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H I G H L I G H T S

c We study the effects of facilitation and competition on group foraging in patches.
c Using the marginal value theorem, we find the optimal group size and residence time.
c Trade-offs between facilitation and competition influence the optimal group size.
c Groups are predicted to exploit patches differently than individual foragers.
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a b s t r a c t

Significant progress has been made towards understanding the social behaviour of animal groups, but
the patch model, a foundation of foraging theory, has received little attention in a social context. The
effect of competition on the optimal time to leave a foraging patch was considered as early as the
original formulation of the marginal value theorem, but surprisingly, the role of facilitation (where
foraging in groups decreases the time to find food in patches), has not been incorporated. Here we
adapt the classic patch model to consider how the trade-off between facilitation and competition
influences optimal group size. Using simple assumptions about the effect of group size on the food-
finding time and the sharing of resources, we find conditions for existence of optima in patch residence
time and in group size. When patches are close together (low travel times), larger group sizes are
optimal. Groups are predicted to exploit patches differently than individual foragers and the degree of
patch depletion at departure depends on the details of the trade-off between competition and
facilitation. A variety of currencies and group-size effects are also considered and compared. Using
our simple formulation, we also study the effects of social foraging on patch exploitation which to date
have received little empirical study.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the economic basis of how animals should
allocate time spent foraging in a patch before departing to search
for new patches has been a cornerstone of foraging theory.
Although the patch model has been applied to a wide variety of
contexts for solitary foragers (Stephens and Krebs, 1986;
Stephens et al., 2007), the role of group foraging or the social
patch model has received considerably less attention (Giraldeau
and Caraco, 2000). In parallel to Charnov’s (1976) Marginal Value
Theorem (MVT), Parker and Stuart (1976) independently pub-
lished a similar framework adapting a mating system model to a
foraging system. Through this formulation, they considered com-
petition for resources among a group of foragers in a patch. They
acknowledged that in addition to this type of competition, group

foraging may facilitate finding food and affect prey intake rates
(e.g. producing an Allee effect). This facilitation was not, however,
included in their model or other models (Yamamura and Tsuji,
1987) to date. Here we adapt the MVT idea to consider both
competition and facilitation in patches by groups of foragers.

Foraging in groups brings both costs and benefits (Perrins and
Birkhead, 1983; Clark and Mangel, 1986; Giraldeau and Caraco,
2000; Galef and Giraldeau, 2001; Krause and Ruxton, 2002). For a
variety of species, being part of a group can increase foraging
success through increased searching capacity, information
exchange, and capture efficiency (Sullivan, 1984; Gotmark et al.,
1986; Brown and Brown, 1996; Perrins and Birkhead, 1983). This
effect, however, can depend strongly on group size, and the costs
of increased competition or interference may outweigh the
benefits of facilitation in larger groups. The social patch model
with competition indicates that foragers should leave a patch
earlier (and more thoroughly depleted) when foraging in groups
than when foraging alone (Parker and Stuart, 1976; Giraldeau and
Caraco, 2000). However, the effects of facilitation could influence
this result.
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Here we adapt the MVT to consider costs and benefits of both
competition and facilitation. We ask whether and how a trade-off
between these factors influences the optimal number of individuals
in a group and their patch residence-time. We restrict attention to
social animals that travel and forage together, arriving and departing
from a patch simultaneously. We also focus on the situation that the
timescale of resource renewal is much longer than the timescale of
patch exploitation. Given that time and/or energy may be the limiting
factor in different circumstances (Ydenberg and Hurd, 1998), we
consider strategies that optimize either rate or efficiency currencies.
We incorporate an additional factor, namely facilitation, to the theory
of social foraging in patches, allowing us to consider how the trade-off
between competition and facilitation influences decisions about how
long to stay in a patch.

2. Mathematical models

2.1. Optimal foraging time for a single forager

Here we briefly summarize the classical Marginal Value
Theorem (Charnov, 1976) before extending it to group foraging.
The time required to travel between food patches is denoted t.
The time spent foraging in a patch is t, and f(t) is the total energy
gained by foraging in a patch for time t. We consider the rate of
energy gain function as the currency of interest, defined as

RðtÞ ¼
f ðtÞ
tþt : ð1Þ

Elementary calculus leads to the well-known result that optimal
patch residence time tn satisfies f 0ðtnÞ ¼ f ðtnÞ=ðtnþtÞ, provided that
f(t) is concave down. A well-known graphical solution (the rooted
tangent) is often used to locate the optimal value tn on the time
axis. This will be discussed further on.

While a wide variety of energy gain functions are theoretically
possible (Stephens and Krebs, 1986), we consider a classic case of
diminishing returns. We model diminishing returns using the
following saturating function:

f ðtÞ ¼
Emaxt
tf þt

: ð2Þ

Eq. (2) describes the energy gain of an individual. This function
levels off to a constant, Emax, the maximal energy level that can be
extracted from a patch by an individual foraging for a long time.
(Alternately, this parameter represents the maximal attainable
per-forager resource quantity in some other currency, such as
number of prey items.) The parameter tf is a typical time scale for
a single forager to find resources. In fact, for the specific choice of
(2), tf is the time at which the forager finds half of the resources
they could maximally attain (t¼ tf implies f ¼ Emax=2). Small tf
implies rapid success finding food in the patch, and a correspond-
ingly steep initial increase of the function f.

For a single individual, with energy gain f(t) given by Eq. (2), it
can be shown by optimizing R with respect to t that the optimal
patch residence time tn is

tn ¼
ffiffiffiffiffiffiffi
tf t

p
: ð3Þ

Thus, the optimal time is independent of Emax. Moreover, it
increases with tf and with t.

2.2. Effect of group size

We now generalize the model to account for group foraging.
First note that the social version of Eq. (1) would take the form:

R̂ðN,tÞ ¼
f̂ ðN,tÞ
tþt , ð4Þ

where, to avoid confusion, we use ‘‘hats’’ here and later to
indicate functions analogous to R(t) and f(t) that depend on both
foraging time and group size. f̂ ðN,tÞ is the total energy gain by
each individual when foraging in a group with N additional
members (group size Nþ1) for time t. Optimizing the behaviour
now corresponds to maximizing R̂ with respect to both N and t,
which requires finding tn and Nn satisfying both

@R̂
@t

"""""
N ¼ constant

¼ 0, and
@R̂
@N

"""""
t ¼ constant

¼ 0:

As both R̂ and f̂ are taken to be smooth functions of N and t, the
order of differentiation to identify the t and/or N coordinate of the
critical point is immaterial. For example, we may first consider N
constant and compute the optimal time t̂

n
ðNÞ (which leads to an

expression analogous to Eq. (3) that depends on N) and then solve
for Nn by setting @R̂=@NðN, t̂

n
Þ ¼ 0. We carry out this procedure for

different assumptions about the N dependence, below. In addi-
tion, we also verified that we obtain local maxima, rather than
other types of critical points analytically (by computing second
derivatives) and/or graphically.

We now define ÊmaxðNÞ and t̂ f ðNÞ as, respectively, the per-
individual resource available, and the food-finding time when an
individual forages in a group with N additional members (group
size of Nþ1). Then

f̂ ðN,tÞ ¼
ÊmaxðNÞt
t̂ f ðNÞþt

: ð5Þ

For a fixed group size (N is constant), the optimal time is
obtainable simply by carrying out the previous single-variable
procedure, leading to

tnðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t̂ f ðNÞt

q
, ð6Þ

which is, as before, independent of ÊmaxðNÞ.
In order to consider the effects of group size, we take the following

considerations in choosing appropriate functions for ÊmaxðNÞ and
t̂ f ðNÞ. As N increases, competition between group members should
lower per-individual resource availability, and facilitation should
lower the time to find the food. Hence, both ÊmaxðNÞ and t̂ f ðNÞ should
be functions that decrease with N. Here we study two variants of the
model, one in which group members interfere (preventing each other
from obtaining the available resources effectively), and another in
which they always share the resources equally.

2.2.1. Interference at large group size
We first considered a case where competition and interference

in large groups cause additional depletion and division of
resources, making less and less energy available per individual.
If prey sense a larger group of predators more easily than a
smaller group, they may escape from the patch with higher
probability. This could lead to a depletion/interference effect that
increases with group size. We thus assume that ÊmaxðNÞ and t̂ f ðNÞ
depend exponentially on N, i.e.

ÊmaxðNÞ ¼ Emax exp
%N
Nc

# $
, t̂ f ðNÞ ¼ tf exp

%N
Nf

# $
: ð7Þ

The variable N represents the number of additional individuals in a
foraging group, so the limit N¼0 is the single forager case. As N gets
large, both ÊmaxðNÞ and t̂ f ðNÞ tend to zero faster than 1=N. There is
less energy available than would be the case with equal subdivision
(considered in the next case). The parameters Nc and Nf correspond to
group sizes. If an individual forages in a group with an additional Nc

members, the resource available to it drops to 37% of what it can gain
in solitary foraging, because it has to compete with group members
(i.e. ÊmaxðNcÞ ¼ Emax & ð1=eÞ ' 0:37Emax). Similarly, when foraging with
Nf other individuals, the food-finding time would drop to 0:37tf . It is
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convenient to refer to Nc as the competition group-size and to Nf as
the facilitation group-size. If Nc (or Nf) is large, it takes a large group to
lead to significant competition (or facilitation).

2.2.2. Equal sharing
We also considered the case where patch resource is constant

(e.g. sessile prey items) and split equally between group mem-
bers. In that case, we considered rational functions of the form:

~EmaxðNÞ ¼
Emax

Nþ1
, ~t f ðNÞ ¼

tf
ðNþ1Þm

, ð8Þ

wherem is a positive constant. Here we use Nþ1 (rather than just
N) to maintain the N¼0 limit as the single forager case. The
expression for ~EmaxðNÞ is the per-individual share in a group of
size Nþ1, and is intuitively clear. For example, in a group of size 2
(N¼1) each gets an equal share of ð1=2ÞEmax. The parameter m has
the following meaning: in a group of size 2, the food-finding time
changes from tf to ½ð1=2Þmtf ). If m¼1, the competition and
facilitation change at the same pace with increasing N. When
m41, there is a sharper drop in food-finding time (more facil-
itation), whereas when 0omo1, there is a sharper drop in the
resource per individual as N increases (more competition).

2.3. Energy gain function for an individual foraging in a group

We first considered the interference case, adopting Eq. (7). We
rescale population size by the competition group-size, defining
N ¼N=Nc . We also define the dimensionless ratio:

a¼Nf =Nc :

The parameter a, which is positive, is the ratio of the facilitation and
competition group sizes. Then a51 means Nf 5Nc which implies
that t̂ f ðNÞ decreases (exponentially) at a faster rate than ÊmaxðNÞ as
group size N increases; this reflects the case when facilitation
outweighs competition in social foraging. The regime ab1, conver-
sely, means Nf bNc , so ÊmaxðNÞ drops faster than t̂ f ðNÞ as N increases;
this corresponds to the case when competition dominates over
facilitation in social foraging. We refer to a as the competition-
facilitation parameter for brevity, and we note that a plays a role
analogous to 1=m in Eq. (8). We will be interested in both the high
facilitation limit a-0 and high competition limit a-1.

After scaling, we can rewrite Eq. (7) in terms of the non-
dimesionalized group size,

EmaxðNÞ ¼ Emax exp N
% &

, t f ðNÞ ¼ tf exp
%N
a

 !

: ð9Þ

We denote f ðN ,tÞ as the per-individual energy gain function in the
rescaled variable,

f ðN ,tÞ * f̂ ðN,tÞ ¼ f̂ ðN & Nc ,tÞ ¼ Emax
expð%NÞt

tf exp
%N
a

 !

þt

: ð10Þ

From now on, we drop the bars from N and f and simply denote the
rescaled population size as N and the function of interest in (10) as f.
For the purpose of optimization, the constant factor of Emax multi-
plying (10) is immaterial, and will be henceforth set to 1.

3. Results

3.1. Optimizing the rate of energy gain for group foraging

3.1.1. Interference at large group size
Using the rate of energy gain, Eq. (4) as the currency to be

maximized, and the (rescaled) version of the function f ðN,tÞ given by
(10) (with bars removed), we look for values tn and Nn that maximize

RðN,tÞ with respect to both t and N. Following rescaling, the optimal
patch residence time, as given in Eq. (6), can be written as

tnðNÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tf exp
N
a

# $
t

s

: ð11Þ

Note that as N-0, this coincides with the classical result (3) for a
single forager.

Solving for the optimal group size (@R=@N¼ 0) at the optimal
foraging time tnðNÞ leads to the critical point:

Nn ¼ a ln
tf
t 1%

1
a

# $2
 !

: ð12Þ

From Eq. (12) we cannot have a¼1 as it leads to singularity. The
critical points that could give an optimal time tn for the optimal
group size Nn are given by

tn ¼ 7
ta

ða%1Þ
: ð13Þ

Then for feasible optimal residence time tn40, either a41 and
tn ¼ ta=ða%1Þ, or ao1 and tn ¼ ta=ð1%aÞ.

To check which of these cases corresponds to a local maximum
we consider both a (generalized) ‘‘second derivative test’’ and
graphical evidence. First, in Fig. 1, we show the contour plot of
RðN,tÞ for different values of the competition-facilitation parameter, a.
To check if group foraging is in fact optimal compared to solitary
foraging, we looked for regions where RðN,tÞ is larger than the
optimal solitary value Rð0,tnð0ÞÞ; these are shaded in grey in Fig. 1.
Within this region, any combination of patch residence time t and
group size N would lead to a larger rate of energy gain than when
foraging alone (at optimal condition). The maximum point of RðN,tÞ is
located within this region. We observed that when a is not too large
(a¼0.3 and 0.5 in Fig. 1), there exists a range of N and t (that is
positive and biologically relevant), where RðN,tÞ is larger that the
corresponding value when foraging alone. We verified this further
analytically by inspecting the Hessian matrix consisting of all the
second partial derivatives:

H¼
RttðN,tÞ RtNðN,tÞ
RNtðN,tÞ RNNðN,tÞ

" #
: ð14Þ

For an optimal group size and patch residence time, we need both
RttðN,tÞo0 and detðHÞ40. Second, we also plot the rate of energy
gain RðN,tÞ, as in Fig. 1.

+ a41 case: We found that while Rtto0, detðHÞo0 only when
1oat1:11. Thus for a wide range of parameter value, this case
will not lead to RðN,tÞ having a local maximum at Nn and tn.
Moreover, in the narrow range 1oat1:11, we found that
Nno0, as shown in Fig. 1(d). Thus, this case is not biologically
relevant. We conclude that when a41, no relevant optimal group
size Nn exists. This result is intuitively reasonable: when competi-
tion is stronger than facilitation, a forager does best on its own,
rather than in a group.

+ ao1 case: This case always results in a local maximum since
we found that detðHÞ40 and Rtto0. An optimum can be seen
at a positive Nn value in Fig. 1(a) and (b). Thus, we conclude
that to obtain a biologically relevant optimum, we need at
least 0oao1, i.e. an optimal group size exists only when
Nf oNc (high facilitation case). By graphing, we also further
observe that a biologically relevant value Nn40 is obtained
when a is below a certain critical value that is less than one.
One particular example with a¼0.8 is shown in Fig. 1(c),
where the maximum of Rðn,tÞ occurs at a negative Nn value.

We conclude that the optimal group size Nn is given by Eq. (12)
provided 0oao1. The dependence of the optimal group size Nn
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on the competition-facilitation parameter a is non-monotonic as
shown in Fig. 2(a). In the high facilitation regime (a-0), very
small group sizes are optimal. Here, the addition of very few
individuals to the group sharply reduces the time to obtain food,
i.e. t̂ f ðNÞ drops steeply with increasing N. In this regime, the best
strategy is to maintain a small group size where the disadvantage
of competition is avoided while the benefits of facilitation are
already significant. As a is increased, the optimal group size also
increases. In this regime it takes a larger group to reap the
benefits of facilitation. The time to obtain food t̂ f ðNÞ only
decreases considerably when group size is increased significantly
so tradeoff between facilitation and competition leads to higher
optimal group size. However, when a is increased further, the
disadvantage due to competition starts to outweigh facilitation so
that smaller group sizes are once again optimal.

Eq. (12) also implies that Nn increases with the individual
food-finding time, tf, and decreases with travel time t. Thus, larger
t (tf) favors smaller (larger) groups. Specifically, Nn has an explicit
dependent on tf =t, the ratio of the individual foraging time to the
travel time. In Fig. 2(a), we plotted Nn as a function of a for several
values of the ratio tf =t. When the ratio tf =t is larger, the optimal
group size Nn increases. Given a value of tf =t, there exists a
certain critical value of a above which Nno0. Here the effects of
competition completely exceed any benefit from facilitation and
the optimal strategy would be to forage alone. Larger value of tf =t
leads to a higher critical value a. Thus, decreasing tf =t leads to a
narrower range of values of a which yield Nn40.

In Fig. 3(a), we plotted the energy gain, f ðN,tÞ, as a function of t
for several values of N, including the optimal value N¼Nn, and
twice and half that value. For each of these, we draw Charnov’s
classical ‘‘rooted tangent’’ diagram (dashed lines emanating from

t¼%t and tangent to the curve), to indicate how the optimal time
differs from case to case. (For example, t2 is optimal for the case
N¼Nn, t1 is optimal for N¼ 2Nn, and t3 for N¼Nn=2.) From this
graph, it is seen that for optimal group size Nn, the rooted tangent
line has the steepest slope. We found that increasing N also
increases the initial slope of the function f (with respect to t) close
to t¼0, leading to smaller optimal time tn. In Fig. 3(b) we plotted
the optimal times t1,t2,t3 against the respective group sizes to
further emphasize the connection between optimal group size
and optimal time spent in a patch.

3.1.2. Equal sharing
We asked how results change in the case of equal subdivision,

with ~EmaxðNÞ and ~t f ðNÞ defined in Eq. (8). As before, we set Emax ¼ 1
and after similar calculation, we obtain the optimal group size:

Nn ¼
tf
t ð1%mÞ2

' (1=m
%1: ð15Þ

Here, the parameter m plays a role analogous to the reciprocal of
the facilitation-competition parameter, 1=a, in the interference
case. Eq. (15) is a local maximum when m41. Results are entirely
analogous to the previous case, with the replacement a-1=m,
and attest to the robustness of conclusions which are relatively
independent of the choice of function to represent the effect of
the group. In Fig. 2(b), we plotted the optimal group size Nn as a
function of m for several values of the ratio tf =t. Here the high
facilitation limit occurs for large m (analogous to small a) and
favors small group sizes as before. Optimal foraging at a group
size of Nn40 is only observed for m slightly above 1; otherwise
solitary foraging is optimal. Further, larger values of Nn are

N

t

0.02

0.06

0.1

0.14

0 1 2 30

2

4

6

8

N

t

0.020.04

0.06

0.07

0 1 2 30

2

4

6

8

N

t

0.015

0.030.045

0.055

0 1 2 3
0

2

4

6

8

N

t

0.010.03

0.050.06

0 1 2 3
0

2

4

6

8

Fig. 1. Rate of energy gain optima: Contour plots of the rate of energy gain RðN,tÞ as a function of the (scaled) social group size N and time spent foraging together in a
patch t. Individual foraging time tf¼10 and travel time t¼ 1 and values of the competition-facilitation parameter a were (a) 0.3, (b) 0.5, (c) 0.8 and (d) 1.1. Note that in
(a) and (b) a maximal rate of energy gain exists for social foraging (N40), whereas for (c) and (d), individual foraging (N¼0) is optimal. Within the grey shaded region
RðN,tÞ is larger than Rð0,tnð0ÞÞ, the value obtained at the optimal condition when foraging alone.
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observed than in the interference case (same parameter values
describing solitary forager N¼0 are used in Fig. 2(a) and (b)) since
here foraging in a large group is not as unfavorable as in the
interference case. Finally, we also note that Nn has the same
explicit dependence on the ratio tf =t and changing this ratio has
similar effects as before, namely increasing this ratio (either by
increasing the travel time t or decreasing the individual food-
finding time tf) leads to an increase in the optimal group size.

3.2. Deviation from optimal group size

We asked to what extent deviations in group size can affect
the rate of energy gain. This question is related to the steepness of
the function R̂ðN,tnÞ when N is varied about its optimal value Nn.
Results for the case of interference in large groups are summar-
ized in Fig. 4(a)–(c) for small and larger values of the parameters
t, tf, and a. As seen in the figure, smaller values of the parameters
(solid curves) produce relatively sharp optima in R, meaning that
deviations in group size about the optimum Nn sharply reduce the
effectiveness of the group. For larger values (dashed curves), the
peak is shallower. This is particularly true of the larger a value
(lowest curve in Fig. 4(c)), i.e. when Nc 'Nf so that competition
and facilitation effects are more closely balanced. Thus, while
deviations from the optimal group size can lead to penalty in the
overall rate of energy gain, the extent to which this happens
depends on a combination of factors, including the travel time,
resource availability, and competition-facilitation ratio.

3.3. Alternate foraging strategies and currencies for groups

The fitness currency relevant to a forager depends on whether
time or energy is limiting (Ydenberg and Hurd, 1998). We there-
fore considered both rate and efficiency maximization. We asked
whether and how foraging strategies with other currencies would
affect our conclusions, by considering three other currencies: net
rate of energy gain, efficiency, and net energy gain. We applied
the same analysis to each currency (calculations not shown) but
limit the results to be presented for the interference case (EmaxðNÞ
and t f ðNÞ given by Eq. (9)). The per-individual energy gain f ðN,tÞ
used here follows the scaled Eq. (10).

3.3.1. Rate of net energy gain
Rate maximizing is important when time is limiting (Ydenberg

and Hurd, 1998; Evans, 1976; Pyke, 1980). We thus consider the
net rate of energy gain, defined as

Q ðN,tÞ ¼
f ðN,tÞ%ðp1tþp2tÞ

tþt , ð16Þ

where p1 and p2 represent the energetic cost of foraging and
travelling, respectively. If the costs of travelling and foraging are
equal (p¼ p1 ¼ p2), maximizing the rate of net energy gain (given
by Eq. (16)) reduces to maximizing

Q ðN,tÞ ¼
f ðN,tÞ
tþt %p¼ RðN,tÞ%p: ð17Þ
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Fig. 2. The effect of facilitation on the optimal group size for the rate of energy gain currency. (a) Interference case: optimal group size Nn as a function of the competition-
facilitation parameter a¼Nf =Nc and (b) equal sharing case: optimal group size Nn as a function ofm. The ratio of individual foraging time tf to travel time t is varied, tf =t¼
20, 10, 1 and 0.5.

−τ 0 t1 t2 t3

2N*

N*

N*/2f(N,t)

t
t1

t2

t3

t*

2N*N*N*/2 N

Fig. 3. Graphical solution to finding the optimal time for different group sizes. (a) shows the rooted tangent solution displaying the optimal foraging time tn for the optimal
group size Nn, and for other group sizes, 2Nn and Nn=2. As N increases, the slope of f ðN,tÞ (with respect to t) becomes steeper leading to smaller optimal time. (b) shows the
optimal foraging time tn decreases as group size N increases. Here, t1 is the optimal foraging time for a group of size 2Nn , t2 is the optimal foraging time for the optimal
group size Nn, and t3 is the optimal foraging time for a group of size Nn=2.
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Since the rate of net energy gain is simply the rate of energy gain
minus some constant, the optimal foraging time and optimal
group size will be unchanged from Eqs. (11) and (12).

When p1ap2, the maximum point cannot be expressed
explicitly as it follows a transcendental equation. In Fig. 5, we
plotted the function Q ðN,tnðNÞÞ using different values of a, p1 and
p2. Similar to the result obtained while maximizing RðN,tÞ, we find
that group foraging is optimal (Nn40) when the facilitation
competition parameter a is small as shown in Fig. 5(a). In
Fig. 5(b) and (c), we showed that increasing p1 and p2 reduces
Q ðN,tÞ and positive optimal foraging time tn and optimal group
size Nn are only found when the foraging and traveling costs p1
and p2 are not too large. When the costs are too high, no
maximum point exists (e.g. in Fig. 5(b) for p1¼0.4, tnðNÞ is
complex for small N values) and thus it is optimal to forage alone.

3.3.2. Foraging efficiency
In some situations, foragers may maximize foraging efficiency

rather than the rate of energy gain (Schmid-Hempel et al., 1985;
Ydenberg and Hurd, 1998). We define the foraging efficiency as
the ratio of energy gained to energy spent, i.e.

EðN,tÞ ¼
Egain
Elost

¼
f ðN,tÞ

ðp1tþp2tÞ
: ð18Þ

In the equal cost scenario as above, (p1 ¼ p2 ¼ p) we have

EðN,tÞ ¼
f ðN,tÞ
pðtþtÞ ¼

1
p
f ðN,tÞ
tþt ¼

1
p
RðN,tÞ, ð19Þ

so the efficiency is simply a scalar multiple of the rate of energy
gain. This means that extrema previously calculated in Eqs. (11)

and (12) are unchanged. Larger costs (higher values of p) only lead
to lower efficiency value.

In the p1ap2 scenario, when travel and foraging costs differ,
we find that tn and Nn depend on the ratio p2=p1 as follows:

tn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t f ðNÞt

p2
p1

r
, Nn ¼ a ln

p1
p2

&
tf
t & ½1%ð1=aÞ)2

# $
: ð20Þ

In particular, if travel cost exceeds foraging cost (p24p1), the optimal
patch residence time is larger than in previous calculations. In the
opposite case (p2op1), a larger optimal group size is favoured. This is
biologically reasonable. When it is costly to reach a patch (large p1), it
pays to stay longer in that patch. If prey is cryptic, or hard to detect in
the patch, i.e. foraging is costly (large p2), a larger group size is
beneficial to facilitate prey capture.

3.3.3. Net energy gain
Yet another currency that has been considered is the net

energy gain (Van Gils et al., 2003; Hainsworth and Hamill,
1993). The currency of net energy gain is the total energy gained
minus the energy spent during foraging and travel, i.e.

GðN,tÞ ¼ f ðN,tÞ%ðp1tþp2tÞ: ð21Þ

Since p2 and t are constants, neither affect optima, and without
loss of generality we can set p2t¼ 0 for the optimization step. The
optimal patch residence time is then

tn ¼%t f ðNÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EmaxðNÞt f ðNÞ

p1

s

: ð22Þ
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For tn40, we need p1t f ðNÞoEmax ðNÞ. That is, the total cost
associated with foraging should be less than the maximum
possible energy that can be obtained. Maximizing with respect
to group size leads to two critical points, only one of which, is a
local maximum:

Nn ¼
a

1%a
ln

p1tf
a2

# $
: ð23Þ

As shown in Fig. 6(a), the optimal group size increases as the ratio
a¼Nf =Nc approaches its limiting value of 1. Using 0oao1, we
see that Nn increases with tf and p1. If tf is small, food is quickly
found, thus there is little point in foraging in a group to further
decrease the foraging time. However, if tf is large, foraging in a
group decreases the amount of time taken to find the food
(facilitation) and is beneficial. Fig. 6(b) shows how Nn increases
with tf. Varying tf has the same effect as varying p1. As p1
increases, it becomes more costly to forage; in order to maximize
the energy gained, more individuals are needed for optimal group
foraging, as shown in Fig. 6(b).

3.3.4. Currency comparisons
Overall, we find that in the scenario of equal costs (p1 ¼ p2),

optima for group foraging based on other currencies are the same
as those for the rate of energy gain discussed in Section 3.1. When
travel time and/or cost is high, it is beneficial for animals to stay
longer in a patch, and forage in smaller groups (as travel time or
cost increases, tn increases and Nn decreases). Meanwhile, for
patches with small associated travel times, larger group sizes are

optimal. Distinct currencies lead to different predictions mainly in
the case of unequal costs of travel and foraging, p1ap2.

3.4. Patch utilization

Up to now, we have considered how group foraging affects the
foraging success of individuals. We now ask a distinct but related
question of how individuals versus groups affect patch depletion.
One immediate question is to what extent would resources be
more thoroughly depleted by a group of foragers compared to a
single individual. How do facilitation and competition affect the
level of depletion? We calculate resources remaining after a
group of size N foragers leaves the patch at the optimal foraging
time tnðNÞ:

fðNÞ ¼ Etot%ðNþ1Þf ðN,tnðNÞÞ, ð24Þ

where Etot is the maximum energy that can be extracted from the
patch. For simplicity, here we consider the case where Etot ¼ Emax, i.e.
a single forager can extract all resources available given enough
time. As before, we take the total resources in a patch to be Emax ¼ 1
(see scaling in Eq. (10)). ðNþ1Þf ðN,tnðNÞÞ gives the total resources
obtained by the group after foraging for time tn (we use the factor
Nþ1 since the single forager limit is given by N¼0).

In Fig. 7, we show the effects of facilitation and competition on
patch utilization by plotting fðNnÞ as the facilitation-competition
parameter is varied for both the interference case (Eq. (7)) and the
equal sharing case (Eq. (8)). For the interference case, for all
values of a that yield a biologically relevant optimal group size
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(Nn40), group foraging leads to a greater patch exploitation
compared to foraging alone. When a is small, facilitation is high.
While the optimal group size is small, the group is able to extract
resources to the fullest extent. At higher values of a however, with
less facilitation, the group does not forage as effectively, leading
to higher level of resources remaining (larger f). For the equal
sharing case, we also see a similar effect in that facilitation (high
value of m) leads to more effective foraging and fewer resources
remaining when the group leaves the patch. Note that for both
cases, high levels of patch utilization (lower f) are obtained when
facilitation is highest even though the optimal group size may not
be largest at the high facilitation limit.

The dependence of patch depletion on group size is shown further
in Fig. 8. For the interference case, a small group can extract more
resource than a solitary forager. With increasing facilitation (increas-
ing the parameter a), the amount of resources extracted increases
with group size. However, large group size leads to less efficient
foraging due to interference. Far from the optimum, at high group size
N, the resource extracted by the entire group is actually lower than
that extracted by one solitary forager. This is not observed when
group members share resources equally (‘‘equal sharing’’ case). Here
increasing the group size will eventually lead to a complete depletion
of resources (f-0).

4. Discussion

Many influences contribute to collective animal behaviour, includ-
ing foraging in groups (see, for example, Chapter 2 in the recent
survey by Sumpter, 2010). Here we were particularly concerned with
costs and benefits of group foraging. Using the classic marginal value
theorem (MVT) and a simple saturating function for energy gain over
time spent foraging in a patch we explored how the trade-off
between facilitation and competition changes with group size,
influencing the economics of foraging decisions in patches with
diminishing returns. Compared to the solitary (classical) patch model,
group foraging has an evolutionary advantage if the benefits of
finding food more quickly through social facilitation outweighs the
costs of competition, or sharing food with other group members. Our
model allows this trade-off to be explicitly considered in an elemen-
tary mathematical setting.

Both the optimal patch residence time tn and optimal group
size Nn depend on the parameters such as t, the travel time, tf the
individual foraging time, and the balance of competition and
facilitation, represented by the ratio a¼Nf =Nc in the interference
case, or parameter m' 1=a under the equal sharing assumption.
Thus, the relative strengths of competition and facilitation influ-
ence the result of this trade-off. The optimal patch residence time

increases as the travel time and the time required to find food
increase. When the travel time is small, large group sizes are
optimal. If tf is large (i.e. if the time needed by an individual to
find food is large), larger group sizes are optimal. The parameter a
(interference case) or m (equal sharing) measures the relative
competition and facilitation balance. For optimal group foraging
(Nn40Þ, we found the necessary condition of 0oao1 or m41.
We found that the largest optimal group size occurs at an
intermediate value of the parameter a or m, i.e. where there is a
balance between competition and facilitation.

We also considered the strength of selection towards optimal
group size by considering the degree to which group sizes slightly
bigger or smaller than the optimal group size affect the groups
foraging effectiveness. If a or t are small, optimal group sizes
produce the best rate of energy gain, while deviation from
optimal group size produce considerably lower rates of energy
gain. In these cases, there will be strong selection for optimal
group size. In other situations however, the deviation from
optimal group size will be less significant, suggesting weaker
selection towards a specific optimal group size.

Our model does not include the dynamics of group formation for
loose social structures where individuals can join or leave the group.
This subject forms an interesting and well-studied topic of research.
For example, Sibly (1983) first proposed that optimal group size is
unstable as an individual can increase its fitness by joining a group of
optimal size, thus increasing the group size. Further studies such as
Clark and Mangel (1984, 1986), Pulliam and Caraco (1984), Giraldeau
and Caraco (2000), Giraldeau and Gillis (1985), and Higashi and
Yamamura (1993) deal with such issues. Here we consider that while
interference and competitions influence groups size, groups arrive
and depart at the same time from patches.

In their original model of patch competition, Parker and Stuart
(1976) noted that patch departure rules could depend on the
decisions of others (see also Goubault et al., 2005), and might
therefore be best considered as a war of attrition (Maynard Smith,
1974). Sjerps and Haccou (1994) conducted a formal game
theoretical analysis of this competitive scenario finding that
interference can have an important influence on the evolutiona-
rily stable patch departure rules. We assumed that the group acts
as a social unit, with all individuals arriving and departing
simultaneously in a patch (Giraldeau and Caraco, 2000). Future
work could consider variations of this approach, incorporating the
role of facilitation to understand how departure rules change
when individuals do not arrive simultaneously (e.g. in producer–
scrounger dynamics, Beauchamp and Giraldeau, 1997) or when
they differ in their competitive abilities.

Previous versions of the social patch model, considering only
competition, predict that foragers should stay for a shorter
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duration and that patches should be depleted to a greater level by
groups than by solitary individuals (Giraldeau and Caraco, 2000;
Parker and Stuart, 1976). Our results considering the trade-off
between competition and facilitation similarly indicate that
groups of an optimal size will often deplete more of the patch
resources than solitary foragers; however, the degree of competi-
tion vs. facilitation (parameter a in the interference case, or m in
the equal sharing case) determines to what extent group vs.
individual patch exploitations differ.

A major application of foraging theory has been in the context
of ‘‘giving up densities’’ (density of resources at which individuals
leave a patch) for assessing habitat quality (e.g. Brown, 1988;
Valone and Brown, 1989). The difference in how extensively
groups exploit a patch compared to a solitary forager can have
important implications for analyzing giving up densities in the
field (Livoreil and Giraldeau, 1997; Giraldeau and Caraco, 2000),
highlighting the importance of empirical tests of the social patch
model. The role of facilitation could further complicate these
interpretations of field data. Our results indicate that facilitation
will also be an important consideration in interpreting giving up
densities in the field, with the details of the trade-off between
competition and facilitation determining the extent of patch
depletion. Empirical studies of the social patch model are surpris-
ingly lacking (Giraldeau and Caraco, 2000) and the role of
facilitation has received practically no attention in this context.
Our model makes a contribution to social foraging theory by
providing a starting point for understanding the trade-off
between facilitation and competition (Nilsson et al., 2007).
Understanding these tradeoffs during social interactions is impor-
tant in shaping the functional responses of organisms and
provides a mechanistic link between individual behaviour, group
dynamics and community ecology.
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