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1 Geometry and conventions

Throughout the model derivations, we consider a 1D cell with length L. We describe densities in terms
of a single spatial variable 0 ≤ x ≤ L. We denote x = L as the “right” and x = 0 as the “left” cell end. A
microtubule considered to “face right” if it is oriented with plus end towards x = L and minus end towards
x = 0. Similarly, we describe motors moving right or left according to their direction to x = L or x = 0.

2 Microtubule Distribution Model

We model the assembly and disassembly of microtubules (MT) by tracking the growth and catastrophe
of their plus ends. We assume that minus ends are trapped in gamma-tubulin ring complexes distributed
through the hyphae and neither grow nor shrink. The number of right-facing, growing MTs with plus-ends
in (xp, xp + dx) and minus-ends in (xm, xm + dx) is denoted ρR

g (xp, xm, t)dxmdxp.
The dynamics of MT growth and shrinkage can be described by the Dogterom-Leibler equations (1).
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where vg, vs are growth and shrinkage velocities, kc, kr rates of catastrophe and rescue of MT ends.
We assume equal nucleation probability for both directions, so that MT are spawned (with new pointed

ends coinciding with the minus end location at gamma-tubulin ring complexes) growing to left and right
with equal nucleation rates (knuc/2). This implies that

+vgρ
R
g (xp, xp, t) =

knuc

2
, −vgρ

L
g (xp, xp, t) =

knuc

2
.

Let lnuc represents the size of the tip region. Then, since no new MTs are nucleated at either cell tip or
septum, we assume that knuc depends on the location as follows:

knuc =

{

k0
nuc, xm ∈ (lnuc, L − lnuc),

0, otherwise.
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While the value of the parameter k0
nuc affects the MT and plus ends solutions, it does not affect the ratio

of right and left facing MT (nor the plus ends ratio). Thus, as we show later, this parameter does not
affect the dynein or endosome distributions that we obtain in our models (discussed below).

At the ends of the cell, we assume that the flux of arriving MT ends is balanced by flux of MT ends
shrinking away. This ensures that MT tips do not disappear at the cell ends and results in the boundary
conditions (at x = 0, L),

vgρ
R
g (L, xm, t) = vsρ

R
s (L, xm, t),

vgρ
L
g (0, xm, t) = vsρ

L
s (0, xm, t).

The above system of equations is solved at steady state. From the resulting solutions we can obtain
several experimentally measurable observables. First, we define the array polarity in plus-end density as
follows. The density of right moving plus ends at x consists of all plus ends moving right whose minus
ends are to the left of x, as depicted by the integral

pR(x) =

∫ x

0

[ρR
g (x, xm) + ρR

s (x, xm)]dxm. [1]

Similarly the density of left moving plus ends at x is

pL(x) =

∫ L

x

[ρL
g (x, xm) + ρL

s (x, xm)]dxm. [2]

The fraction, p(x), of right moving plus ends at x is then

p(x) =
pR(x)

pR(x) + pL(x)
.

We also obtain the MT array polarity. Let NR(x) be the total number of right-facing MTs in a
cross-section at x. Such MT have minus ends “to the left” of x and plus ends “to the right” of x, so

NR(x) =

∫ L

x

∫ x

0

[ρR
g (xp, xm) + ρR

s (xp, xm)]dxmdxp. [3]

Similarly, the total number of left-facing MTs, NL(x) is given by

NL(x) =

∫ L

x

∫ x

0

[ρL
g (xp, xm) + ρL

s (xp, xm)]dxpdxm. [4]

The fraction, P (x), of right facing MTs is then

P (x) =
NR(x)

NR(x) + NL(x)
. [5]
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Figure 1: A comparison of results for MT distribution (Fig 2 of main text) for (A) shorter, (B) normal,
and (C) longer microtubules. The catastrophe rate (kc) was the only parameter adjusted for A,B,C.
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As noted earlier, k0
nuc affects NR, NL, pR, pL, but not the ratios P (x), p(x). Only P (x) is used later on

in the dynein and endosome models. We solved the steady state system of MT equations and boundary
conditions. The full solutions (not shown) led to the expressions for the functions NR, NL as follows:

NR(x) =
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and the expressions for the plus and minus ends density pR(x), pL(x) are

pR(x) =











0, 0 < x < lnuc
k0

nucλ

2
( 1

vg
+ 1

vs
)(1 − e

lnuc−x
λ ), lnuc < x < L − lnuc,

k0
nucλ

2
( 1

vg
+ 1

vs
)e

−x
λ (e

L−lnuc
λ − e

lnuc
λ ), L − lnuc < x < L,

pL(x) =











k0
nucλ

2
( 1

vg
+ 1

vs
)e

x
λ (e−

lnuc
λ − e−

L−lnuc
λ ), 0 < x < lnuc,

k0
nucλ

2
( 1

vg
+ 1

vs
)e

x
λ (e−

x
λ − e−

L−lnuc
λ ), lnuc < x < L − lnuc,

0, L − lnuc < x < L,

where λ, the characteristic MT length, is

λ =
vgvs

kcvs − krvg

. [6]

Based on typical MT parameters (see Table 1), the mean length of MT is λ ≈ 4.8µm. Figure 2 in the main
text shows (B, E) the distribution of right and left facing plus-end densities pR(x), pL(x), (C, F) right and
left facing MT densities NR(x), NL(x) and (D, G) the right:left ratios of plus ends p(x) and of MT P (x).

2.1 Shorter and longer microtubules

We asked how the predicted mean microtubule length of ∼ 5µm affects our results. We explored this
using faster or slower rates of catastrophe. Consequently, we simulated MT dynamics for both isotropic
nucleation and inhibited end zones, as in Figure 2 of the main text, but for values of kc that were (A) half
(B) the same as, or (C) double the WT value. Results are shown in Fig. 1. We find that the qualitative
results are insensitive to this perturbation in mean MT length: both the values of densities and polarities
in the interior, as well as at x = 0, L are highly similar. This suggests that the MT nucleation inhibition
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zones are the primary determinant of the MT array pattern. We find some subtle changes: For larger kc

(smaller MT), the transition zones are sharper. This is intuitively clear, since, according to [6], the rate
of spatial exponential decay 1/λ increases as kc increases (with other parameters kept fixed), making the
spatial transitions more abrupt.

3 Dynein Dynamics

In modeling dynein, we let di(x, t) represent the density of dynein motors per µm of hyphal length.
Dynein can either move freely (F ) under its own power (towards the minus end of a MT) or it can be carried
by a kinesin-1 (K) moving towards a plus MT end. (There is also a subpopulation of dynein being trans-
ported by kinesin-3 via attachment to an EE. We neglect a sixth subpopulation of dynein currently trans-
porting EE.) Furthermore, in some but not all models, we consider the possibility of exchange with a cyto-
plasmic dynein pool that can bind-unbind to/from MT. We use the superscripts i = {KR, KL, FR, FL, c}
to represent the diverse dynein states. For instance, dKR represents kinesin-bound right-moving dynein
and dFL represents free left-moving dynein. Cytoplasmic dynein density is denoted dc.

We explored a number of assumptions about the transition between classes and the timescale of binding-
unbinding, as well as rate of diffusion of dynein in the cytoplasm. These led to a hierarchy of distinct
models at various levels of complexity. See schematic in Fig. 3B of the main text. We first discuss the
boundary conditions and aspects shared by the models. Then we explain the distinct models and their
predictions.

3.1 Boundary Conditions

As the MTs are unipolar and have plus ends at the cell tips, we assume no right-moving kinesin-bound
dynein flux at x = 0. We also assume that total dynein is conserved, so that the boundary flux of the
right-moving free dynein at x = 0 equals the sum of comet released dynein and the reflected flux of left-
moving free dynein. Similar boundary conditions are applied at x = L. These assumptions lead to the
following set of boundary conditions at the cell ends, implemented in each of the models we discuss:

vdKR(0, t) = 0, vdKL(L, t) = 0,

vdFR(0, t) = rrelDL + vdFL(0, t),

vdFL(L, t) = rrelDR + vdFR(L, t).

[7]

The right and left ends of the cell have a distinct behaviour. Hence, we define the subpopulations DL(t)
and DR(t) as the numbers of motors currently sequestered at the left and right ends, respectively. Their
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time evolution is modeled as:
dDR

dt
= vdKR(L, t) − rrelDR,

dDL

dt
= vdKL(0, t) − rrelDL.

[8]

where rrel is the rate at which sequestered dynein is released to left- or right-moving dynein.
In cases where the diffusion of cytoplasmic dynein is considered, the boundary conditions used for dc

are

D
∂dc

∂x
(0, t) = 0,

D
∂dc

∂x
(L, t) = 0.

[9]

We now explain the three distinct types of models and the various cases and submodels in each of these
categories.

3.2 (i) Exchange only on single MT

We first considered the case that dynein and kinesin compete for dominance while walking along a single
MT. In this case, when they exchange roles, their direction also switches (since kinesin walks towards the
plus end while dynein walks to the minus end of a MT). The velocities of kinesin and dynein are not
identical, but for simplicity, we use a single velocity v (∼ 1.6µm/s) for both in our models. We assumed
that the motors remain on a single MT, and that binding-unbinding is negligeably small. Thus, in this
model variant we could ignore the population of dc and consider only four subpopulations of dynein,
arriving at the set of equations

∂dKR

∂t
= −v ∂dKR

∂x
− rkfdKR + rfkdFL,

∂dKL

∂t
= +v ∂dKL

∂x
− rkfdKL + rfkdFR,

∂dFR

∂t
= −v ∂dF R

∂x
+ rkfdKL − rfkdFR,

∂dFL

∂t
= +v ∂dF L

∂x
+ rkfdKR − rfkdFL.

Here rij are transition rates from state i to state j, and v is the motor velocity. The above consist of two
pairs of coupled linear partial differential equations: dKR is only coupled to dFL and dKL is only coupled
to dFR. Setting ∂di/∂t = 0 leads to four ordinary differential equations for the spatial distributions that
are easily solved explicitly.
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Solving the steady state of above system with the boundary conditions [7], [8] we obtain the following
solutions

dKR = c1
rfk

rkf

(

1 − e
rfk

−rkf

v
x

)

, dFL = c1

(

1 −
rfk

rkf
e

rfk
−rkf

v
x

)

,

dKL = c1
rfk

rkf

(

1 − e
rfk

−rkf

v
(L−x)

)

, dFR = c1

(

1 −
rfk

rkf
e

rfk
−rkf

v
(L−x)

)

,

where c1 depends on the total amount of dynein whose mass is conserved. Using parameters from Table 1 in
these expressions leads to the blue curve in Figure 3A of the main text. The dynein distribution predicted
by this model predicts exponential decay near the two cell edges, and very low (exponentially decaying)
dynein density in the bulk middle region.

3.3 (ii) Exchange through cytosol only

Here we assumed that dynein can only transition from MT bound to cytoplasmic, and from cytoplasmic
to one of the four types dKR, dKL, dFR, dFL. This leads to the set of equations

∂dKR

∂t
= −v ∂dKR

∂x
− rkcdKR + rckdc, [10a]

∂dKL

∂t
= +v ∂dKL

∂x
− rkcdKL + rckdc, [10b]

∂dFR

∂t
= −v ∂dF R

∂x
− rfcdFR + rcfdc, [10c]

∂dFL

∂t
= +v ∂dF L

∂x
− rfcdFL + rcfdc. [10d]

We still need a fourth equation, for the cytoplasmic dynein dc. There are two cases to consider, depending
on whether the diffusion of dynein in the cytoplasm is rate limiting, or fast enough to render this sub-
population spatially uniform. Parameters for the exchange between MT and cytoplasm were estimated
manually to produce a reasonable qualitative model behavior.

Case 1: Fast cytoplasmic diffusion
If the diffusion of dc is very fast, then this cytoplasmic reservoir of dynein is spatially uniform, and its

time evolution is governed by

ddc

dt
=

∫ L

0

−2(rcf + rck)dc + rkcdKR + rkcdKL + rfcdFL + rfcdFRdx. [11]

Solving the steady state equations obtained by setting time derivatives to zero in Eqs. [10], [11] and
using the boundary conditions [7], [8] and parameters from Table 1 leads to the steady state dynein
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distribution shown in the left panel of Fig. 2. This distribution also has a biexponential shape, but minor
difference between peak and trough density of dynein (only about 10% difference between the edge and
bulk dynein densities).
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Figure 2: Dynein distribution in Model (ii). Here dynein exchanges between MT-bound and cytoplasmic.
(a) Rapidly diffusing cytoplasmic dynein (assumed spatially uniform). (b) Limited rate of cytoplasmic
dynein diffusion.

Case (2): slow cytoplasmic diffusion
The importance of cytoplasmic diffusion can be quantified by the Peclet number, Pe = vL/D. The

smaller the Peclet number, the larger the role of diffusion relative to advection as a means of transport
of substances over space. In our case, D = 10µm2/s is a typical cytoplasmic diffusion coefficient for
large biomolecules like dynein, and v = 2µm/s is the approximate motor velocity. For dynamics on the
length scale of the entire hyphae, L = 100µm and Pe ∼ 20 indicates that diffusion is negligible relative to
motor velocity. However, we are concerned with dynamics in the tip regions with L ∼ 10µm =⇒ Pe ∼ 2,
indicating that diffusion might be significant. To explore the consequences of diffusion, we replace Eqn. [11]
with a full diffusion partial differential equation for dc

ddc

dt
= D

∂2dc

∂x2
− 2(rcf + rck)dc + rkcdKR + rkcdKL + rfcdFL + rfcdFR. [12]

We use Eqs. [8] at the cell ends as before, and add [9] as boundary conditions on dc. The system of steady
state equations is solved on MatLab. Steady state solutions to this model are shown in the right panel of
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Fig. 2. This model captures both the exponential decay at the cell edges and a sizable difference between
dynein densities in the bulk and the cell edges.

3.4 (iii) Exchange between all states on MTs

Finally, we considered a model that represents both exchange between motors walking on the same MT
and between adjoining MTs. There are many more state transitions to consider in this case. We assumed
that there is a rate-limiting step (e.g., unbinding), followed by a rapid step (e.g. instantly rebinding to
an available neighbouring MT). This avoids the need to track dc in the model, reducing complexity to
a more manageable level. However, the probability of rebinding to a right-facing MT (which determines
the direction of motion once rebound) could, in principle, depend on the local MT array, captured by
the fraction P (x) computed earlier in Eqn. [5]. (The higher P (x), the more likely a transition towards
rebinding a right-facing MT.)

Incorporating the possible state transitions, the dynein dynamics is governed by the following system
of PDEs:

∂dKR

∂t
= −v ∂dKR

∂x
− (rKRKL + rKRFR + rKRFL)dKR + rKLKRdKL + rFRKRdFR + rFLKRdFL,

∂dKL

∂t
= +v ∂dKL

∂x
− (rKLKR + rKLFR + rKLFL)dKL + rKRKLdKR + rFRKLdFR + rFLKLdFL,

∂dFR

∂t
= −v ∂dF R

∂x
− (rFRKR + rFRKL + rFRFL)dFR + rKRFRdKR + rKLFRdKL + rFLFRdFL,

∂dFL

∂t
= +v ∂dF L

∂x
− (rFLKR + rFLKL + rFLFR)dFL + rKRFLdKR + rKLFLdKL + rFRFLdFR.

About the parameters, we assumed

rKLKR = rkkP, rKRKL = rkk(1 − P ), rFLKL = rfk(1 − P ), rFRKL = rfk,

rKLFL = rkfP, rKRFL = rkf , rFLKR = rfk, rFRKR = rfkP,

rKLFR = rkf , rKRFR = rkf(1 − P ), rFLFR = rff (1 − P ), rFRFL = rffP.

We assumed that P = P (x) is the fraction of right facing MT computed in [5] in the MT nucleation
model. A representative result is shown in the red curve in Fig. 3A of the main text and in (Supplement)
Fig. 3.

For some parameter values (rfk = 0.1/s, rkf = 0.01/s, rkk = 0.3/s, rff = 1/s, rrel = 0.1/s and
v = 1.6µm/s), the dynein distribution can develop multiple peaks and troughs, similar to the underlying
MT polarity array distribution. We show the total dynein density by the black curve in Fig. 3(a). By
decomposing this total into its four component motor subpopulations (same figure), we find that the bump
occurs in free dynein (dFR,FL). These bumps result from the discontinuity of the right/left facing MT
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density at x = 10µm and 90µm shown in (Supplement) Fig. 1(B)vii (equivalent to Fig 2G of the main
text). The key to making this bump appear turns out to be decreasing the difference rfk − rkf relative to
parameters listed in the table. A similar dynein distribution occurs for rfk = 0.3/s, rkf = 0.2/s, rkk = 1/s,
rff = 1/s, but with a less prominent bump and lower differences between cell ends and cell center. Keeping
other parameters unchanged and setting rkk = 1/s, rff = 0.3/s leads to loss of the bump, as shown in
Fig. 3(b).
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Figure 3: Dynein Model (iii) includes transitions between all states, with a rapid rebinding. Parameters
used in this model are (a) rfk = 0.1/s, rkf = 0.01/s, rkk = 0.3/s, rff = 1/s, rrel = 0.1/s and v = 1.6µm/s;
a bump is evident in the dynein distribution. (b) rkk = 1/s, rff = 0.3/s (with other parameters as before);
loss of the bump in the total dynein.

We investigated how the microtubule length affects the results shown in Fig. 3(a). As before, we
considered cases with a halved and a doubled value of the MT catastrophe rate, kc. Results are shown in
Fig 4. It is evident that the resultant dynein distributions are highly similar, with a slight displacement
of the bump, and minor (< 10%) change in the background mid-cell level.

4 Early endosome (EE) Dynamics

Let ui represent the density of early endosomes (EE) in state i, where i ∈ {KR, KL, DR, DL}. For
instance, uKR and uDL are the densities of right-moving kinesin-attached and left-moving dynein-attached
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Figure 4: Effect of changing the mean MT length on the dynein distribution. Red curve — reported
catastrophe rate (kc = 2.4min−1); blue curve — half catastrophe (longer MTs); green curve — double
catastrophe rate (shorter MTs).

endosomes, respectively. The transitions between EE subpopulations are shown in Figure 1B of the main
text. There are many transitions, and formally, the structure of the model is as follows:

∂uKR

∂t
= −vKR ∂uKR

∂x
− (fKRKL + fKRDL + fKRDR)uKR + fKLKRuKL + fDRKRuDR + fDLKRuDL,

∂uKL

∂t
= +vKL∂uKL

∂x
+ fKRKLuKR − (fKLKR + fKLDR + fKLDL)uKL + fDRKLuDR + fDLKLuDL,

∂uDR

∂t
= −vDR ∂uDR

∂x
+ fKRDRuKR + fKLDRuKL − (fDRDL + fDRKL + fDRKR)uDR + fDLDRuDL,

∂uDL

∂t
= +vDL∂uDL

∂x
+ fKRDLuKR + fKLDLuKL + fDRDLuDR − (fDLDR + fDLKL + fDLKR)uDL.

Here, for instance, fKLKR represents the transition rate from kinesin-bound left-moving EE to kinesin-
bound right-moving EE. We must now specify the nature of the transition rates f i that we are assuming.

We model transitions between EE states as competing Poisson processes and make two assumptions:
(1) the transition rate from any state into a dynein-driven state is proportional to the local concentration
of dynein. (Since kinesin-3 is constitutively loaded onto the EE (4), the transition rate into a kinesin-
driven state is constant); and (2) the transition rate onto a left-facing (respectively right-facing) MT is
proportional to the fraction of left-facing (respectively right-facing) MTs at that location.

Our model is deliberately agnostic about the molecular mechanism that drives these transition events.
However, we note that the two above assumptions arise naturally in a stochastic tug-of-war model of
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cargo switching. They are also the most natural assumptions in a regulated switching model, since any
alternative transition rates would imply a bias towards a subset of MTs or a subset within a species motors,
and would thus require a further upstream mechanism to explain that bias. Given this motivation, we
used the following forms for the transition rates:

fKLKR = r0P, fKLDL = r0P
d

d0
, fKLDR = r0 d

d0
,

fKRKL = r0(1 − P ), fKRDL = r0 d

d0
, fKRDR = r0(1 − P )

d

d0
,

fDLKL = r1(1 − P ), fDLKR = r1, fDLDR = r1(1 − P )
d

d0
,

fDRKL = r1, fDRKR = r1P, fDRDL = r1P
d

d0
.

Here, d0 is the local concentration of dynein at which transitions to dynein-driven states are equally likely
as transitions to kinesin-driven states. The parameters r0 and r1 are the basal transition rates out of a
kinesin-driven or, respectively, dynein-driven state in the absence of available dynein, d(x) is the local
dynein concentration, and P (x) is the MT array polarity. Many of the above parameters are thus spatially
dependent.

The boundary conditions for this system are

vKRuKR(0, t) = 0, vKLuKL(L, t) = 0,

vDRuDR(0, t) = vKLuKL(0, t) + vDLuDL(0, t),

vDLuDL(L, t) = vKRuKR(L, t) + vDRuDR(L, t).

As before, we assume no right-moving kinesin-bound EE flux at x = 0. Assuming the total EE is conserved,
the boundary flux of the right-moving dynein-bound EE at x = 0 equals the sum of the left-moving kinesin-
bound EE flux and the reflected flux of left-moving dynein-bound EE. Similar boundary conditions are
applied at x = L.

Results of this WT model are shown in Figure 4 of the main text. We also reran this model for longer
and shorter MT by halving and doubling the catastrophe rate kc. Results were practically indistinguishable,
and are omitted for brevity.

To calculate the run length, we use an initial condition with a non-zero value restricted to one edge
and simulate the transport by right-moving motors. We set vDL = 0 and vKL = 0 so that EEs attaching
to a left-moving motor get frozen at their current location. This results in a distribution of EEs along the
cell length which we can interpret as the probability distribution of the distance travelled by an EE before
switching direction. The histogram in the main text (Fig 5) is obtained by counting the number of EEs in
every 10µm of the simulated cell.
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Figure 5: Effect of changing the mean MT length on the run length distribution. Red curve — reported
catastrophe rate (kc = 2.4min−1); blue curve — half catastrophe (longer MTs); green curve — double
catastrophe rate (shorter MTs). Note that the curves are practically identical.

For longer and shorter MTs (kc halved and doubled) we obtain highly similar run lengths, as shown in
Fig 5.

5 Parameter Estimation

Parameter values were estimated from the literature as described below. Table 1 summarizes the values
we used with the source on which they are based.

Parameters for the microtubule model have been well-established in previous theoretical and experi-
mental papers, and are drawn from the classic literature on that subject cited in Table 1. The nucleation
rate for MT, knuc0 depends on local levels of γ-tubulin and the tubulin dimer level, which are not explicitly
considered in our model. We model nucleation implicitly by choosing knuc0 to match the model prediction
for the MT plus ends distribution to data shown in Figure 1C in the paper (4). Equivalently, it can also
be estimated from the total number of microtubules in a cross-section of the cell, N(x).

For the dynein model we adopted the simplest model with dynein-kinesin exchange while walking on
a single microtubule, no unbinding from the MT, and no significant rebinding of freely diffusing particles
(Model (i)). This simplification means that there are only two exchange rate parameters (from kinesin to
dynein walking, rkf and from dynein to kinesin walking rfk). This simple model is analytically solvable,
and results in a prediction for the spatial decay length v/(rfk−rkf) of the exponential dynein distribution.
We fit this value to the approximate observed spatial scale for the dynein comet distribution in Figure 3D
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Table 1: Parameter Used

Parameters Definitions Values Units Source
MT model L length of cell 100 µm (3)

lnuc ”size” of cell tips(no nucleation region) 10 µm (4)
vg MTs growing rate 11 µm/min (5)
vs MTs shrinking rate 37 µm/min (5)

knuc0 MTs nucleation rate 1 µm−1min−1 Estimated
kr transition rate from growing to shrinking 0.44 min−1 (5)
kc transition rate from shrinking to growing 2.4 min−1 (5)

Dynein Model rkf transition rate from kinesin bound to free dynein 0.3 s−1 Estimated
rfk transition rate of free to kinesin bound dynein 0.5 s−1 Estimated
v dynein velocity 1.6 µm/s (3)

rrel comet dynein releasing rate 0.1 s−1 (3)
EE model r0 detachment rate of kinesin-bound EE 0.1 s−1 Estimated

r1 detachment rate of dynein-bound EE 0.08 s−1 Estimated
vKR velocity of right-moving kinesin-EE 2 µm/s (4)
vKL velocity of left-moving kinesin-EE 2 µm/s (4)
vDR velocity of right-moving dynein-EE 1.7 µm/s (3)
vDL velocity of left-moving dynein-EE 1.7 µm/s (3)

in the paper (2). The dynein velocity and comet release rate are both taken from experimental literature.
We adjusted the absolute value of the parameters rfk, rkf manually for a preliminary fit, and refined this
adjustment in the last model phase.

For the endosome model, the velocity parameters vKR,KL, vDR,DL are known, and we had to estimate
r0, r1. To do so, we fitted the model to data for the run length distribution (Figure 3B) in (4). At this
stage, small refinement was made to rfk, rkf for the optimal model fit.

6 Mutants

For the dynein and kinesin mutant simulations, we assumed that the respective motors can still bind
to EEs but are not functional anymore, i.e. that in the mutant, the given motor does not move. Hence
vDR = 0, vDL = 0 in the dynein mutant and set vKR = 0, vKL = 0 in the kinesin mutant.
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