
Chapter 15

Stability and Linearization, Systems of

Differential Equations

15.1 Linear approximation and stability

Consider the differential equation
dx

dt
= f(x)

Suppose that the steady state of this equation is x = Xss.

(a) Use linear approximation to express f(Xss + ∆x) in terms of the values of f and f ′ at Xss.

(b) Consider a point that is close to the steady state, i.e. let x = Xss + ∆x. Substitute this into
the differential equation and simplify your result to obtain a new differential equation for the
deviation ∆x from steady state.

(c) A steady state is said to be stable if small deviations from that steady state decay. Show that
Xss is stable if f ′(Xss) < 0. We will refer to this condition as the stability criterion.

Detailed Solution:

(a) By linear approximation,

f(Xss + ∆x) ≈ f(Xss) + ∆xf ′(Xss).

(b) Plug in x = Xss + ∆x to obtain

d(Xss + ∆x)

dt
= f(Xss + ∆x) ≈ f(Xss) + ∆xf ′(Xss).

Use the fact that f(Xss) = 0 (Steady state) and dXss/dt = 0 to arrive at

d(∆x)

dt
= ∆xf ′(Xss).
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(c) The above equation is a simple linear ODE of the form

dx

dt
= ax

where a = f ′(Xss). The solutions (i.e. the deviations from steady state) will decay exponen-
tially provided that a < 0. Thus stability is equivalent to f ′(Xss) < 0.

15.2 Stability, single ODE

Consider the differential equation
dx

dt
= f(x)

and suppose that this equation has a stable a steady state located at x = 1. Which of the following
statements could then be true?

(a) f(1) = 1, f ′(1) = 0

(b) f(1) = 1, f ′(1) = −1

(c) f(1) = 0, f ′(1) = 1

(d) f(1) = 0, f ′(1) = −1

(e) f(1) = −1, f ′(1) = −1

Detailed Solution:

Because x = 1 is a steady state, it must be true that f(1) = 0. Stability implies that f ′(1) < 0.
The only possibility is (d).

15.3 Single ODE’s cont’d

For each of the following single ODE’s, find all steady states and determine stability of those steady
states using the stability criterion developed above. (If the stability criterion does not apply, explain
why.)

(a)
dy

dt
= y2

− 3y + 2

(b)
dx

dt
= rx(1 − x), for r > 0

(c)
dx

dt
= 3x2(1 − x)

(d)
dy

dt
= y
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Detailed Solution:

(a) For
dy

dt
= f(y) = y2

− 3y + 2 = (y − 1)(y − 2), the steady states are y = 1, 2 and the

criterion involves f ′(y) = 2y − 3. We find that f ′(1) = −1 < 0 so y = 1 is stable, and
f ′(2) = 4 − 3 = 1 > 0 so y = 2 is an unstable steady state.

(b) For
dx

dt
= f(x) = rx(1 − x), for r > 0, the steady states are x = 0, 1 and f ′(x) = r − 2rx.

Thus f(0) = r > 0 implies that 0 is unstable. f ′(1) = r − 2r = −r < 0 implies that x = 1 is
stable.

(c) For the equation
dx

dt
= f(x) = 3x2(1−x) = 3(x2

−x3), the steady states are also x = 0, 1 and

f ′(x) = 3(2x− 3x2). Thus f ′(0) = 0 so this steady state is neither stable nor unstable (i.e. it
is a kind of neutral state). f ′(1) = −3 so the steady state at 1 is stable.

(d) The equation
dy

dt
= y is linear. Its only steady state is y = 0 and this is clearly unstable since

all positive solutions are growing. (Alternately, f(y) = y, f ′(y) = 1 > 0 for all y implying
instability.)

15.4 Linear approximation, Two variables

In the following problems, a function f(x, y) depends on two variables. Use linear approximation
to express f(X0 + ∆x, Y0 + ∆y) in terms of the values of f and its partial derivatives at (X0, Y0).
Simplify as much as possible. (Your answer will be in terms of ∆x, ∆y.)

(a) f(x, y) = x + y at X0 = 0, Y0 = 0

(b) f(x, y) = x2 + y3 at X0 = 1, Y0 = 1

(c) f(x, y) = x − xy at X0 = 1, Y0 = 1

(d) f(x, y) = x(1 − 2x − 3y) at X0 = 0, Y0 = 1

Detailed Solution:

f(X0 + ∆x, Y0 + ∆y) ≈ f(X0, Y0) + ∆xfx(X0, Y0) + fy(X0, Y0)∆y

(a) The function is already linear, and moreover fx = fy = 1 for all x, y thus f(X0+∆x, Y0+∆y) =
∆x + ∆y

(b) Here fx = 2x, fy = 3y2 so fx(1, 1) = 2, fy(1, 1) = 3 f(1+∆x, 1+∆y) ≈ f(1, 1)+2∆x+3∆y =
2 + 2∆x + 3∆y

(c) f(x, y) = x − xy so fx = 1 − y, fy = −x, fx(1, 1) = 0, fy(1, 1) = −1 so f(1 + ∆x, 1 + ∆y) ≈
f(1, 1) − ∆y = −∆y.

(d) For f(x, y) = x(1 − 2x − 3y) = x − 2x2
− 3xy we have fx = 1 − 4x − 3y, fy = −3x. Thus

fx(0, 1) = 1, fy(0, 1) = 0, so f(∆x, 1 + ∆y) ≈ f(0, 1) + ∆x = ∆x.
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15.5 Stability, System of ODE’s

Consider the system of ODE’s given below

dx

dt
= f(x, y) (15.1)

dy

dt
= g(x, y) (15.2)

Suppose that (Xss, Yss) is a steady state of this system. Show that close to this steady state, the
system can be approximated by the linear system

dx

dt
= ax + by (15.3)

dy

dt
= cx + dy (15.4)

where the coefficients a, b, c, d are partial derivatives of f, g evaluated at (Xss, Yss).

Detailed Solution:

This follows from linear approximation to f and g close to (Xss, Yss). Using results of Problem 15.4,

f(Xss + ∆x, Yss + ∆y) ≈ f(Xss, Yss) + fx(Xss, Yss)∆x + fy(Xss, Yss)∆y

and
g(Xss + ∆x, Yss + ∆y) ≈ g(Xss, Yss) + gx(Xss, Yss)∆x + gy(Xss, Yss)∆y

We also need to use the fact that

f(Xss, Yss) = 0, g(Xss, Yss) = 0

Plugging in
x = Xss + ∆x, y = Yss + ∆y

into the system of nonlinear equations, and using these linear approximation results will lead to the
desired outcome, with

a = fx(Xss, Yss), b = fy(Xss, Yss), c = gx(Xss, Yss), d = gy(Xss, Yss)

15.6 A Linear System

Consider the linear system of ODEs

dx

dt
= f(x, y) = ax + by (15.5)

dy

dt
= = g(x, y) = cx + dy (15.6)

This system has a single steady state, at (0, 0). Show that the partial derivatives of f, g are precisely
the linear coefficients a, b, c, d in this system. Show that the system is stable is β = a + d < 0 and
γ = ad − bc > 0.
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Detailed Solution:

The first part is an easy calculation. The second part follows from the fact that eigenvalues are of
the form

λ1,2 =
β ±

√

β2 − 4γ

2

using some of the arguments about this formula from the last homework set. In particular, when
β = a + d < 0 and γ = ad − bc > 0, the eigenvalues both have negative real parts, so solutions are
decreasing exponentials.

15.7 Stability, Continued

Consider the system of differential equations given below,

dx

dt
= x(1 − 2y − x) (15.7)

dy

dt
= y − x (15.8)

(a) Find all steady states of this system.

(b) Determine the stability of each of the steady states by linearizing the system about that steady
state and determining the behaviour of that linear system.

Detailed Solution:

(a) Steady states: x = y (to satisfy dy/dt = 0), so 0 = x(1 − 2y − x) = x(1 − 3x) so the steady
states are (0, 0) and (1/3, 1/3)

(b) Let f(x, y) = x(1 − 2y − x) = x − 2xy − x2. Then fx = 1 − 2y − 2x, fy = −2x. The second
equation is already in linear form, and need not be processed further. Linearization about
(0,0) will lead to

dx

dt
= x (15.9)

dy

dt
= −x + y (15.10)

For this linear system, β = a + d = 2 > 0, γ = ad − bc = 1 > 0 implies that the eigenvalues
are positive so the steady state is unstable. Linearization about (1/3, 1/3) will lead to

dx

dt
= −(1/3)x − (2/3)y (15.11)

dy

dt
= −x + y (15.12)

Here β = a+d = 2/3, γ = −1/3−2/3 = −1 < 0 implying that there is one positive eigenvalue,
so this steady state is a saddle.
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