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ABSTRACT Diffusion and interaction of molecular regulators in cells is often modeled using reaction-diffusion partial differen-
tial equations. Analysis of such models and exploration of their parameter space is challenging, particularly for systems of high
dimensionality. Here, we present a relatively simple and straightforward analysis, the local perturbation analysis, that reveals
how parameter variations affect model behavior. This computational tool, which greatly aids exploration of the behavior of
a model, exploits a structural feature common to many cellular regulatory systems: regulators are typically either bound to a
membrane or freely diffusing in the interior of the cell. Using well-documented, readily available bifurcation software, the local
perturbation analysis tracks the approximate early evolution of an arbitrarily large perturbation of a homogeneous steady state.
In doing so, it provides a bifurcation diagram that concisely describes various regimes of the model’s behavior, reducing the need
for exhaustive simulations to explore parameter space. We explain the method and provide detailed step-by-step guides to its
use and application.
INTRODUCTION
Numerous cellular processes are regulated by heteroge-
neously distributed intracellular proteins that interact in a
myriad of functional complexes while also undergoing
Brownian motion in the bulk or along the cell surface (1).
Because of this, continuum models are often used to
describe the spatiotemporal distribution of these subcellular
components. These mathematical models often take the
form of reaction-diffusion (RD) partial differential equa-
tions (PDEs) (2). Indeed, numerous publications in the pa-
ges of this journal have included such modeling efforts
(3–9). Unfortunately, the analysis required to understand
such mathematical models remains challenging even for
applied mathematicians. This article describes a recent
computational tool for analyzing such systems using readily
available bifurcation software. The article is accompanied
by user’s guides with detailed examples aimed at making
the method accessible to a wide range of users.

Complex biochemical networks, typically involving
many interacting components, direct spatial organization
in cells. A common feature in such systems is the continual
binding and unbinding to/from the cell membrane of regula-
tors that have distinct diffusive properties in the bound and
unbound states. Systems of this form include small GTPases
involved in cell polarization and motility (10), Min proteins
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that direct bacterial division (11), Par proteins that partition
or polarize in cells (12), and Rop proteins involved in plant
cell polarity (13). This ubiquitous class of regulatory sys-
tems motivated the development of the method described
here.

Reacting and diffusing molecular networks are modeled
by medium to large systems of PDEs (6,12,14–21). It
is challenging to analyze the repertoire of behaviors and
parameter dependence, since even a relatively simple
example (Fig. 1) contains ~10 unmeasured parameters and
larger circuits have many times more. Understanding the
behavior of such systems requires systematic parameter
exploration, a daunting computational task.

Applied mathematicians have developed various approx-
imation methods to characterize solutions to PDEs, but such
methods are challenging even for small systems of one to
two equations; they require substantial expertise to use,
and are hardly as universal as bifurcation tools for ordinary
differential equations (ODEs). Alternatively, simulations
can be effective for exploring small regions of parameter
space. Unfortunately, brute force simulation is generally
impractical for all but the simplest systems. Here, we
describe a computational tool, Local Perturbation Analysis
(LPA), originally devised by A. F. M. Marée and Veronica
Grieneisen (14,22) and developed further in our group
(20,23–26) as an aid in such PDE analysis. The benefits of
this tool are twofold. First, it provides a concise overview
of the regimes of patterning behavior in a single diagram.
Second, it is much more computationally tractable than
http://dx.doi.org/10.1016/j.bpj.2014.11.3457
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FIGURE 1 A mutually inhibitory circuit of the small GTPases Rac and

Rho. Each one cycles between a membrane-bound active (R,r) and cyto-

solic inactive (Ri,ri) form. Each active GTPase inhibits the activation of

its antagonist.
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existing methods. Although this approach has been imple-
mented previously and the method and its applicability
have been described, to our knowledge, we provide the first
practical, user-friendly guides (included as Supporting
Material) based on readily available software packages
(Matlab-based Matcont (27) (Mathworks, Natick, MA)
and the freeware XPPAUT).
MATERIALS AND METHODS

It is well-known that nonlinear RD systems of two or more components can

give rise to pattern formation and complex spatiotemporal dynamics (28).

At its simplest, a pair of pattern-forming RD equations has the form

vu

vt
ðx; tÞ ¼ f ðu; v; pÞ þ Duuxx; (1a)

vv
vt
ðx; tÞ ¼ gðu; v; pÞ þ Dvvxx; (1b)

where f and g are typically nonlinear functions of the chemical concentra-

tions u and v. Here, p is some parameter of interest, and Du � Dv is

assumed. Note that although a difference of diffusivities is commonly

required for pattern formation, the large size of the discrepancy assumed

here is motivated by systems involving regulators that diffuse in the bulk

(fast) or along the cell membrane (slow), where rates of diffusivity can

differ by a factor of 100–1000. This is a central requirement for application

of the LPA method. Thus, from here on, we assume that all molecular reg-

ulators can be grouped into one of two classes: slow-diffusing (u) or fast-

diffusing (v). We will further assume that the system being studied is a

closed system, employing no-flux boundary conditions, and that the domain

is small enough that fast-diffusing regulators can be considered to be homo-

geneously distributed.

The LPA principally addresses the following question: for a given param-

eter (p) or parameter range p1% p% p2, will a stimulus applied to a cell elicit

a patterning response? This is a canonical stability question. Standard ODE

bifurcation techniques assess the stability of a state to global, well-mixed

perturbations. Turing analysis probes stability with respect to small-ampli-

tude spatial perturbations. However, these methods are not well suited to

determine how a system will respond to larger-amplitude spatial stimuli.

To address this issue, the LPA tracks the evolution of a large-amplitude,
localized pulse (perturbation) that has very narrow width and, hence, negli-

gible mass. This is, of course, not a physiological stimulus, but it provides a

number of mathematical conveniences that can be exploited to simplifymat-

ters. Since u is slowly diffusing, the height of this pulse can be represented by

a single local variable, ul (t), that does not spatially spread.Due to the fast rate

of diffusion, v can be represented by a uniform, global quantity, vg (t), on the

entire domain. Since u does not spread and v is uniform on the domain, u can

then be represented on the remainder of the domain (away from the pertur-

bation) by a global quantity, ug (t). See our previous work (24) for further

details. In the limit of a large diffusion disparity (Du � Dv), the evolution

of these quantities is described by

dug

dt
ðx; tÞ ¼ f ðug; vg; pÞ; (2a)

dvg g g
dt
ðx; tÞ ¼ gðu ; v ; pÞ; (2b)

dul �
l g

�

dt

ðx; tÞ ¼ f u ; v ; p : (2c)

The advantage of this approximation is that the resulting set of ODEs can be

handled by available ODE bifurcation software. This substantially reduces

the mathematical and computational complexity of probing the nonlinear

behavior of patterning systems. As we show, the results of such analysis

lead to insight about how one or more parameters of interest affect the

fate of the pulse.
RESULTS

We provide several examples of this computational tool in
order of increasing complexity. Tutorials and codes are pro-
vided as a step-by-step guide for the user.
Example 1: the Schnakenberg system

This simple pattern-forming prototype (see Murray (29))
consists of RD equation system 1 (Eqs. 1a and 1b). with
kinetics

f ðu; vÞ ¼ a� uþ u2v; gðu; vÞ ¼ b� u2v: (3)

The corresponding LPA equations for ul,ug,vg are formu-
lated by plugging these expressions for f,g into equation sys-
tem 2 (Eqs. 2a–2c). In this case, the LPA equations have
analytically solvable steady-state (SS) solutions:

ul ¼ aþ b; ug ¼ aþ b; vg ¼ b

ðaþ bÞ2; (4a)

l a2 g g b

u ¼ aþ

b
; u ¼ aþ b; v ¼ ðaþ bÞ2: (4b)

The first of these (Eq. 4a) represents homogeneous solutions
of the well-mixed system of equations (i.e., ul ¼ ug),
whereas the second (Eq. 4b) provides information about
patterning properties.
Biophysical Journal 108(2) 230–236
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Fig. 2 illustrates one- and two-parameter bifurcation dia-
grams of the reduced LPA system, summarizing parameter-
dependent behavior. In Fig. 2 a, the black lines indicate the
global steady state (stable, solid lines; unstable, dashed
lines). The gray curve is the local branch (where ul s ug),
and superimposed arrows describe the growth (upward) or
decay (downward) of the local pulse. For a ¼ 2, with b
the bifurcation parameter, we find a change in behavior
(transcritical bifurcation) at b ¼ 2. In the spontaneous
regime, the globally uniform steady state is unstable to
arbitrarily small perturbations (i.e., linearly unstable). In
the stimulus-induced regime, that state is stable against
small perturbations, but perturbations above some threshold
(dashed gray line) will elicit a response. Fig. 2 b is a
two-parameter bifurcation diagram showing the boundary
(a ¼ b) between the two regimes, which can be determined
analytically in this case or, more generally, by numerically
continuing the branch point between different regimes
(24). Numerical simulations (not shown) and previous anal-
ysis (29) confirm these results. The example demonstrates
that LPA can provide a concise overview of the linear and
nonlinear properties of a system.
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FIGURE 2 (a) LPA bifurcation diagram for the Schnakenberg system.

The black branch is the homogeneous steady-state solution, ul ¼ ug, and

the gray branch represents local solutions of the LPA-ODEs ul s ug.

In the spontaneous regime, any departure from the homogeneous steady state

induces a response. In the stimulus-induced regime, large amplitude stimuli

are required to incite a response. (b) A two-parameter LPA bifurcation plot,

showing the two regimes as a function of input parameters (a,b). The gray

line shows a slice through this plane at a ¼ 2, which corresponds to a.
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Example 2: the Gierer-Meinhardt model

A well-known pattern-forming system consists of RD
equation system 1 (Eqs. 1a and 1b) with kinetics

f ðu; vÞ ¼ a� buþ u2

vð1þ ku2Þ; gðu; vÞ ¼ u2 � v: (5)

This system is not analytically tractable but is easily
amenable to LPA. The reduced LPA equations are equation
system 2 with the kinetics of Eq. 5. LPA analysis of this
system (Fig. 3 a) indicates three regimes, including stim-
ulus-induced patterning (III), a Turing instability (II), and
Turing-Hopf instability (implying cycles) (I). We verified
each regime using full PDE simulations. For example,
Fig. 3 b shows a time-periodic oscillating polar distribution
in kymograph view, as predicted in region I. This example
shows that LPA can detect some exotic changes of behavior,
such as Turing-Hopf bifurcations, predicting the onset of
cycles.
Example 3: the Rac-Rho system

A mutually inhibitory circuit of two components often
appears in cell signaling models. Here, we consider
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FIGURE 3 (a) LPA diagram for the Gierer-Meinhardt system. In Region

III, the HSS is linearly stable, but under certain diffusion conditions, a

large-amplitude pulse will give rise to patterning. A stationary Turing insta-

bility is present in Region II. Region I is a Turing-Hopf regime where both

Turing and Hopf instabilities co-occur. Parameter values used are b¼ 2 and

K¼ 0. (b) Example of an oscillating pattern from Region I (at the value

of parameter a marked by the dot in a), demonstrating the predicted

interaction between Turing and Hopf instabilities. Domain size is 1 with

Dv ¼ 1,Du ¼ 0.01. To see this figure in color, go online.
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FIGURE 5 (a) Schematic diagram for the yeast budding polarity model,

adapted from Savage et al. (32). Cytosolic components are fast, whereas

membrane-bound components are slow. (b) LPA diagram for the yeast

polarity model from Savage et al. (32). RTl indicates the local variable

describing active Cdc42 concentration, which indicates bud location, and

all parameters other than k3, as in Layton et al. (31). Black and gray curves

represent well mixed and perturbed states, respectively. The heavy dot

corresponds to k3, as in Layton et al. (31).
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interactions between Rac and Rho (Fig. 1); other systems
such as PAR proteins interact in similar ways (12). Each
of these proteins has both a membrane-associated active
form (R,r) and a cytosolic inactive form (Ri,ri). This leads
to the large disparity in rates of diffusion exploited by
LPA. Since the total amount of a component is fixed (e.g,R L
0
½Rðx; tÞ þ Riðx; tÞ�dx ¼ Rtot ¼ constant), some care is

needed in the LPA reduction, as discussed in the Appendix.
A typical bifurcation diagram (Fig. 4) illustrates three re-

gimes of behavior. In Region I, the homogeneous steady state
(HSS) is linearly stable, but large stimuli provoke a response.
As basal Rac activation strength (kR, the bifurcation param-
eter) increases, the response threshold decreases to zero, so
that in Region II, arbitrarily small perturbations will incite
a response (a linearly unstable regime). For yet larger values
of kR > 0.4 (region III), the system is uniformly activated
(indicated by the increased Rac level of the HSS), and no
perturbation can provoke a response. At other parameter
values, there can be more than one type of stimulus-response
regime, triggered by pulses of either activation or deactiva-
tion (see XPPAUT tutorial, Example 3). Full RD simulations
confirm such predictions.
Example 4: analysis of a yeast-bud polarization
model

To illustrate the adaptability of LPA, we next consider
an example with more biological detail (and hence more
equations and parameters), namely, the yeast polarization/
budding signaling model (19), as described in (30–32)
(Fig. 5 a). This model tracks Cdc42, its activator Bem1,
and a guanine disassociation inhibitor (GDI) in the set of
eight RD equations (Eqs. 9a–9h in the Appendix; for details,
see Goryachev and Pokhilko (19) and Layton et al. (31)).
The activate-inactivate, cytosolic and membrane-bound
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FIGURE 4 LPA diagram for the mutually inhibitory Rac-Rho circuit

shown in Fig. 1 and given by RD equation system 6 (Eqs. 6a and 6b).

The LPA system is equation system 8 (Eqs. 8a and 8b) with parameters:

a1 ¼ a2 ¼ 0.25,n ¼ 3,kr ¼ 0.2,IR ¼ 0.7,dR ¼ dr ¼ Ir ¼ Rtot ¼ rtot ¼ 1.

Marked regions correspond to stimulus-induced (I), linearly unstable (II),

and completely stable (III, i.e., no patterning possible) parameter regimes.
states, and bound complexes are grouped into fast/slow
components, as before, in the LPA reduction to ODEs.
In Goryachev and Pokhilko (19) and Savage et al. (32),
the cell is spherical, with a homogeneous interior (cytosol).
The geometry must be considered in formulating three
conservation laws required by the LPA reduction (to avoid
issues with zero eigenvalues, see the Appendix).

Despite increased complexity, applying LPA is straight-
forward as before. This leads to 2 � 5 þ 1 � 3 ¼ 13 ODEs
for five membrane-bound (slow) variables (each represented
by local and global variables) and three cytosolic (fast)
variables (depicted by one global variable each). The three
conserved quantities in the system lead to three algebraic
constraints, eliminating three ODEs for global variables.

Based on Goryachev and Pokhilko (19), a critical autocat-
alytic loop involving the complex Cdc42-Bem1-Cdc24 acti-
vating Cdc42 is needed for instability. We thus consider the
parameter k3, which governs the strength of that autocatal-
ysis, as the bifurcation parameter. LPA results indicate
that the system is linearly stable for small k3 but that a
sufficiently large perturbation would give rise to a response.
As this parameter increases, the threshold required for
a response decreases until the bifurcation is reached and
the system becomes unstable. These results further indicate
that this instability persists over at least five orders of
magnitude for this parameter (originally k3¼ 0.35 in Layton
et al. (31) (Fig. 5 b, black dot)), suggesting robustness of po-
larity. Fig. 5 b shows that the Turing stability is only lost at
k3 z 7 � 10�4 and continuation to higher k3 (not shown)
shows the instability persists to at least k3 ¼ 102.
DISCUSSION

Over the past two decades, as computational capabilities
have improved, a number of biological markup languages
(e.g., SBML (33) and CellML (34)) and model simulation
packages (e.g., Virtual Cell (35) CHASTE (36), and Com-
puCell3D (37)) have been developed. Although these have
somewhat democratized the development and simulation
Biophysical Journal 108(2) 230–236
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of complex biological models, the problem of deciphering
the predictions of such models remains a challenge. In
particular, understanding and summarizing the behavior of
a given system in a compact and informative way remains
difficult.

Linear (Turing) stability analysis can illuminate the pres-
ence of spontaneous pattern formation in RD systems of a
few interacting components but provides no information
about stimulus-driven and threshold-dependent cellular re-
sponses. Nonlinear analysis methods provide much more
detailed information (38–40) but are very difficult to imple-
ment and can rarely be applied to real systems of even mod-
erate complexity. Massive random exploration of parameter
space (e.g., Chau et al. (41)), an alternate approach, is
computationally costly. Here, we surveyed a relatively
new and simple computational tool, not yet widely known,
that aids analysis of complex regulatory networks governing
spatial organization.

As we have shown, LPA, designed to analyze systems of
reacting diffusing regulators, exploits the large disparity in
rates of diffusion to provide information about early time
evolution of stimuli (arbitrarily large localized perturba-
tions). Although the factor of 100–1000 difference in diffu-
sivities, common in cellular systems, is sufficiently large for
this method to be predictive, we do note that this is an
approximation method. The location of predicted bifurca-
tions is not precise, and the size of patterning regimes gener-
ally shrinks as you move away from this limiting regime.
Thus, simulations are still needed to verify results and char-
acterize the specific form of solutions to the PDEs. The LPA
tests do, however, vastly cut down the time and effort
needed to initially explore a model. This method predicts
the number of distinct phenotypic regimes as any parameter
is varied, as well as the approximate location of bifurcations
between them. In our own investigations of signaling path-
ways, this tool has guided development of the models, their
parametrization, and interpretation of mutations, knock-
outs, or overexpression experiments. We present this sum-
mary because we believe that this computational tool will
have wide applicability in biophysical research.
APPENDIX

Example 3 model equations

The PDEs for the Rac-Rho mutual inhibition system are as follows:

vR

vt
ðx; tÞ ¼ f ðR; r;RiÞ þ DRxx;

vRi

vt
ðx; tÞ ¼ �f ðR; r;RiÞ þ DiðRiÞxx

(6a)

vr ðx; tÞ ¼ gðR; r; riÞ þ Drxx; (6b)

vt
vri
vt

ðx; tÞ ¼ �gðR; r; riÞ þ DiðriÞxx;
Biophysical Journal 108(2) 230–236
where R,r and Ri,ri are active membrane-bound and inactive cytosolic

forms, respectively, so that Di [ D. Typical kinetics are

f ðR; r;RiÞ ¼
�
kr þ Ir

1þ ðr=a1Þn
�

Ri

Rtot

� drR;

gðR; r; riÞ ¼
�
kr þ Ir

1þ ðR=a2Þn
�

ri

rtot
� drr:

The system satisfies conservation (
R L
0
½Rðx; tÞ þ Riðx; tÞ�dx ¼ LRtot ¼

constant), so that any uniform steady state can be characterized by R þ
Ri ¼ Rtot. In the LPA system, active slow components are represented

by both their local and global levels (Rl,Rg and similarly for r), whereas

inactive fast forms have a single global representation (Ri
g, and similarly

for r). This leads to the LPA system

vRl

vt
¼ f

�
Rl; rl;Rg

i

�
;

vRg

vt
¼ f ðRg; rg;Rg

i Þ;
vRg

i

vt
¼ �f ðRg; rg;Rg

i Þ;
(7a)

vrl �
l l g

� vrg g g g
vt
¼ g R ; r ; ri ;

vt
¼ gðR ; r ; ri Þ;

vrgi
vt

¼ �gðRg; rg; rgi Þ:
(7b)

However, an additional step is required in this example. Conservation of

each form leads to one eigenvalue, l¼ 0, for equation system 7 (Eqs. 7a and

7b), which is problematic for bifurcation software. Hence, the system is first

reduced by eliminating the inactive variables using the (algebraic) conser-

vation statements (e.g., Rg
i ¼ Rtot � Rg). This leads to the smaller system

vRl

vt
¼ f

�
Rl; rl; ðRtot � RgÞ�;

vRg

vt
¼ f ðRg; rg; ðRtot � RgÞÞ

(8a)

vrl � �

vt

¼ g Rl; rl; ðrtot � rgÞ ;

vrg

vt
¼ gðRg; rg; ðrtot � rgÞÞ:

(8b)

Example 4 model equations

The model in Fig. 5 a consists of a set of PDEs. The variables (in concen-

tration units) are RT ¼ active Cdc42, M ¼ Cdc42-Bem1-Cdc24 complex,

Em¼ Bem1-Cdc24 complex on the membrane, Ec¼ Bem1-Cdc24 complex

in the cytosol, RD ¼ inactive membrane bound Cdc42, RDIm ¼ inactive

Cdc42-GDI complex bound to the membrane, RDIc ¼ inactive Cdc42-

GDI complex in the cytosol, and I ¼ GDI. The kinetic terms and parameter

values are taken directly from Layton et al. (31).

vRT

vt
¼ fRTðEm;M;RD;RT;EcÞ þ DmDRT; (9a)

vM
vt
¼ fMðEm;RT;M;EcÞ þ DmDM; (9b)
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vEm
vt
¼ fEmðEc;Em;RT;MÞ þ DmDEm; (9c)

vEc
vt
¼ hfEcðEm;RT;EcÞ þ DcDEc; (9d)

vRD
vt
¼ fRDðRT;Em;M;RD;RDIm; IÞ þ DmDRD; (9e)

vRDIm

vt

¼ fRDImðI;RD;RDIm;RDIcÞ þ DmDRDIm; (9f)

vRDIc

vt

¼ hfRDIcðRDIm;RDIcÞ þ DcDRDIc; (9g)

vI
vt
¼ hfIðRDIm;RD; IÞ þ DcDI: (9h)

The LPA equations are 13 ODEs. However, three conserved

quantities (19) would lead to three degenerate eigenvalues in the line-

arization. As before, to avoid crashing the bifurcation software, the

following algebraic conservation statements are used to eliminate three

variables:

RDIgc ¼ ð1þ hÞR0 � h
�
RTg þ RDg þMg þ RDIgm

�
;

(10a)

Eg ¼ ð1þ hÞE0 � h
�
Eg þMg

�
; (10b)
c m

Ig ¼ ð1þ hÞI0 � hRDIg � RDIg: (10c)
m c

The prefactor here accounts for the large discrepancy between mem-

brane and cytosolic volume h ¼ Vm / Vc ~ 0.01, where Vm,c denote those

volumes. The quantities R0,E0,I0 represent conserved mean concentrations

of Cdc42, Bem1, and GDI, respectively. That is, the total conserved amount

of Cdc42 for example (in all its forms and complexes) is (Vm þ Vc)R0. The

resulting system of 10 LPA ODEs is then

dRT l

dt
¼ fRT

�
El
m;M

l;RDl;RTl;Eg
c

�
;

dRTg

dt
¼ fRT

�
Eg
m;M

g;RDg;RTg;Eg
c

�
;

(11a)

dMl � �

dt

¼ fM El
m;RT

l;Ml;Eg
c ;

dMg

dt
¼ fM

�
Eg
m;RT

g;Mg;Eg
c

�
;

(11b)

dEl � �

m

dt
¼ fEm Eg

c ;E
l
m;RT

l;Ml ;

dEg
m

dt
¼ fEm

�
Eg
c ;E

g
m;RT

g;Mg
�
;

(11c)
dRDl � �

dt

¼ fRD RTl;El
m;M

l;RDl;RDIlm; I
g ;

dRDg

dt
¼ fRD

�
RTg;Eg

m;M
g;RDg;RDIgm; I

g
�
;

(11d)

dRDIl � �

m

dt
¼ fRDIm Ig;RDl;RDIlm;RDI

g
c ;

dRDIgm
dt

¼ fRDIm
�
Ig;RDg;RDIgm;RDI

g
c

�
;

(11e)

where the ODEs for the three cytosolic variables have been replaced by the

corresponding constraints (10).
SUPPORTING MATERIAL

Aguide to LPAwithXPP and a guide to LPAwithMatLab-basedMatCont are

available at http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)

04670-0.
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