson (1995) and any instabilities
associated with the k=0 mode (well-mixed instabilities) are found
by LPA. From here on, we refer to {A?}i as well-mixed eigenvalues.

Property 2: LPA recapitulates linear stability results for the full
reaction-diffusion system (Turing stability analysis).

Verification for two variable systems: note that the remaining
eigenvalues of J;p are determined precisely by the eigenvalues of

fu@®, v*; p). Define these to be {4"}. We compare the Turing
eigenvalues {/14‘} with the remaining LfJA eigenvalues {/1]“’ }j in the
extreme diffusion regime where the LPA is valid. A simplified
setting with one fast and one slow diffusing variable is considered.
In this setting, the eigenvalues 4%, 2% are roots of the characteristic
polynomial

(fy—7*k*Du—2)(g,~7*k*Dy—2)~f 8, =0. (A3)
In the LPA regime, D, < 1 < D,, these roots satisfy
H=o001), »=-2K*D,+00). (A4)

Then clearly 45 has negative real part independent of the system
parameters and does not contribute to stability properties. Con-
sider instead the O(1) eigenvalue. Substituting into (A.3)

(fu—n*k*Dy—2%) - O(D,)—f g, = 0. (A5)

Thus, X = f, W%, v; p)—z2k*Dy + O(D, )=f, (s, v*;p) =2 in the
relevant limit. This Turing eigenvalue contributes to stability and
as we have shown here, is approximated by an LPA eigenvalue. We
will refer to {4}, as “local” eigenvalues. For the 3x3 (A, I, F)
system, where this verification does not apply, we show numeri-
cally that Result 2 still holds.

Appendix B. Nondimensionalizing the model

The equations of the full actin waves model are

O FA1LF)+ Dy, (B1a)
ol N
a=—f(A,LF)+D1A1, (B.1b)
oF
i h(A,F), (B.10)
with
< A F
f(A,I,F)=5 ko—i—yT I—( 51 +s=——|A|, (Bld)
Ao +A3 Fo +F
h(A, F) = &(knA—k;F). (B.1e)
Equations for A, I imply that
L ~

/ (A, t) + I(x, 1)) dx = Tnpr (B.2)

0

is constant.
We translate the model into dimensionless form by rescaling
the variables as follows:
- A - I
A= =, I= =,
Tner Tner

F=f o5 x=% (B3)
Fo L

After making these substitutions and ddropping the bars, the
resulting nondimensional equations become (2) with

Ag= =— N D=~7, D= = 5 == kn = = B.4
T T2 T2 T8 TR ®4

and
1

/ (A, £) + I(x, £))dx = Tapp = 1. (B.5)
0

Note that while total protein amounts have been normalized to one,
we will allow Typr to vary in order to investigate the effects of protein
amounts on dynamics. In this way, Typr parameterizes total protein
levels relative to a typical amount T nee. Further note that several rate
parameters from the original model (ko, y, S1, Sz, kn, ks) were
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already dimensionless as a result of aggregating the timescale infor-
mation into 3, é.

Appendix C. LPA equations for the model

The LPA equations for the model are

daé dA!

= f(AS, I8, F®), = f(A B, F, (C.1a)
g |

ddit = eh(A%, F?), (ZTI; = eh(A, FY), (C.1b)
g

‘fiit = —f(A%, 5, F®) (€10

with kinetics as defined previously in (2).
C.1. LPA system steady states

The steady state of the LPA-system g¢* = (A°, I, F°, Zl, 17') is
independent of . It satisfies

Y ; A%y g F* g
Ag|*=00rlg|*=0=> ko +y——s= | =51 +S0—— K,
q q 0 J’A(3)+(Ag)3 1 21+Fg
(C2)
- @'y F \w
Al =02 ko + y— = S1+ Sy — |A, (C3)
q 3 1 1
A +@A) 1+F
‘g =g kn—g | = knt

Further, using conservation (I¥ 4 A® = Typr), we can eliminate Ig.
Then, after some algebra, the steady states satisfy

78 783 -
A% sy +s k”A_g ko +7 3(A )_g3
ks + k,A Ay + (AY)

1 —1 -1
knA A
_> kot r—A ) €5)
ks + koA A+@AY

—
=A <s1 + 52

Clearly one solution satisfies A =§g, F=F¢ as expected, corre-
sponding to the HSS.

C2. LPA system stability

We compute the Jacobian of the LPA system equation (C.1) and
find

Jo O Hi(ALF) HyALFY
= h = ’ >
Jue [Jexr Jioe | where Jic ekn —eks

Jo is the well mixed Jacobian (A.1), Jex is extraneous and does not
affect eigenvalues, and

} , (SO

3,A2(AY? F! of
HiAL Py =220 (T A8~ 5]+ 50— | =2 C.7
1( ) (Ag+(Al)3)2( npf ) 1 21+F1 aAI ( )
1
|l SA of
HyA FYy = AP o (C.8)

Appendix D. Numerical implementation

To explore stability regimes and compare predictions of the
analytic methods, we carried out a bifurcation analysis of the
ODEs corresponding to the LPA and the well-mixed system. This

computation is carried out using the bifurcation package Matcont
(Dhooge et al., 2003) of Matlab (MathWorks Inc.). Computation of
Turing eigenvalues, LPA eigenvalues, and quantities associated
with the refractory timescale ¢ were performed using Mathema-
tica (Wolfram Research). To track the long-term evolution
of these patterns we carried out numerical simulations of the full
RDEs, (2) in 1D using a Crank-Nicholson discretization scheme in
Matlab.
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