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Many mathematical models have been proposed for the process of cell polar-
ization. Some of these are ‘functional models’ that capture a class of dynamical
behaviour, whereas others are derived from features of signalling molecules.
Some mechanistic models are detailed, and therefore complex, whereas
others are simplified. Each type contributes to our understanding of cell
polarization.However, the huge variety at different levels of detailmakes com-
parisons challenging.Here,we provide examples of both elementary andmore
detailed models for polarization. We also display how a recent mathematical
method, local perturbation analysis, can provide an appropriate tool for
such comparisons. This technique simplifies and speeds up the model devel-
opment process by revealing the effect of model extensions, parameter
variations and in silico manipulations such as knock-out or over-expression
of key molecules. Finally, simulations in both one dimension and two dimen-
sions, and particularly in deforming two-dimensional ‘cells’, can highlight
behaviour not captured by traditional simulation methods.

1. Introduction
The topic of eukaryotic cell polarization has attracted the attention of many
modellers, resulting in a large and growing literature. While each group has
its own motivation and paradigms, some questions, on which we focus here,
are of universal relevance. These include:

— How can we hope to understand the complex networks involved in cell
polarization using quantitative (modelling) approaches?

— Can we be confident that the simplified models capture some properties
well?

— What is the relationship between detailed and stripped-down models? Do
we have to use ‘functional’ models to capture the phenomena, or can we
preserve some biological properties?

— What kinds of tools can we use to study and understand models at various
levels of complexity?

— Are there reasonable methods that we can use to compare distinct models at
various levels of detail?

— What can we learn from the much more computationally intensive simu-
lations of two-dimensional deforming cells that may not be evident in
one-dimensional simulations?

All types of models have their uses and their limitations. Ultimately, we
would like to be in a position to faithfully account for all the components in
the complex signalling networks in the cell, and how they work together in
space and time. Practically speaking, this is still a challenge for the future, as
much remains to be determined experimentally before such detailed models
can be constructed.

Models for cell polarity are traditionally sets of reaction–diffusion (RD)
equations. These partial differential equation (PDE) models are very sensitive
to changes in kinetic terms, and no universal method for classifying or categor-
izing their behaviour exists. This means that fully analytic comparison of
distinct models is a difficult process. Simulations provide a simpler (but less
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satisfying) option: we can simulate various proposed models
using similar protocols to see how they compare. (An example
of such one-dimensional protocols was given by Jilkine &
Edelstein-Keshet [1].) One issue is that eachmodel has avariety
of possible behaviours in various parameter regimes, and com-
paring across all models and regimes becomes combinatorially
difficult. For such systems, specifically those with slow and
fast diffusing components, a recent tool of local perturbation
analysis (LPA) proves very helpful.

Which models are more useful, those that aim to be all-
encompassing and detailed, or those that are simple and
mathematically tractable? Are both types relevant to biology?
Here, we argue that it is possible to preserve some biological
realism in stripped-down abstract models and still refer to
specific biological components. An example from our work
is the activity cycling of GTPases, reviewed briefly below.
Chronologically, the detailed versions of such models led to
simplifications that could be analysed mathematically. In
turn, the simple models were ideal for understanding the
underlying mechanism at play in the tangle of interactions
of the larger networks. How can we be sure that simple
and detailed versions of the models preserve some common
essence? Aside from simulations, it is desirable to consider
the dynamic regimes that models can display as certain key
parameters are varied. This type of ‘signature’ provides a
summary of model dynamics that no one set of simulations
adequately encompasses. We illustrate a type of bifurcation
analysis that provides such a signature.

2. Models: from detailed to simple
Modelling biological systems requires a balance between
detail (which implies complexity) and mathematical tractabil-
ity (which motivates simplicity). These two extremes are at
opposite poles of our ability to understand the implications
of a model analytically. An eminent applied mathematician,
Lee Segel, taught his students to seek to identify ‘which of
many variables are important, and which can be disregarded
in simplifying the problem’ (in the recent words of his son,
Joel Segel).

Understanding the regulatory machinery responsible for
cell polarity is a prime example where this approach has

been useful.While thismachinery is complex andmultifaceted,
in many cases conserved elements and motifs emerge, as
shown by the examples in figure 1. Mathematical modelling
is well suited for identifying these motifs and deciphering
their functions. One example is the central regulatory role of
small GTPases such as Cdc42, Rac and Rho. Subsets of these
regulators are ubiquitously involved in control of actin nuclea-
tion and growth, and myosin contraction in most eukaryotic
cells. While their specific interactions can vary across cell
types, their core function is conserved and central to eukaryotic
cell motility and (in some cases) cell polarization.

(a) Lessons we learned from small GTPase models
Models for networks of small GTPases interacting with one
another and with other components have been described
[5–8]. At present, there is virtually no kinetic or biochemical
detail that allows each binding and regulation step to be
modelled mechanistically. Moreover, attempting to do so
can lead to highly complex models for small parts of the
system, which are not ideal. Most such models are at least
partly phenomenological. We started with the model for
three interacting GTPases, Rac, Cdc42 and Rho, with
mutually inhibitory interactions between the latter two and
input to the central regulator Cdc42 [6, fig. 3c]. The mutual
inhibition resulted in multiple steady states (bistability)
with regions of high Cdc42 (front) and low Cdc42 (rear),
which were at the time associated with reciprocal (low and
high) Rho. However, RD models of these three interacting
proteins result in waves of activity that sweep across and
take over the whole cell, so no polarization can be sustained.
Our first lesson from this disappointment was that not all
reasonable verbal models in fact have the expected behaviour
when implemented in a spatial setting. While the model displays
bistable kinetics in its time-dependent version, it fails to
account for the existence of multiple regions in a single
spatial domain.

A second lesson we learned is that some types of biological
details are important. For example, GTPases have both active
and inactive forms. Transitions between these forms are on
the timescale of seconds, much faster than protein synthesis,
and hence the total amount is roughly constant on the time-
scale of cell polarity. Active GTPases are membrane-bound,

PIP2 PIP3
PI5K

PTEN

PI3K
PIP1

RacCdc42 Rho

S(x,t)

f1

active GTPase

inactive GTPase

active GTPase

inactive GTPase

F-actin

(a) (b) (c)

Figure 1. Schematics for a succession of simple to complex models based on reacting and diffusing components. (a) Wave-pinning (WP) model [2]. (b) TheWPmodel is linked
to F-actin via feedback, based on Holmes et al. [3]. (c) Full model of Cdc42, Rac and Rho from Holmes et al. [4, fig. 1d ] (with permission of PLOS Computational Biology).
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and so diffuse more slowly than their cytosolic inactive
counterparts. When this biological detail is incorporated [5],
the model becomes a six-variable RD system with three
active and three inactive forms and conservation of each of
the proteins overall. While the inactive form does not partici-
pate in signalling directly, its availability affects activation:
when it is depleted below some level, no further activation
can take place. Incorporation of these conservative (in)acti-
vation kinetics leads to sustained polarization. Bistability
initiates a wave of activity, and depletion of the inactive sub-
strate stops this wave before it traverses the cell. This type of
behaviour has been denoted wave-pinning (WP).

Another lesson gained from experience is that some model-
ling detail is important. For example, for simple exchange
between active and inactive forms of the same protein, the
basic structure of the well-mixed model (ignoring space at
present) must be of the following type:

du
dt

 av bu and
dv
dt

 bu av;

) u v  w  constant; 2:1

where a, b are rates of activation and inactivation that could
depend on u and on other variables. In the specific case of
small GTPases, a  a(u,. . .) is the rate of guanine nucleotide
exchange factor (GEF)-mediated activation and b  b(u,. . .)
is that of GTPase activating protein (GAP)-mediated inacti-
vation. Both might be functions of the level of active
GTPase and/or other active components that are known or
hypothesized to affect (in)activation. (As v is inactive and
does not participate in signalling, neither a nor b should
depend on it.) In general, either a or b must be nonlinear to
account for switch-like cellular responses. Moreover, it is cus-
tomary to assume some saturation in the dependence of these
rates on components that affect them.

One more observation that emerges from our experience
is that some modelling detail is less important at this stage of
exploration. Indeed, it has been shown that from a modelling
perspective, numerous biochemical regulatory circuits (with
positive or negative feedbacks) are functionally the same in
the sense of having similar dynamic behaviour [9]. Until details
about signalling systems are determined experimentally, it is
therefore impossible to distinguish between (say) certain
types of positive feedback to GEFs versus a specific reciprocal
negative feedback to GAPs in small GTPase models. Further-
more, the switch-like response could be due to zero-order
ultrasensitivity or to cooperativity (Hill functions). In future
experiments, it may be possible to test for such details using
knock-out experiments whereby either the GEF or the GAP is
gradually silenced.At present, the choice ofwhere the feedback
acts and how it acts is, to a great extent, arbitrary in the con-
struction of preliminary models, as they can be formally
shown to be dynamically equivalent [9].

(b) Simplifying the small GTPase models
Mathematical analysis of the phenomenon of WP that we
observed in the six-variable PDE model for Cdc42, Rac and
Rho was challenging. In such cases, one is often constrained
to exhaustive simulations (but see appendix in [6]). Conse-
quently, it is hard to fully understand how the system
works, and we were motivated to simplify and abstract this
model. To do so, we formulated a prototype consisting of a
single GTPase in active (u) and inactive (v) forms (resulting

in a two-variable RD system). There, nonlinear positive feed-
back from u to its own activation replaced the previous
double negative feedback. We preserved the details that
had proven to be important: large differences in the rates of
diffusion, constant total amount of the protein and nonlinear
saturating feedback. We found that the resulting simple
single-GTPase system is capable of polarizing via an appar-
ently similar WP behaviour. The stripped-down system was
then sufficiently simple to be analysed mathematically
[2,10]. Interestingly, the same model was also adopted to
describe polarization of PAR proteins in the early embryo of
the nematode Caenorhabditis elegans [11,12]. We refer to this
model henceforth as the WP model.

The significance of the WP model is as follows: first, it is a
simple prototype system to describe robust polarization that
has a threshold behaviour (shown below). Several recent
cell motility simulations such as (e.g. [13,14]) have adopted
this model to enable polarization in prototype motile cells.
By construction, the WP model has aspects that specifically
describe known proteins (GTPases), so it is not simply a
‘functional’ model in the sense of having appropriate
dynamic behaviour. As noted in several works (e.g.
[11,12]), it generalizes to signalling proteins that cycle on
and off the membrane (for example, PAR proteins). Finally,
its simplicity allows for extensive mathematical analysis
[10], generalization to a stochastic version [15] and extension
to include the effect of F-actin [3], described below.

3. Tools for analysis of polarization and other
reaction–diffusion models

The vast majority of cell polarity models are based on sys-
tems of RD equations (but see Houk et al. [16], where
membrane tension plays an important global inhibitory
role). A unifying feature of these models is a dichotomy
between fast and slow diffusing components. A typical
two-variable model can be described in general by the PDEs

@u
@t

 Du
@2u
@x2

 f u; v and
@v
@t

 Dv
@2v
@x2

 gu; v: 3:1

Wewill take u to be slowdiffusing (Du , Dv) and,wherever rel-
evant, it will represent the active form of a polarity regulator.
Classical analysis of such systems, dating back to Turing [17],
is based on linear stability analysis (LSA) to check for instability
of a homogeneous steady state (HSS) to small amplitude noise.
This reduces the PDE problem (equations (3.1)) to a linear alge-
braic problem of determining whether eigenvalues of the
linearized system can have positive real parts. When this is
the case, the HSS can be destabilized and some type of pattern
(spatially non-uniform solution) may result. LSA gives clues
about pattern initiation and (in some cases) of the types of pat-
tern to expect, but it cannot predict the full evolution of the
system because nonlinear effects generally come into play
once the perturbation grows. While LSA is an important tool
in the applied mathematician toolbox, it has limitations. First,
it can only check for instabilities that are provoked by arbitra-
rily small noise. Second, it does not easily scale up to larger
nonlinear networks, where finding the HSS and eigenvalues
can be extremely challenging.

For this reason, complementary tools have proved useful
in our work on polarization. We review one such method,
LPA, in the next section.
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(a) Brief survey of local perturbation analysis
The technique described below was invented jointly by AFM
Marée andV.Grieneisen. Itwas initially described in the appen-
dix ofVeronicaGrieneisen’s PhD [18],UtrechtUniversity. Itwas
then used extensively to parametrizemodels inMarée et al. [5,8]
and more recently in the context of Holmes et al. [3,4]. Informal
justification of this method will be presented here with detailed
mathematical justification pending.

Before describing LPA, we note for future reference the
typical form of kinetic equations describing the well-mixed
(spatially uniform) system:

du
dt

 f u; v and
dv
dt

 gu; v: 3:2

We will refer to this well-mixed system and to the full RD
system (equations (3.1)).

The basic idea of the LPA is to take advantage of the dif-
fusion discrepancy and consider the limit Du ! 0, Dv !1 in
the RD system (equations (3.1)). We probe stability of the HSS
with respect to a ‘local’ perturbation in the form of a narrow
peak of u at some location in the domain. (The magnitude of
the peak need not be small, but its ‘total mass’ should be neg-
ligible.) In this limit, the localized peak of u (denoted uL) does
not influence the surrounding background levels of u
(denoted uG). As v diffuses ‘infinitely fast’, it is uniform in
space and can be described by a single global variable (vG).
Further, since the mass of the perturbation is negligible, uL
does not influence the evolution of vG. So, uG and vG interact
according to the well-mixed chemical reaction kinetics and
the growth or decay of uL is influenced by vG.

The dynamics of this peak and the global variables
describing the broader domain can then be described by
a collection of evolution ordinary differential equations
(ODEs) for uL, uG and vG.

duL
dt

 f uL; vG;
duG
dt

 f uG; vG and

dvG
dt

 guG; vG: 3:3

This system of ODEs describes the growth or decay of
the stimulus peak, providing stability information for the
underlying spatial system.

We now apply this method to the polarization models
described above. A common feature of polarization models

is interconversion between two forms with the total average
concentration w conserved. We show two such examples
below. In this case, g(u,v)  2f (u,v). We use conservation,

uG  vG  w  constant;

to eliminate one variable (vG in this case), leaving the reduced
LPA system

duL
dt

 f uL;w uG and
duG
dt

 f uG;w uG: 3:4

The original problem consisting of PDEs has been reduced to
a set of ODEs describing the growth of a narrow pulse.
Dynamics of these ODEs under a wide range of parameter
variation can be explored readily using bifurcation software.

Figure 2 depicts the results of such an analysis. For the
given parameter set, the well-mixed WP model has a
unique stable steady-state value of u for all values of the
parameter k0, as shown in figure 2a. As k0 increases, the
steady-state level of the active form u increases monotoni-
cally. We refer to this curve as the ‘global branch’ in what
follows. As shown in figure 2b, the LPA diagram includes
both the global branch and an additional (grey) curve here-
after denoted the ‘local branch’. The interpretation of this
LPA diagram will be explained in the next section, where a
comparison with a second model is made.

LPA has several benefits. It is fairly easy to formulate the
LPA ODEs by identifying the slow and fast variables. It is
then easy to explore the parameter regimes of growth/
decay and/or threshold behaviour of the perturbation using
bifurcation software. Below, we further illustrate several
advantages of LPA. (i) It provides a standardized tool for
comparison of distinct RD models for polarization. (Models
with similar mechanisms have a similar LPA ‘signature’.
Models that look superficially similar but have distinct mech-
anisms have different LPA signatures.) (ii) LPA helps to point
to what changes when a model is extended or modified in
some way. For example, if new feedback in introduced or
another component is added to a model, then LPA can
show how the behaviour changes over a whole range of par-
ameter variation. (iii) LPA is relatively easy to scale up to
larger systems of interacting components. This makes LPA
much more ‘user-friendly’ than LSA.
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Figure 2. (a) Bifurcation diagram of the well-mixed WP system (equation (3.2)) with the kinetics (equation (4.1)). The steady-state value of u is plotted with
respect to a basal activation rate, k0. Parameter values n  2, g  1, u0  1, d  1 and total average concentration w  2.2683. (b) LPA diagram of the WP
system (same parameter values). This diagram forms a ‘signature’ for the model. It also provides information about distinct behaviours possible in various parameter
regimes. BP indicates a branch point bifurcation. See text for details.
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4. Model comparisons
As previously mentioned, the literature on models for cell
polarization is large, with a variety of models of many
types [19–21]. How should we compare such models and
their functionality? In principle, we can do so by simulating
the response of models to similar protocols [1], but this can
at best probe a limited set of parameters in each case. Here,
we show that LPA can help to inform such comparisons.

(a) Example 1: comparison of wave-pinning and
Otsuji models

Here, we use LPA to compare the polarization model of
Otsuji et al. [19] (abbreviated OT) to the WP model of Mori
et al. [2]. Both OT and WP share the form of equations (3.1)
with g(u,v)  2f (u,v), implying conservation of the total
amount of protein. In both models, u and v represent active
and inactive forms of GTPases, respectively. The kinetics for
these models are given by, for the WP model [2]

f u; v  k0  g
un

un0  un

 
v du; 4:1

and for the OT model [19]

f u; v  a1 v u v
a2u v  12

 !
: 4:2

In the kinetics of equation (4.1), there is a rate of activation of
u from v (basal value k0) and an inactivation rate d. (This follows
the form of equations (2.1).) A Hill function depicts positive
feedback from u to its own activation. The total average concen-
tration, w, is determined by initial conditions, not by other
parameters. While OT kinetics (equation (4.2)) can be rewritten
similarly in the formof equations (2.1), both activation and inac-
tivation rates depend explicitly on the total average amount of
protein w.

Figure 3 compares the LPA ‘signatures’ ofWPandOT.Here,
the steady-state value of uL is plotted against the bifurcation
parameter w. In each case, there is a monotonically increasing
‘global branch’ (thick dark curve), together with an additional
‘local branch’ that stems from spatial features captured by the
LPA equations (thinner grey curve). The OT model in figure
3a has a strictly decreasing local branch. For small values of
w, only the global branch is stable. The intersection point is a
transcritical (branch point) bifurcation at which the two
branches exchange stability. Thereafter, for larger w values,
we have a Turing regime, whereby a perturbation of arbitrarily
small size can lead to patterning. To the left of that bifurcation,
LPA suggests that only perturbations of sufficiently large
amplitude might lead to destabilization. (In practice, because
LPA is an asymptotic approximation, and as the local branch
climbs very steeply upwards towards the left, it is hard to
cause patterning in that regime.)

Figure 3b for the WP model is significantly different. First,
we see four rather than two major regions (I–IV, left to right,
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Figure 3. A comparison of LPA diagrams for (a) Otsuji [19] and (b) WP [2] models, showing uL with the total average concentration and w as the bifurcation
parameter. (a) Otsuji kinetics (equation (4.2)) with a1  25, a2  0.7. There is a single bifurcation at w  1.429. (b) WP kinetics (equation (4.1)) with k0 
0.067, g  1, u0  1, d  1, n  2. Bifurcations are at branch points (transcritical): w  2.3, 2.6; limit points ( fold): w  1.91, 3.55. The behaviour of the
model can be classified into regimes (separated by thin vertical lines): Region I: 0, w, 1.91, II: 1.91 , w, 2.3, III: 2.3 , w, 2.6, IIb: 2.6 , w, 3.55
and IV: 3.55 , w. BP indicates a branch point bifurcation. (c,d ) A series of spatial profiles at increasing times T of the full RD PDEs for (c) the Otsuji kinetics
(equation (4.2)) with w  2 in the Turing regime (patterning initiated by numerical noise) and (d ) the WP kinetics (equation (4.1)) with w  2.2 demonstrating
wave-pinning behaviour (a pulse at t  20 initiates patterning).
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see legend of figure 3). In Regions I and IV, a stable HSS can
never be perturbed. In Region II, the HSS is stable (solid
curve) but can be destabilized by a sufficiently large local
perturbation (past the threshold of the local branch, dot–
dashed). For values of w between the two intersections (trans-
critical bifurcations), the HSS is unstable to any perturbation
(Turing regime, Region III). Between the rightmost intersec-
tion and the ‘knee’ to its right, the system can only be
prodded away from its elevated HSS by a pulse that locally
lowers the value of u by a sufficient amount (Region IIb). It
turns out that both Regions II and IIb correspond to wave-
pinning behaviour, a fact that can only be determined by
full-scale simulations. Examples of full PDE simulations in
one spatial dimension are shown in figure 3c for OT and
figure 3d for WP. In general, OT tends to form steep peaks,
whereas WP has plateaus with broad shoulders.

In short, WP has distinct regimes of (i) complete stability,
(ii) Turing instability and (iii) two distinct regimes of
threshold response. OT shares the Turing regime, and a
threshold response that in practice proves hard to trigger.
Overall, aside from providing insight into parameter regimes
for a given model, LPA produces a graphical summary of the
range of distinct dynamic properties, providing a ‘signature’
that can be compared across RD polarization models.

(b) Example 2: the effect of model extension and
additional feedback

The WP model has been studied earlier in Mori et al. [2,10]
and by LPA and related methods in Walther et al. [15].
Here, we show that LPA can be used to understand the
effects of model extension or modification. In Holmes et al.
[3], we considered an extension of the WP model that
included interaction with F-actin (see figure 1b). This was
motivated by the following observations: (i) waves of F-
actin and nucleation promoting factor activity have been
observed in cells [22–24] and (ii) waves of small GTPases
and edge protrusion (presumably powered by actin polymer-
ization) have also been observed [25]. Accordingly, a
modified WP model was linked to nucleation of F-actin.
Feedback from F-actin was assumed to accelerate inactivation
of the small GTPase (figure 1b), that is, to act as negative feed-
back channelled through GAPs. The resulting WP-F model is

among the simplest descriptions of F-actin waves driven by
nucleation promoting factors.

To account for the additional influence of F-actin (F ) on
the system, the following minimal extension of the WP
model is used

@A
@t

 f A; I;F DA
@2A
@x2

;

@I
@t

 f A; I;F DI
@2I
@x2

and
@F
@t

 1knA ksF;

9
>>>>>>>=

>>>>>>>;

4:3

where the GTPase kinetics includes an F-actin-dependent
inactivation term

f A; I; F  k0  g
A3

A3
0  A3

 
I  s1  s2

F
1 F

 
A: 4:4

The model was explored by simulations guided by LPA
analysis [3]. Figure 4 compares the bifurcation diagrams
for the WP model alone (where F is treated as a constant par-
ameter, i.e. e  0) and the fully dynamic A, I, Fmodel. We see
the appearance of several new Hopf bifurcations that were
absent in WP, arising as a result of the dynamic feedback
from F-actin. These regimes lead to a variety of wave-like
behaviours [3], including static polarization, oscillatory
polarization, travelling wave trains, reflecting waves and
other exotic patterns as shown in figure 5. Note that such
wave-like patterns are absent in the WP model alone.

5. Comparing simple and detailed models for
polarization

Ultimately, we are interested in learning about real signalling
networks and their dynamic behaviours. To do so, we must
return to the more complex biological scenarios, where
GTPases interact with each other and with other signalling
modules. A benefit of this approach is that the model com-
ponents are linked to known molecules which could, in
principle, be manipulated in experimental tests.

Examples of this type of modelling include Dawes &
Edelstein-Keshet [7], Marée et al. [8], Kholodenko [9] and
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Figure 4. LPA bifurcation diagram reveals the effect of model extension from WP to WP-F (figure 1a,b). (a) WP system alone, showing active GTPase AL versus basal
activation rate k0. Here, F-actin is treated as a parameter (F  5) in the system (equations (4.3)) with kinetics f (A,I,F ) given by equation (4.4). Transcritical bifur-
cations occur at k0  0.2178, 0.3051 (branch points) and fold bifurcation at k0  0.3229 (limit point). (b) As in (a) but with F-actin as a dynamic variable. Note
new Hopf bifurcations at k0  0.169, 0.1963, 0.2318, 0.2419, 0.2799. (The outer two of these are on the global branch.) These indicate presence of oscillatory
behaviour. Transcritical bifurcations are seen at k0  0.1814, 0.25, and there is a fold bifurcation at k0  0.2586. Parameters values: A0  0.4, g  1.0, s1  0.7,
s2  0.7, T  1, e  0.1, kn  2.0, ks  0.25.
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Marée et al. [26]. In Kholodenko [9] andMarée et al. [26], models
for active and inactive Cdc42, Rac and Rho were simulated
spatially in one dimension and two dimensions, in both static
and deforming ‘cells’. In Dawes & Edelstein-Keshet [7], Marée
et al. [8], GTPases were linked to phosphoinositides PIP, PIP2
and PIP3 via positive feedback to/from Rac and Cdc42. (The
role of PIPs has been controversial in the biological literature,
and we sought to explore how they affect the small GTPase
layer.) These models were based on mutual inhibition between
Cdc42 andRho supplemented bypositive feedback fromCdc42
to Rac and from Rac to Rho.

In recent experimentalworkdescribedbyLin et al. [27],HeLa
cells cultured in microfluidic chambers were highly constrained
to polarize along the direction of narrow channels. Biochemical
constructs in these cells were engineered to convert a controlled
external gradient of a small molecule (rapamycin) into a robust
internal gradient of Rac, bypassing all the innate receptor-
based signalling systems. Cells in several states were tested for
polarization responses, and results were quantified and com-
pared to a sequence of models for internal signalling. We
noted immediately that themodel based onmutual antagonism
betweenCdc42 andRho could not account for theRac-mediated
polarization response: in fact, that model polarizes in a direction
opposite to the gradient of Rac activation. Rather than simply
add supplemental interactions to an existing set of proposed
interactions, we instead sought the simplest connectivity
between these GTPases capable of recapitulating this data.
Figure 1c shows the schematic diagram of this ‘minimal circuit’.
See Holmes et al. [4] for details of the models and analysis.

The level of complexity of the detailed network in figure 1c
is significantly greater than that of the WP model in figure 1a:

the model consists of nine PDEs (for C, R, r active/inactive
forms, and P1, P2, P3 representing the three forms of PIP
lipids.) However, carrying out LPA analysis is relatively
straightforward, because the resulting 15 LPA-ODEs (PIP1,2,3
are considered slow variables) are simpler to analyse with
bifurcation software than most systems of even two to three
nonlinear PDEs.

A typical LPA bifurcation plot with respect to the basal
activation rate for Rac (Ir) leads to the diagram shown in
figure 6a. A direct comparison can be made with figure 2b
which provides the LPA diagram for WP with respect to a
similar basal activation rate parameter k0. We observe a
number of similarities: both models share a monotonically
increasing global HSS branch (dark curves). Both share simi-
lar regimes: a wave-pinning polarization regime where the
HSS is sensitive to a sufficiently large stimulus peak (II), a
Turing noise-sensitive regime (III) and a regime where no
perturbation induces patterning and only the HSS is stable
(IV). It is interesting to note that, even though the models
are significantly different, they share certain key features.
(This suggests that lurking behind a facade of details is the
core mechanism that was identified in the far simpler WP
model.) Furthermore, these similarities are easily detected
using the LPA.

A second feature of figure 6 illustrates the usefulness of the
LPA diagram in understanding the effect of specific exper-
imental manipulation. Figure 6b shows the effect of PI3K
knock-out, which reduces the feedback between PIP3 and Rac
(marked with f1 in figure 1c). The series of increasingly thick
curves represent increasing levels of feedback (from none at
f1  0 to essential at f1  1). As feedback increases, the grey
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Figure 5. Full simulations of the WP-F model (equations (4.3) and (4.4)) showing A(x,t). A variety of waves and periodic travelling patterns are obtained. Parameter
values as in figure 4b, with (a) k0  0.1, (b) k0  0.175, (c) k0  0.22, (d ) k0  0.24, and (e) k0  0.25.
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Figure 6. (a) LPA bifurcation diagram of the models shown in Holmes et al. [4, fig. 1c]. The value of Cdc42 Cl is plotted versus a basal Rac activation rate Ir. (b)
Same diagram showing the effect of feedback from the PIPs to Rac. Adapted from [4, figs 3 and 6a] with permission of PLOS Computational Biology.

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20130003

7



loop (‘local branch’) shifts to the left. This means that at a given
value of the activation rate k0, the cell ismore sensitive to stimu-
lation: a pulse of smaller amplitude is able to breach the
threshold and lead to polarization. In this sense, LPA also illus-
trates how feedbacks of various sorts affect cell behaviour, with
minimal computational effort.

6. Cell shape and model comparisons
The ultimate test of polarization models is how they perform
in a deforming cell, and how they are linked to cell motility.
In real cells, assembly of the cytoskeletal polymer actin prods
the cell membrane forward at the leading edge, while con-
traction of the cytoskeleton by myosin molecular motors
pulls up the rear. Anchorage by adhesion molecules provides
requisite traction. Cell polarity is an additional layer of
chemistry that keeps cell migration oriented.

The simplest possible model for a deforming cell requires
only a recipe that couples intracellular chemistry to mem-
brane velocity. To focus on the interaction between cell
shape and cell polarity, it makes sense to bypass a detailed
description of molecular force generation by coupling the
chemical kinetics of cell polarity directly to membrane displa-
cement. This phenomenological approach allows for a direct
comparison of different polarity mechanisms, without
additional complicating factors.

(a) Level set methods
Investigating the influence of cell geometry on cell polarity
requires a scheme for describing arbitrary cell shapes. One
possibility would be a Lagrangian description of points
along a parametrized cell boundary. Level set methods
provide an Eulerian alternative. As a simple example, in
two dimensions, consider a circular cell that grows bigger,
without changing shape. Level set methods describe this
scenario in terms of a cone that points downwards as it des-
cends along a vertical axis. Intersection of this moving cone
with a fixed horizontal plane then represents the edge of
the growing cell. At any point in the plane, the corresponding
cone elevation c gives the shortest distance to the cell bound-
ary, with negative elevations inside. This defines a ‘distance
map’ for which the zero level set (c  0) provides an implicit
description of the cell boundary. In general, once intracellular
physics sets the velocity V for membrane displacement,
advection of c then moves the boundary appropriately
(@c/@t  2 V .rc), using standard (though non-trivial)
numerical methods [28,29]. Level set methods make it easy
to compute the outward normal �n and curvature k of a cell
boundary (�n  rc=jrcj and k  r  �n ).

(b) The moving boundary node method
Given a level set description for the edge of a cell, it remains to
describe cell polarity within the contained region. The moving
boundary node method [30] provides a means of solving
the requisite differential equations. In a level set representa-
tion, the cell boundary usually falls between the nodes of a
computational grid, with the boundary location determined by
interpolation. However, nodes near the boundary can be
moved onto the boundary without difficulty; taken together, c
and �n give exactly the required displacements. This yields
dynamic, boundary-fitted coordinates and a set of distorted

volume elements that exactly fit the shape of a cell. Computatio-
nal nodes retain simple Cartesian connectivity, which makes it
easy to compute fluxes between adjacent volume elements.
This leads to a finite-volume discretization of reaction–
advection–diffusion equations inside moving, deforming cells.
The method is accurate to second order and conserves mass.

(c) Comparison of wave-pinning and Otsuji polarity
For both the Turing regime of OT (figure 3a) and region II of
WP (figure 3b), perturbation of an unstable, spatially homo-
geneous steady state triggers polarization of a static circular
cell. Disrupting the homogeneity of active protein u with a
10% spatial gradient across the cell provides sufficient stimu-
lus. Compared with WP (figure 7a), polarization for OT
(figure 7f ) is more localized and has a peak of greater magni-
tude. These polarized states, for static cells, provide initial
conditions for cells with moving boundaries.

Perhaps the simplest possible assumption is a linear
relationship between the concentration of active protein, u,
and velocity, v, along outward normal, �n , at each point on
the perimeter of a cell

v  V0
u u

maxuSS minuSS

 
�n ; 6:1

whereV0  0.5 mm s21 sets a realistic velocity for typical crawl-
ing cells, while uSS is the steady-state concentration for a
polarized, static, circular cell, and u* is an outward growth
threshold, chosen here as the value of uSS at which jruSSj
attains a maximum. Points on the cell boundary where
u2 u* is positive move outward, along �n , whereas the cell
contracts at points where u2 u* is negative. For the same par-
ameter values considered in one dimension (figure 3), WP
yields convex, translating cells (figure 7b–d), whereas OT
yields constricting, concave cells (figure 7g– i).

Constriction of cells under OT can be understood as
dominance of reactions over diffusion. This can be expressed
as a ratio of timescales

tD
tR

 R2=Du

1=a1
; 6:2

where tR is the characteristic time for OT reactions while
R  5 mm is the chosen cell radius, so tD is the characteristic
time for intracellular diffusion. Recall that a1 is the reaction
rate for OT (equation (4.2)), whereas k0, d and g are WP reac-
tion rates (equation (4.1)). Substituting the maximum of k0, d
or g for a1 in tR gives the characteristic time for WP reactions
instead. For either OT (figure 7g– i) or WP (figure 8d,e), a ratio
of tD/tR  2500 yields constriction. In this case, relatively fast
reactions cause localized depletion of u that diffusion fails to
replenish so u drops below u* to give inward velocity at the
point of concavity. By contrast, a ratio tD/tR  250 yields
convex translating cells for both WP (figure 7a–d ) and OT
(figure 8d,e).

Notably, constriction under WP (figure 8d,e) highlights
some limitations of working in one dimension. In two dimen-
sions, the cell develops a narrow bottleneck (figure 8e, inset)
between two compartments. The width of the bottleneck and
the average radius of each compartment give a constricted
cell three inherent length scales, compared to the single
length scale for polarity simulations in one dimension
(figure 3). This is significant because the trade-off between
reaction and diffusion timescales (equation (6.2)) depends
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on the characteristic length of the region in question.
These geometrical effects somehow combine to manifest as
emergence of two separate regions in which u is elevated
(figure 8e), starting from just one region (figure 7a). Over
time, the concentration profile for constriction under WP
develops a local maximum, towards the rear of the cell
(figure 8c, grey curves). This does not happen in one
dimension (figure 3d ), for a comparable initial condition.

7. Discussion
In this paper, the main emphasis has been on GTPase-based
models for polarity initiation in motile eukaryotic cells.
The models surveyed here consist of sets of RD equations.

We have shown several methods for comparing across dis-
tinct models (from simple abstract ones to more detailed
and complex ones). One method that is of particular utility
is the LPA, a useful tool for systems with slow and fast
rates of diffusion. We have shown that seemingly related
models for polarization in fact have very different LPA ‘sig-
natures’ (as shown in figure 3 for two types of small
GTPase models), whereas models at different levels of
detail can be related by a common or similar LPA signature
(e.g. figures 2b and 6a.)

LPA can complement other methods of analysis but is not
a replacement for full-scale simulations, such as those of
figures 3c,d and 5. Those are still needed to explore the pat-
terns that form after the short-time initiation phase. A first
step is to determine the behaviour of such models in
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one-dimensional spatial domains where we can ask whether
robust polarization results from various stimuli.

However, as shown in §6, even full-scale one-dimensional
simulations are not always predictive of the evolution of
polarization in a deforming two-dimensional ‘model cell’.
While the latter defines a challenging moving boundary pro-
blem, such simulations are an ultimate test of models for
polarization and cell motility.
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