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Exploring the Formation of Alzheimer’s Disease Senile Plaques in Silico
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An experimental simulation environment suitable for exploring the neuroinflammatory
hypothesis of Alzheimer’s disease (AD) has been developed. Using scientific literature, we
have calculated parameters and rates and constructed an interactive model system. The
simulation can be manipulated to explore competing hypotheses about AD pathology, i.e.
can be used as an experimental ‘‘in silico’’ system. In this paper, we outline the assumptions
and aspects of the model, and illustrate qualitative and quantitative findings. The interactions
of amyloid beta deposits, glial cell dynamics, inflammation and secreted cytokines, and the
stress, recovery, and death of neuronal tissue are investigated. The model leads to qualitative
insights about relative roles of the cells and chemicals in the disease pathology.

r 2002 Elsevier Science Ltd. All rights reserved.
An In Silico Experimental System

Biological experiments have traditionally been
carried out in vivo or in vitro. Recent interest has
grown in the new setting of ‘‘in silico’’ experi-
ments, i.e. those carried out in the setting of
detailed computer simulation models where
hypotheses can be tested. In silico systems could
ideally provide an initial platform for drug target
triage, rapidly identifying the pathways most
likely or rejecting those least likely to lead to
positive outcomes: see Eddershaw et al. (2000),
Norris et al. (2000), Gray & Keck (1999). An
in silico system is not meant to replace tradi-
tional biological experiments, but, rather, to
complement them. As a theoretical framework,
such systems can help to identify key relation-
ships that might be hard to ascertain from the
complexity of the biological system.
Recent examples of in silico systems include

ECELL by Tomita et al. (1999), Virtual Cell
(Schaff et al., 1997; Fink et al., 2000), and
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simulations of biochemical pathways by Palsson
(2000); these are systems that explore events at the
level of single cells or small groups of cells, internal
biochemical pathways, or distribution of sub-
stances inside cellular compartments. Other recent
applications include experimental tests of the effect
of permuting genomes for fitness of a bacterio-
phage T7 (Endy et al., 2000). The business models
of several companies (e.g. Entelos, Physiome) are
based on such systems, though their work is
proprietary and not available for open discussion
in the wider scientific community.
In this paper, we describe a preliminary online

in silico simulation for neuroinflammation and
pathology associated with Alzheimer’s disease
(AD). We outline the background of the
pathology, the way that we modeled and
simulated the various known and hypothesized
interactions, the tests carried out to study the
system, and what we learned from these. As we
show, the ability to accurately portray details of
this complex disease is challenging, and perhaps
beyond immediate reach. However, some quali-
tative and quantitative results are obtainable even
r 2002 Elsevier Science Ltd. All rights reserved.
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in cases where not all details are known, or where
parts of the system are not explicitly included.

Alzheimer’s Disease

Alzheimer’s disease is associated with progres-
sive death of neurons in the central nervous
system (CNS). Specific pathology includes senile
plaques (Fig. 1), amyloid deposits [Fig. 1(a)],
and abnormal cytoskeletal structures (neurofi-
brillary tangles). Certain genotypes cause in-
creased propensity, but the details of the genetic
vs. environmental causes are uncertain. As the
disease develops over a period of years, percep-
tible changes in cognition and memory occur
only at advanced stages, when a significant
fraction of neurons have died.
The statistics of Alzheimer’s disease (AD) are

frightening: in the year 1998, nearly 23 000
deaths from AD were recorded in the U.S.A.
alone, amounting to 2.6 deaths per 100 000
individuals, and making AD the ninth leading
cause of U.S.A. death (National Vital Statistics
Reports, Vol. 48, No. 11). According to the
Alzheimer’s Association, it is estimated that
more than 22 million individuals worldwide will
be affected by the year 2025; this rate of
incidence will include 10% of all individuals
over age 65, and almost 50% of those over age
85. The time span from onset of symptoms to
death varies from 8 to 20 years. Some of the key
aspects of the disease are described below.

Biological Background

AMYLOID-BETA

Amyloid-beta (A-beta) plays a dominant role
in AD. This is a small peptide, roughly 3–4 kDa
in size (40–42 amino acids). Amyloid-beta is cut
by enzymes from a segment of a large (695
amino acids) trans-membrane protein called
amyloid precursor protein (APP). The mean
level of soluble A-beta is much higher in
Alzheimer’s disease than in normal individuals,
and correlates with severity of the disease
(McLean et al., 1999). In familial AD, produc-
tion of amyloid-beta protein is elevated up to
six-fold over normal levels (Cai et al., 1993).
Soluble amyloid-beta (in the form of mono-

mers) diffuses freely through neuronal tissue; at
elevated levels, it produces pathological aggregates,
fibers, and persistent deposits that cannot be
readily cleared. According to Come et al. (1993),
formation of an initial ‘‘seed’’ is a rate-determining
step for aggregation. Sites of amyloid deposition in
AD form diffuse plaques, and are believed to
develop into mature senile plaques that are
associated with stress and death of neurons
(Fig. 1; see also Itakagi et al., 1989). Physiological
levels of metal ions [e.g. Cu(II) and Zn (II)]
accelerate amyloid aggregation (Bush et al., 1994)
causing nanomolar levels of A-beta to aggregate in
15min [Moir et al. (1999); see Bush et al. (1994) for
rate constants]. Other factors that influence A-beta
dynamics include apolipoprotein (the APOE4
allele is a known risk factor for AD), pH, a1
anti-chymotrypsin (a1 ACT) and other amyloid-
associated proteins (Akiyama et al., 2000).
There are numerous studies on morphology

(Christie et al., 2001), size distribution (Hyman
et al., 1995), density (Itakagi et al., 1989), and
correlation of senile plaques to AD severity.
Benes et al. (1989) proposed the idea that a senile
plaque results from diffusion of amyloid out-
wards from some source. A theoretical treatment
of plaque development was proposed by Urbanc
et al. (1997, 1999), Cruz et al. (1997) as a process
of aggregation and disaggregation with no
specific underlying mechanism. In this paper,
we look in greater detail at the underlying events
causing deposition, uptake, removal, and degra-
dation of amyloid, as well as a number of
hypotheses for chief determinants of neuronal
stress, going beyond what was proposed in the
above reference. In particular, we investigate
some of the feedback mechanisms that perpe-
tuate the problem once it has been initiated.

GLIAL CELLS

Glial cells (including microglia and astrocytes)
are non-neuronal cells with various functions
in the healthy brain [Fig. 1(b) and (c)]. The roles
of microglia and astrocytes in the pathology of
AD is described below.

Microglia

Microglia are non-neuronal cells that play an
important part in the immune system of the
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brain (Streit and Kincaid-Colton, 1995). In their
resting state in the brain, microglia are highly
ramified cells. Under conditions of injury or
stress, they undergo successive stages of activa-
tion, and reactivity: changing morphology and
becoming compact, motile, chemotactic, and
phagocytic. A primary role of phagocytic micro-
glia is removal of foreign substances, debris and
dead material. In mature plaques, reactive micro-
glia are generally found clustered at the plaque
core [Fig. 1(c)]. The distribution of microglia in
the AD brain, and their relationship to amyloid
deposits are described by Itakagi et al. (1989).
Microglia participate in an inflammatory

response, signal other glial and neuronal cells
(via cytokines), secrete a variety of immune-
related substances (e.g. Complement), generate
free radicals, as well as act as a clean-up crew in
charge of clearing amyloid deposits. According
to Giulian et al. (1994), reactive microglial
products mediate activation of astrocytes as well
as neuronal injury. Substances that lead to the
activation of microglia (e.g. the bacterial en-
dotoxin lipopolysaccharide, LPS) are correlated
with neuronal toxicity. Evidence suggests that
with normal human aging, microglia become
increasingly reactive in the brain (Sheng et al.,
1997). Further, differences in the density of
microglia may explain why some parts of the
brain are more prone to inflammation or found
to develop a higher density of senile plaques
(Kim et al., 2000).
Reactive microglia are attracted to and move

towards amyloid (and other soluble substances)
by chemotaxis (Davis et al., 1992; Nolte et al.,
1996, 1997). However, fibrous amyloid immobi-
lizes the microglia and also results in the
production of reactive oxygen species (Shaffer
et al. 1995; El Khoury et al., 1996, Fig. 3).
Adhesion is affected by the presence of soluble
amyloid (e.g. Fig. 1(a) and (b) in El Khoury et al.,
1996). Microglia are known to take up beta-
amyloid in the soluble form. Fibrous amyloid is
removed by microglia by phagocytosis, but tends
to be relatively resistant to degradation.

Astrocytes

Astrocytes participate in the cycle of inflam-
mation. They become activated by microglial
cytokines, notably IL-1B (Hu & Van Eldik,
1999), and secrete a variety of chemical factors,
including the cytokines (Griffin et al., 1996). Like
microglia, astrocytes can migrate in the central
nervous system, though details of this motion in
the adult brain are not well known. In mature
senile plaques in the AD brain, astrocytes are
found mostly gathered around the periphery of a
plaque [Fig. 1(b)]. Here they form a ‘‘shell’’ or
‘‘scar tissue’’ encasing the plaque (Griffin et al.,
1996). There is evidence suggesting that astro-
cytes produce barriers that seal off affected areas.
Astrocytes may also affect the way that micro-
glia uptake and clear amyloid from plaque-
associated deposits (Shaffer et al., 1995;
Akiyama et al., 1999). According to Shaffer
et al. (1995) astrocyte secretions reduce the
ability of microglia to process amyloid.

CYTOKINES

A variety of potent chemical signaling mole-
cules, collectively known as cytokines, mediate
inflammation in the brain. Among these are the
interleukins (IL-1 beta, IL-6), and tumor necro-
sis factor (TNF-a). IL-1beta (IL-1B), secreted
predominately by reactive microglia, occurs at
elevated levels early in the development of a
plaque. IL-1B activates the production and
processing of APP in the tissue, leading to a
possible increase in amyloid-beta production
(Mrak et al., 1995, 2000; Donnelly et al., 1990;
Buxbaum et al., 1992; Forloni et al., 1992). In
this way, IL-1B contributes to the formation of
new sources of amyloid in a kind of positive
feedback that can accelerate formation of
plaques and destruction of neurons (see sche-
matic diagram, Fig. 2). IL-1B activates astro-
cytes, promoting their secretion of IL-6, TNF,
and S100-beta (Mrak et al., 1995, 2000; Sheng
et al., 1996). IL-1B has also been shown to be
directly toxic to neurons (in vitro) at high
concentrations (Mrak et al., 2000). Evidence
thus points to IL-1B as a major factor driving
the disease (Sheng et al., 1996).
The cytokine IL-6 occurs at high levels during

normal nervous system development, but is
virtually undetectable in healthy adult brain. In
Alzheimer’s disease, IL-6 is produced at high
levels by activated astrocytes as part of the



Fig. 2. Schematic diagram showing some of the interactions considered in the simulation. Soluble amyloid causes
microglial chemotaxis, and activates IL-1B secretion. Astrocytes activated by IL-1B secrete cytokines TNF and IL-6.
Neurons uptake IL-1B and produce new amyloid sources. A variety of assumptions were explored about what causes stress
and death of neurons.

L. EDELSTEIN-KESHET AND A. SPIROS304
inflammatory cycle. It is believed that IL-6 is
injurious and destructive. (Mutations that re-
duce the expression of IL-6 are also associated
with delayed AD progression.) Ma & Zhu (2000)
showed that low levels of IL-6 kill neurons and
suggested that cell death results from nitric oxide
accumulation.
Controversy surrounds the role of TNF.

Known to be toxic in the body to specific tumor
cells, its role in the brain has been identified as
Fig. 1. Light microscope images of senile plaques and arra
amyloid-beta-42, showing the characteristic morphology an
microglia in the center (CR3-43 stain) and surrounding ring of
Congregation of microglia (dark shapes, CR3-43 stain) and n
marks represent 0.01mm (i.e. 10mm) in each frame. Images kin
the McGeer group, Kinsmen Laboratory, University of Britis

Fig. 4. The secretion of the cytokine IL-1B (not here shown
lead to new sources of beta amyloid in the tissue. This results
initial plaque, or possibly much heavier deposition of fiber in
means that the number of new sources, and their locations a
diameter of the plaque in (c) is about 120 mm. Results shown f
(a)–(d) and slower neuronal dynamics and fiber deposition (o

Fig. 7. A variety of shapes and sizes of plaques obtained w
produced with fast neuron and fiber deposition dynamics (r=
neuronal health dynamics (r=0.01, eF = 0.1499). The overall
destructive by some (Gelbard et al., 1993) and/
or protective by others (Cheng et al., 1994;
Tarkowski et al., 1999). Conflicting ideas may
stem from differences in experimental condi-
tions, or may be related to the fact that there are
different cell-surface receptors for TNF (p55 and
p75) that probably play distinct roles. The p55
receptor is linked to the intracellular apoptosis
signal, whereas the p75 may be protective
(Akiyama et al., 2000).
c
ngement of glial cells in human AD brain. (a) Staining for
d distribution of amyloid at plaques. (b) Localization of
astrocytes (star-like shapes, GFAP stain) at a plaque site. (c)
uclei of other cells (neutral red stain) at a plaque. Small tick
dly supplied by Claudia Schwab and used with permission of
h Columbia.

) by microglia is assumed to promote processing of APP and
in the formation of new plaque sites at the periphery of the
the central plaque. The stochastic nature of the simulation
re somewhat random, leading to quite variable results. The
or runs with fast neuronal dynamics lasting 800min in parts
ver a period of 10 days) in parts (e)–(h).

ith astrocytes included in the interactions. Parts (a)–(d) were
0.1, eF = 1.51) Parts (e) and (f) were produced with slower
results are quite similar qualitatively. Length of bar: 100mm.
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INFLAMMATION AND NEUROTOXICITY IN AD

One of the currently held hypotheses is that an
inflammatory cycle drives AD pathology (Fig. 2;
see also McGeer & McGeer, 1995, 1998a, b,
1999). Feedback and feedforward effects of
cytokines on glial cells and neurons amplify initial
stimuli into rampant runaway responses. These
responses consist of cytokine cycles (Griffin et al.,
1996, 1998; Mrak et al., 1995), and production of
a variety of factors such as complement, chemo-
kines, inflammatory and acute phase proteins, a-1
anti-chymotrypsin (reviewed in Akiyama et al.,
2000). Head trauma, or infection that results in
inflammation are known as risk factors for AD
(Griffin et al., 1996; Brugg et al., 1995).
Death of neurons depends on a balance

between injurious and protective effects. The
toxicity of a factor need not necessarily be a
direct killing: in many cases the actual effect may
be excitotoxic (over-stimulating the neuron, or
induction of excess glutamate that overwhelms
the cell), induced production of reactive oxygen
species that damage the cell or its components,
or inhibition of protective mechanisms. There is
agreement in much of the literature that amyloid
deposits are deleterious. (Amyloid toxicity
caused by induced calcium influx and reactive
oxygen species is discussed by Ekinci et al. (2000)
and Michaelis et al. (1998).) Further, toxicity of
amyloid-beta to neuronal cells in culture has
been found to depend on its form: some studies
suggest that fibrillar amyloid is more toxic than
soluble amyloid (Moir et al., 1999 and references
therein) other investigators (e.g. McLean et al.,
1999) find that mean level of soluble, but not
fibrous amyloid beta, correlates highly with
markers of disease severity.
b
Fig. 10. The evolution of a growing plaque under the effec

set) at times t=50, 300, 750, and 1200min. Astrocytes signi
irregular central dead region surrounded by smaller ‘‘sprouts
through breaks in the sealed-off region.

Fig. 11. (a)–(e): A typical time sequence (t=40, 80, 200, 23
in neuron health due to a diffusible toxic product of activated
IL-1B was gone by t=130 (due to neuronal death). This eventu
continued until about t=210, due to time for gradual rem
chemical levels had fallen, a fairly rapid recovery occurred in t
neurons in the center. Here amyloid fiber has no effect on neur
time sequence.
The effects of cytokines are more controver-
sial. Direct or indirect toxicity of cytokines at
elevated levels has been reported but little is
known about the mechanisms (Bocci, 1998).
Cheng et al. (1994) argued that TNF-a is
neuroprotective (by leading to an increase in
calcium-binding proteins, e.g. in rat neurons).
Carlson et al. (1999) argued that TNF-a, IL-1a,
IL-1B, and IL-6 are neuroprotective to an
excitotoxic influx of calcium mediated through
neuronal (NMDA) glutamate-gated ion chan-
nels. Gelbard et al. (1993) found that TNF-a is
neurotoxic through activation of AMPA recep-
tors. Chao et al. (1995) found that IL-1beta and
TNF-a, were injurious in combination, and
attributed this to induction of nitric oxide
(NO) production by astrocytes. Cytokine treat-
ments can also have synergistic effects (Jeohn
et al., 1998). According to Stoll et al. (2000),
some cytokines such as TNF-a and IL-1beta
may have double roles: in the presence of
inducible NO synthase (iNOS) they are neuro-
toxic while in the absence of iNOS, they enhance
neuroprotection and plasticity.
The time-scale on which significant neuronal

death occurs in AD brains is many years
(in vivo), resulting in slow decline in mental
function in affected elderly patients. However,
this cognitive decline is noticeable only when the
disease is in an advanced form, making it hard to
deduce the time-scale on which injury, repair,
and neuronal death takes place locally, i.e. close
to foci at which pathological events are initiated.
The development of plaques is hard enough to
follow non-invasively (see Christie et al., 2001).
The level of health or stress of neurons on a local
level is even harder to assess in vivo. The slow
overall development of AD symptoms may stem
t of astrocyte blocking is shown here (for another parameter
ficantly affect the morphology of the plaque, leading to an
’’ in places where the toxic influence of amyloid has leaked

0, 270min from left to right, top to bottom) showing changes
astrocytes. The amyloid source causing microglia to secrete
ally stopped astrocytic secretion, but stress and further death
oval and decay of the inflammatory substances. Once the
hose regions that had not died, leaving a small core of dead
onal health directly. (f) A plot of the neuronal health for this
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from one of several factors: (1) it may result
from accumulation of very rare initiation events,
(2) it may be due to efficient localization and
containment of the injurious effects so that they
rarely spread beyond small affected regions, or
(3) it may stem from inherently slow dynamics of
neuronal death at all size scales. In the first two
cases, we may still study significant local events
at a time-scale that is much shorter than the
time-scale of the disease as a whole. The third
possibility is less likely, given the known
sensitivity of neuronal cells to toxic or excito-
toxic effects, but if this were the case, then a
simulation of local events on the time-scale of
minutes, hours, or days would be an inappropri-
ate tool for studying the disease. On the other
hand, in vitro experiments, using tissue cultures
of undifferentiated human neuroblastoma cells,
reveal significant mortality in response to var-
ious secretions produced by stimulated microglia
within times on the order of 24 h (Klegeris et al.,
1999). The process of apoptosis (programmed
cell death) known to occur in damaged cells
takes place on a time-scale of 1–24 h. This
means, at the very least, that experimental
investigations of neurotoxicity on this time-scale
are not wholly unreasonable. Similar arguments
bridging the time-scale of individual and local
events to overall disease progression appear in
Clarke et al. (2000, 2001).

The Simulation

The purpose of the simulation is to dissect
and understand how a limited number of parts,
believed to be implicated in AD, fit together
(Fig. 2). In this study, we aim to incorporate
more detail than previous models (e.g. Urbanc
et al., 1997, 1999), while maintaining a level of
simplicity that allows dissection and analysis.
The controversial state of the discipline makes it
difficult to identify detailed disease progression
scenarios that are uniformly believed by the
community. However, part of the strength of
modeling and simulation is that they can test
a wide variety of hypothetical mechanisms, at
various levels of detail. Hypotheses or subsys-
tems that produce unrealistic predictions are
informative: they can indicate which parts of the
pathology cannot be accounted for when certain
key components or interactions are missing.
Clearly, we do not claim to reproduce the
Alzheimer’s disease pathology in its full com-
plexity, a daunting goal that remains beyond
reach currently.
Brain structures and AD plaques (Cruz et al.,

1997) are three dimensional. In our online Java-
based simulation, restrictions on computational
speed, memory, and visualization techniques
limited the initial investigation reported here
to a 2D setting, representing a thin square slice
of neural tissue (400� 400 mm2, with assumed
depth 10mm.) A time-scale of minutes is used to
follow cell motion and molecular diffusion.
Diffusion of peptides is rapid relative to move-
ment and interactions of cells. Thus, we use a
short time step to compute chemical diffusion,
and a longer time step for calculating cell
movement and changes in the states of cells
(e.g. from inactive to active). The simulation
accurately depicts diffusion and cell motion.
When prolonged runs are made, typical time-
scale of neuronal degeneration (hours, days, or
weeks) can be followed. In this study we have
made many preliminary short-term runs to gain
some appreciation of the events on a short time-
scale, as well as some longer runs to understand
the interplay between neuron health dynamics
and these short-term events.
The idea of the simulation is to investigate the

cascade of events that follow downstream of an
initial inflammation-provoking stimulus, injury,
or defect. Accordingly, we assume that one
‘‘infected site’’ provokes a tissue response. To
represent this, a single source of soluble amyloid-
beta (‘‘the stimulus’’) is placed in the center of a
region of healthy neuronal tissue in the initial
state of the system. A population of microglia,
astrocytes, and some foci of amyloid fiber seeds
are placed randomly in the region at frequencies
that are adjustable parameters. The simulation
begins with the diffusion of soluble amyloid from
its source, and attraction of microglia by
chemotaxis to soluble amyloid.

MOLECULAR DIFFUSION

The diffusion coefficient of a soluble peptide
can be estimated from its molecular weight (see
Appendix.) We used a standard approximation
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to estimate diffusion coefficients of all appro-
priate chemicals. Diffusion in the brain is slowed
by tissue structure and inhomogeneities. We
corrected for the average tortuosity of brain
tissue (described in Sykova, 1997; Nicholson &
Sykova, 1998), and for local changes in tissue
properties that evolve over time (see effects of
astrocytes, described below). Typical effective
diffusion coefficients that we use are given in
Tables 1–3 in Appendix.
Chemicals are treated using deterministic,

continuous kinetics, i.e. we numerically solve a
discretized version of the 2D diffusion equation
for each substance, expressed in the flux-based
form:

@

@t
cðx; y; tÞ ¼ �r � Jðx; y; tÞ þ sðx; y; tÞ;

Jðx; y; tÞ ¼ �Dðx; y; tÞrc:

Here c(x, y, t) is the concentration of the given
chemical at a point (x, y) and time, t, D(x, y, t) its
diffusion coefficient, and J(x, y, t) the diffusive
flux of the substance. (Initially, D is constant.
Later, should astrocytes be present, it may
change over time in a spatially localized way.)
Sources of chemicals (at secreting cells) are
represented by the term s.
We found that the above formulation was

useful in meeting the challenge of correctly
simulating diffusion in cases where the material
properties of the region were not homogeneous.
When astrocytes encounter fibrous deposits, we
model their tendency to seal-off these regions as
a local reduction in rates of diffusion of
chemicals, as described below. This means that
diffusion coefficients vary temporally and spa-
tially. A numerical method based on the above
flux formulation of the diffusion equation (in
2D) was chosen to minimize artifacts such as
spurious amplification of concentrations that
can arise in such discrete computations. (see
Appendix for details).

CELL TYPES

Cell types included in the simulation are
microglia, astrocytes, and neurons. Initially, the
region contains a uniform tissue of healthy
neurons. Glial cells of both types are distributed
randomly over the domain. (The numbers of
microglia and astrocytes are adjustable para-
meters.) Motion and state transitions of cells are
incorporated in a Monte-Carlo fashion. (An
explanation and further details are given in
Appendix.) Motion of glial cells includes a
chemotaxis component with some superimposed
random motion, both governed by adjustable
parameters. Cells are represented by moving
points or graphic images, but to avoid excessive
computational expense, each moving particle
(‘‘agent’’) in the simulation represents cumula-
tive effects of some number of actual cells. The
number of glial cells that can occupy a given grid
site is limited, and the presence of one type of cell
may exclude other types from entering the same
grid space. Cells secrete and absorb chemicals at
their current grid space.

MOTION OF MICROGLIA

Microglia move in a direction biased by the
gradient of soluble amyloid with probability
set by an adjustable chemotactic sensitivity
parameter. Microglia are excluded from places
already occupied by astrocytes or too many
other microglia.
The motion of microglia next to fibrous and

soluble amyloid is based on data and parameter
values extracted from El Khoury et al. (1996):
their Fig. 1(a) describes how microglia adhere to
fibrillar amyloid at various concentrations; their
Fig. 1(b) shows how soluble amyloid blocks this
adherence. Based on those data, a Michaelis–
Menten-type relationship (i.e. a simple saturat-
ing curve) was used to fit the probability that a
microglial cell would stick to fiber at a given
concentration, and a decreasing exponential
dependence on the soluble amyloid concentra-
tion was assumed (see Appendix.)

AMYLOID PRODUCTION, AGGREGATION,

AND REMOVAL

The simulation starts with a single site of
soluble amyloid at the center of the domain that
diffuses outwards over the region. This source
persists until turned off manually, or until
neurons at the given site have died.
When the level of soluble amyloid exceeds

some critical value associated with fibrillization,
fibrous deposits form in one of several ways:



Fig. 3. Top row: Formation of a plaque and death of neurons in the absence of glial cells, when fibrous amyloid is the
only injurious influence. The simulation was run with no astrocytes or microglia, and health of neurons was determined
solely by the local fibrous amyloid. Shown above is a time sequence (left to right) of three stages in plaque development, at
early, intermediate, and advanced stage. Density of fibrous deposit is represented by small dots and neuronal health by
shading from white (healthy) to black (dead). Note radial symmetry due to simple diffusion. Bottom row: Effect of
microglial removal of amyloid on plaque morphology. Note that microglia (small star-like shapes) are seen approaching the
plaque (via chemotaxis to soluble amyloid, not shown). At a later stage, they have congregated at the plaque center, where
they adhere to fibers. As a result of removal of soluble and fibrous amyloid, the microglia lead to irregular plaque
morphology. Size scale: In this and all other figures, the distance between the small single dots (representing low fiber
deposits) is 10 mm. Similar results obtained for a ten-fold scaling in the time-scale of neuronal health dynamics.
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where there are pre-existing fibers, growth by
elongation takes place (up to some maximal
density) at a rate that depends on the presence of
both fibrous and soluble forms by simple mass-
action kinetics. Fibers in one site can also
elongate into adjoining sites. These processes
are all computed by Monte-Carlo methods. A
low level of de novo fiber nucleation occurs at
empty sites away from deposits (Come et al.,
1993). It is assumed that fiber deposition rate
increases dramatically when the level of soluble
amyloid is far above its critical threshold for
nucleation.
Amyloid removal is carried out by microglia.

Tissue culture experiments have resulted in
quantitative estimates of the rate of uptake
(Shaffer et al., 1995; El Khoury et al., 1996;
Ard et al., 1996). We have assumed Michaelis–
Menten kinetic forms and parameters for re-
moval of soluble and fibrous amyloid, based on
that experimental data. Microglia cannot uptake
amyloid in excess of some maximal capacity, and
they ingest amyloid fibers at some low basal rate.
We assume that microglia neutralize and/or
degrade the amyloid that they have absorbed.
Our simulation includes the induction of new

sources of amyloid by IL-1B: this means that
when neurons have absorbed IL-1B secreted by
microglia, there is some probability that new
sites of amyloid production will be formed in the
tissue, leading to new foci of inflammation. This
feature is meant to represent the increased
processing of APP known to occur in the
presence of elevated IL-1B (see Mrak et al.,
1995, 2000; Donnelly et al., 1990; Buxbaum et al.,
1992; Forloni et al., 1992).

CYTOKINES: RATES OF SECRETION

In the simulation, IL-1beta is secreted by
microglia, and IL-6 and TNF are secreted by
astrocytes. Microglia begin to secrete IL-1B
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when their internal concentration of soluble
amyloid exceeds some level needed for triggering
secretion. Astrocytes secrete IL-6 and TNF once
they have been activated by exposure to IL-1B.
Details of the activation are given below. The
rates of secretion of cytokines are based on data
in Lee et al. (1993), Fiala et al. (1998), Van
Wagoner et al. (1999). Typical rates of secretion,
in units appropriate to the simulation are given
in Table A2 and described in Appendix.

CYTOKINE UPTAKE

We use Michaelis–Menten kinetics to describe
cytokine-receptor binding and resulting uptake
of cytokines by cells. This standard assumption
is based on a fixed number of receptors,
saturation of receptors as ligand concentration
increases, and uptake of ligand bound to the
receptor. To estimate appropriate values for the
Michaelean parameters we found information
for typical equilibrium dissociation constants,
KD for IL-1B, TNF, and IL6 cytokines and their
cell-surface receptors. In a few rare cases, we also
found cited values for forward- and reverse-
binding constants, as well as half-life of the
receptors. One difficulty is that values we found
come from a variety of species, cell types and
conditions and may be very different for in vivo
human cortical neurons. This problem is a major
challenge facing in silico models, in general, and
deserves wider recognition and discussion. An-
other problem is that receptors tend to be up- or
down-regulated as a result of exposure to ligand:
this was not taken into account at this stage of
our investigation.
Values of receptor rate constants on which the

simulation is based are shown in Table A3 in
Appendix A. Information about the number of
receptors per cell was also obtained from the
literature. Since we are not modeling individual
neurons, we had to calculate the approximate
‘‘receptor concentration per unit volume’’ (units
of mM) in case of cytokine uptake by neurons.

ASTROCYTES

We wanted to represent the ability of astro-
cytes to ‘‘gather’’ at the periphery of plaques as
seen in Fig. 1(b) and as described by Itakagi et al.
(1989). To do so, we assigned four states to
astrocytes: inactive, receptive, motile, blocking.
Transitions between the first three states are
assumed to depend on exposure to IL-1B (see,
e.g. Hu & Van Eldik, 1999) with uptake assumed
in the form of Michaelis–Menten kinetics. These
transitions are accompanied by an assumed
change in the morphology: the diameter of the
region in which an astrocyte senses any stimulus
decreases from about 90mm to about 60mm as
they become motile. They then move a short
distance by a biased random walk (max speed
0.1mm/min: Kornyei et al., 2000) in the direction
of amyloid fiber. To avoid crowding, we assumed
that astrocytes do not move into a site occupied
by microglia, fiber, or too many other astrocytes.
We were also interested in depicting the fact

that astrocytes form a kind of scar tissue around
plaques, i.e. seal off the area and make it less
permeable. To do this, we assigned a fourth
state, called blocking. We assumed that transi-
tions to the blocking state occur when an
astrocyte senses and arrives at a fiber deposit.
The cell becomes immobilized and starts to seal
off the region. This is represented by a reduced
rate of diffusion of substances in the vicinity.
This leads to non-uniform spatial properties
and has an interesting impact on the simulation
outcomes that we discuss in a later section.

NEURONS

In the simulation, neurons are represented as a
block of neuronal tissue, rather than a collection
of individual neurons. Absorption of some
chemicals (notably cytokines), secretion of
others (such as amyloid-beta) and changes in
health in response to conditions are incorporated
into the simulation.
Absorption of IL-1B, IL-6 and TNF is

modeled by receptor kinetics as described above.
Production of new amyloid sources is promoted
by IL-1B but can only occur in some maximal
fraction of neurons (an adjustable parameter).
New amyloid sources are currently active for
the duration of the simulation or until neurons
at the given site die. (We assumed that dead
tissue is no longer capable of producing amyloid.)
In modeling the health of neurons, we had

several requirements in mind: first, we do not
intend, at this preliminary stage, to include
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details of the intracellular events and signaling
pathways that determine the fate of the neuron.
Rather, we consider an aggregate parameter h,
describing the local health of the neurons from 0
(dead) to 1 (100% healthy). (Currently, each site
has a value of health, 0oho1, associated with it,
and this value varies with time). Second, we
wanted to satisfy several criteria: (1) An injur-
ious effect should result in a decrease in health.
Sub-lethal effects should merely depress the
health without killing the neurons. (2) Below
some minimal level of health, neurons should
not recover. (3) Neurons above that minimal
level should have innate capacity for recovery, so
that removal of the affecting stimulus leads to
eventual restoration of health. (4) Beyond some
critical level of toxicity, the neurons should die.
(5) Neurons that have been pre-stressed by some
factors should be more susceptible to further
injury or toxicity.
We found a simple deterministic rule that

satisfies all above reasonable assumptions. The
rule is described in a differential equation, that
keeps track of changes in the health of
the neuronal tissue at a given grid point as
follows:

dh

dt
¼ rhð1� hÞ � I :

Here, r4 0 is a recovery rate, and a time-
dependent injury term, I (if positive) represents
the level of toxicity at the given site. I depends on
the environment at the given site, and its value
changes as injurious chemicals accumulate. (It is
Fig. 5. Average neuron health over time, showing variabil
(b) For runs in parts (e)–(h) of Fig. 4.
worth noting that this differential equation is the
well-known logistic equation with removal rate
I. Similar equations are used to represent simple
density-dependent population growth in the
presence of a removal or harvesting term.) As
described in the appendix and shown in Fig. A1,
this equation has dynamical properties corre-
sponding to requirements listed above, with
several possible outcomes depending on relative
recovery and injury rates. (i) In the absence of
toxicity, every viable state evolves to full
recovery. (ii) When toxicity is too high, recovery
is too slow to compensate for the stressing
influence: neurons in that site will all die. This
can be prevented only if the injurious stimulus is
removed before the neurons fall below their
minimal health level. (iii) For sub-lethal toxicity,
the outcome depends on the current state of the
neurons: those whose health is too poor will die,
whereas others will recover, but not to full
health. While this simple differential equation
cannot describe intricate aspects of health, stress
and mortality, it suffices as an aggregate
indicator for our purposes.
The rate of neuronal injury caused by a given

factor (e.g. IL-1B, IL-6, TNF-a, etc.) is assumed
to be proportional to the fraction, BC, of cell-
surface cytokine receptors bound on the given
neuron. That fraction is taken to be a simple
Michaelis–Menten function of the concentration
of cytokine, C, at the given site:

BC ¼
C

kn þ C
:

ity in the runs of Fig. 4. (a) For runs in parts (a)–(d) of Fig. 4.



Fig. 6. Relative positions of microglia (star-shaped cells
in center) and astrocytes (small fuzzy disks) next to a
putative fiber deposit. Microglia have been attracted to an
amyloid source at the center, and astrocytes have gathered
at the edge of the fiber deposit. The effect of astrocytic
blocking is shown by shaded areas. These shaded squares in
this figure represent regions of reduced diffusion of
chemicals.
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Here kn is the half-maximal binding concentra-
tion. This means that we are modeling the
impact on health as an aggregate effect that
stems from activation of cell-surface receptors,
leaving out detail of what happens inside the cell
beyond that point.
Soluble and fibrous amyloids are treated

separately. We do not consider receptor binding,
but rather direct cytotoxic effects, e.g. due to
local redox reactions and oxidative stress
(Huang et al. 1999a,b). Relative effects on health
of soluble and fibrous amyloids are assumed to
be simply proportional to the given amyloid
concentration (S, F ), scaled in some appropriate
way (scale factors Smax, Fmax).
The combined effect of various factors is

calculated as follows. Each factor or substance
is associated with a parameter, eC, that describes
its relative weight or influence. This parameter
can be negative (signifying an injurious effect),
zero (no effect), or positive (representing a
neuroprotective influence). The values of these
parameters can be changed interactively in our
simulation to explore hypotheses about how
competing destructive and neurotrophic influ-
ences interact, as described in the results section.
The net injurious effect is computed by adding
the contributions of all toxic and protective
factors at the given site, leading to a cumulative
expression as follows:

I ¼ eS
S

Smax
þ eF

F

Fmax
þ

X

C

eCBC:

In practice, many of the factors are assumed to
be neutral in a given test case, as described in our
results. For example, in one of the main cases we
have explored (see next section), we assume that
amyloid fiber is the toxic factor.
The average neuronal health in the region is

determined by averaging the health of each of
the 40� 40=1600 sites in the region. This is
plotted as a function of time for each run, as
shown, for example in Fig. 5.

Experimental Exploration of the System

In this section, we summarize several results
obtained by running the simulation under
specific conditions. We explore the effects of
certain small subsystems to dissect the influences
of various cells and chemicals. Many of these
cases were informative, particularly in their
inability to match realistic plaques.
Our simulation is best suited to time-scales

associated with cell motion and diffusion. In some
preliminary runs, we have assumed that neuronal
health changes occur for a short time-scale of one
or a few hours. Using longer simulations we
verified that similar outcomes were obtained when
the time-scale of the neuronal dynamics was much
slower: many hours, days or even weeks. A
complete list of default parameter values with
meanings is given in our website and parameter
sets corresponding to some of the runs are
available and can be used to run the simulation.

SUBSYSTEMS

Amyloid and Neurons

Omitting glial cells, and considering only the
production of amyloid and the effect of amyloid
fiber on neurons, we obtained results shown in
the time sequence (top row) of Fig. 3. For this
experiment, we assumed that injury to neurons
depended solely on amyloid fibers, and we set the
recovery rate to zero (r = 0). This means that
fiber deposits will always eventually kill neurons
in their vicinity.
Initialization with a source of amyloid at the

center of the domain created a local amyloid
concentration above the threshold for nucleating
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and maintaining fiber growth. The spread of
amyloid, its conversion to fiber, and death of
neurons followed a symmetrically expanding
diffusion-limited disk. If fiber nucleation
probability was low, the evolving plaque had a
fractal appearance, as in diffusion-limited ag-
gregation (DLA), whereas for higher rates of
fiber deposition, the plaque was more radially
symmetric. These observations match results
of Cruz et al. (1997) who simulated growth of
a 3D plaque as a process of aggregation of
amyloid.
Size of the plaque was limited by the rate of

amyloid conversion to fiber, and the toxicity of
the fibers, since this, in turn, determined the
length of time that the amyloid source was
active. We ran two longer scale computations for
periods equivalent to several days. Both cases
had no neuronal recovery (r= 0), but in one, the
effect of fiber on neuronal health was eF=0.92,
and in the other it was eF=0.04, i.e. a factor of
20 less. The two results were very similar
morphologically, with a 9.06% health decrease
in the first case, and 10.08% decrease in the
second over a period of 100 hr. Dead neurons
were restricted to the site of the fiber deposits.
Once the initial source was extinguished, amy-
loid concentration would fall below a critical
level for fiber growth. At that point, the plaque
Fig. 8. Variability in outcomes and a comparison
between fast and slow neuronal and fiber deposition
dynamics for simulations similar to those of Fig. 7. The
curves shown in black were obtained from runs with
parameter set as in Fig. 7 (a)–(d) (fast neuron health
dynamics) and the curves shown in gray were obtained
from runs with the parameter sets used for Fig. 7 (e) and (f)
(slow dynamics).
stopped expanding, and very little further
change occurred. [Compare with experimental
results of Christie et al. (2001) who find little
change in the majority of observed plaques over
time-scales of 2 days to many months, but
appearance of a few new plaques over the same
time intervals.] If fiber deposition occurred only
at very high amyloid levels (or else if fibers were
highly toxic), the site of neuronal death would be
restricted to the immediate proximity of the
amyloid source.

Amyloid, Neurons, and Microglia

We next investigated the effects of microglia
on amyloid removal and on the evolution of the
plaques described above. At first, we omitted
cytokine signaling and focused only on the three
most basic properties of microglia: (1) chemo-
taxis towards the amyloid source, (2) tendency to
adhere to fibers, and (3) removal of both soluble
and fibrous amyloid. [Here we are modeling a
process that has been called ‘‘disaggregation’’ by
Cruz et al. (1997), Urbanc et al. (1999) with a
more detailed cell-based mechanism.] Results
are shown in the bottom row of Fig. 3. We find
that microglia congregate at the center of the
plaque, where chemotaxis and adherence to
fibers tend to dominate over random motion.
Removal of amyloid by these glial cells leads
to a more irregular plaque morphology, with
a serrated edge and non-uniform internal
Fig. 9. Size distribution of the plaques obtained in runs
with parameters as in Fig. 7 (dark bars) shown next to the
size distribution obtained from an AD brain by Hyman
et al. (1995) (light bars). The horizontal axis represents
plaque areas in multiples of 100 mm2. The last category
represents all larger plaques that were obtained.
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density. Results were similar for longer runs with
more realistic, slow neuronal dynamics. How-
ever, if the source of amyloid persists for longer
time due to a slower rate of death of affected
neurons, the eventual size of the
plaque tends to be somewhat larger in the
simulation.

The Cytokine IL-1beta

We now included the secretion of the cytokine
IL-1B by microglia, and its potential stimulation
of new sources of amyloid. This leads to a
positive feedback that has significant impact,
leading to one of two distinctly new phenomena:
(i) the formation of a number of new plaques in
the region or (ii) massive growth and dominance
of a very large plaque, with or without smaller
offshoots. (The difference between these cases
depends on the proximity of the amyloid sources
to one another and the persistence time of those
sources: sources forming close to one another, or
lasting for a long time, tend to form a merged
deposition of fiber, and large plaque size.) If the
probability of new amyloid sources forming is
too small, or the level of cytokine needed to
produce such new sources is too high, the
outcome is identical to previous experiments
discussed above.
Typical outcomes of several runs are shown in

Fig. 4. Parts (a)–(d) show plaques formed with
accelerated neuronal dynamics. Parts (e)–(h)
show outcomes with longer runs in which both
fiber deposition and neuronal health changes are
much slower, on a time-scale of many days. The
corresponding temporal dynamics in these runs
are shown in Fig. 5(a) (fast dynamics) and
Fig. 5(b) (slow dynamics). The comparison
reveals several notable facts: first, the overall
qualitative comparison is robustFeither one,
several or very little plaque deposit will form in
the region, with evidence for sprouts forming off
a central site in cases (a), (b), (d), (e) and (h). [In
case (h), the original site is not severely affected,
but one of its offshoots grows.] Second, the
temporal dynamics scale comparatively well,
with a lag phase in each case, followed by a
rapid decline that tapers off gradually. This type
of declining health behavior has been referred to
as the sigmoidal or increasing risk degeneration
(Clarke et al., 1999, 2000), and stems from the
fact that over the time-scale of the simulation,
toxicity is gradually building up in an initially
healthy region. The significant difference be-
tween short and long time-scales is seen in the
removal of amyloid by microglia. This affects
fiber accumulation on the long time-scale to a
greater extent, leading to more noticeable
‘‘holes’’ with resident microglia in plaques [4(e)
and (f )].
If amyloid fiber deposition is much faster than

neuronal degeneration, these types of results
were not obtained. Then, to get similar behavior,
it was necessary to assume that some factor aside
from neuronal death limits the length of time
that an amyloid source continues to produce
amyloid. Manually turning off some of the new
amyloid sources produced discrete plaques as in
Fig. 4. Allowing amyloid sources to persist on
the expanded time-scale of hours, could lead to
massive accumulation of fiber throughout the
domain and unrealistic behavior.
Similar experiments were carried out with

many parameter settings: we varied the effect of
amyloid fiber on neuronal health, the proportion
of neurons that could give rise to new sources,
the level of IL-1B that triggers those new
sources, and the rate of recovery of neurons.
We found that: (a) New sources can be formed
even after the initial source has been removed, as
accumulated IL-1B takes time to be depleted. (b)
Microglia are then seen to chase one source after
another, sometimes splitting up into separate
groups. (c) For high amyloid production rate,
fibrous deposits can become much heavier near
the core of the plaque. This can trap and
immobilize the microglia. (See assumptions we
made about microglia motion.) (d) If the number
of new sources is very high, there is a rapid
acceleration in the decline of health after some
time, since the uptake of amyloid by microglia
saturates. (e) There is variability in runs with
identical parameter values: some runs (e.g.
lowest curves in Fig. 5) lead to significant
decline of health over the given time period
and large plaques. Other runs (e.g. highest
curves) leave health nearly intact and no
plaque formation at all. The causes and implica-
tions of this variability are discussed in a later
section.



L. EDELSTEIN-KESHET AND A. SPIROS314
Toxicity of a Microglial Product

We asked what would be the outcome of
toxicity of some product secreted by microglia in
response to activation by amyloid. We ran
several simulations in which fiber toxicity was
removed, and replaced by toxicity of a microglial
diffusible product. Results (not shown) can be
described as follows: (a) toxicity begins when
aggregated microglia are found in large numbers
close to the attracting amyloid source that
activates their secretion. The wave of stress and
toxicity spreads outwards from this site. (b)
Variations in the size of the product (i.e. in its
rate of diffusion), in the secretion rate, the
uptake rate, and/or impact on health determine
how quickly the pathology develops, and the size
of the necrotic region. (c) Individual runs are
variable (see later discussion), and initiation of
new amyloid sources strongly affects the severity
of the outcome. (d) In contrast to previous
results, motion of microglia (e.g. between an old
source of amyloid and a new one) creates a ‘‘trail
of death’’. Death of tissue correlates with sites of
reduced fibrous deposits, since microglia remove
amyloid fibers as they move across a developing
plaque. (e) Once sources of amyloid are extin-
guished, gradual inactivation of microglia means
that all slightly stressed regions that are not yet
irretrievably damaged tend to recover. The end
stage consists of a dead core of neurons, some
fibrous deposits, in an otherwise healthy region.
It is premature to attempt here to identify

which of the numerous factors secreted by
microglia could play this specific neurotoxic
role; complement, cytokines such as IL-1B,
reactive oxygen species, proteases, etc. are
possible candidates (Akiyama et al., 1999). These
substances range in molecular size (and hence
rates of diffusion in the brain) as well as rates of
production by microglia, uptake by neurons,
action on the cells, and impact on neuron health.
In our simulation we currently include only one
microglial product explicitly (modeled after
properties of IL-1B), but each of the above
parameters can be varied online interactively, to
depict gross behavior of a range of sizes and
actions of such molecules. We can in principle
explore in detail a variety of possible chemical
factors, but this was not our purpose here.
Astrocytes and their Effects

The next subsystem was used to explore the
effect of astrocytes on amyloid fiber toxicity. We
incorporated the following properties of astro-
cytes: (a) uptake of IL-1B and activation to
receptive and/or motile, (b) motion towards
nearby fibrous deposits and (c) ability to wall-
off or seal-off a region, represented by the
decreased diffusivity of chemicals across ‘‘bar-
riers’’ created by the astrocytes: dark gray areas
surrounding a plaque in Fig. 6 denote such
barriers, i.e. sites of reduced diffusion for soluble
species. Such regions tend to hold elevated
concentrations of chemicals, though the seal is
generally somewhat permeable.
Results can be summarized as follows. (a)

Astrocytes tend to cluster at the periphery of
plaques but some remain scattered throughout;
In many cases, some amyloid and other soluble
substances can leak out through the astrocytic
seals. This leads to a low level of fiber in
the region surrounding the affected areas. (b)
Variability with a given set of parameters arises,
as before, from the number of secondary
amyloid sources, the timing of those new
sources, how long they last, and their proximity
to one another. (c) Results are strongly affected
by the following factors: probability of forma-
tion of new amyloid sources, persistence of those
sources (depends on the sensitivity of the
neurons: if death is rapid, the progression of the
pathology is not as wide), and to a lesser extent
on the effectiveness of the astrocyte barriers.
Typical shapes of plaques are shown in Fig. 7.

In parts (a)–(d) fast neuronal dynamics, and in
parts (e) and (f) slow neuronal health dynamics
were assumed. The figures are qualitatively
similar, and their time courses are shown in
Fig. 8. In extreme cases, there is no new source
created, and the plaque is quite small [see
Fig. 7(d)], while in other cases, the new sources
close to the original one lead to massive and
lethal fibrous deposits [Fig. 7(b)]. The variability
in the average health of neurons in various runs
is also illustrated in Fig. 8.
We experimented with a variety of parameter

settings. The evolution of a developing plaque in
the presence of astrocytes for one set is shown in
Fig. 10. The final shape resembles some plaque



Fig. 12. A comparison between fast and slow neuron
health dynamics in the case that IL-6 is the only toxic
substance affecting neurons. This run shows time on a scale
of hours over a period of almost 6 days. Two runs are
shown in which the only difference is the timescale of
neuron health dynamics. In the slow run we used
eC = 0.600 for IL-6 effects on health and r = 0.0060 for
the health recovery rate. In the fast run, we used eC = 12.5,
r = 0.1: ( ) fast; ( ) slow.
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shapes in AD shown in Fig. 1 and in Itakagi et al.
(1989), Akiyama et al. (1999) and others. The
central plaque is relatively self-contained. How-
ever, smaller plaques tend to sprout off the
central one, in places where the astrocyte seal has
imperfections (Fig. 10).

Toxicity of an Astrocyte Product

The next investigation explored the hypothesis
that astrocytic secretions, rather than amyloid
lead to neuronal toxicity. We assumed that the
rate of secretion of some deleterious astrocyte
product depends on the fraction of IL-1B
receptors on the astrocyte that are bound to
IL-1B. As a result, proximity of astrocytes to
activated microglia became highly significant in
determining whether and to what extent neuro-
toxicity occurs.
Two substances secreted by astrocytes are

represented explicitly in the simulation. For
default parameter settings, we have based the
main attributes of these simulated chemicals on
characteristics of the cytokines, IL-6 and TNF-
alpha (Fig. 2), but this is not to indicate any
claim that either of these cytokines is directly
neurotoxic. (Evidence is controversial in
both cases.) Qualitative spatio-temporal results
described here should be closely related to results
obtained with any other small (15–30 kDa)
diffusible astrocytic peptide, with similar rates
of uptake or secretion. (Exploration of effects of
larger or smaller substances can be accommo-
dated easily in the simulation by adjusting the
appropriate rates of diffusion, secretion, uptake,
and/or impact on neuronal health.)
We found that several representative scenarios

occurred, including (a) stress of a wide zone
followed by death in some small region. In cases
where amyloid sources were then extinguished,
there followed progressive recovery in all but the
dead core. The average neuronal health in such
runs decreased, achieved some minimum, and
then increased by partial recovery. Figures 11
and 12 illustrate a representative example of this
type. (b) In some cases, the initial wave of death
does not remove all amyloid sources, and a
perpetually stressed region surrounds one or
more dead cores (not shown). The numbers and
sizes of such dead regions depend on the number
of amyloid sources that were formed. (c)
Persistence of a perpetually stressed area with
no net recovery and no net death (not shown).
This occurred in cases where steady-state con-
centrations of the astrocyte toxin were not high
enough to kill neurons outright and amyloid
sources in the region continued to be active.
In all cases, the pathology has different

dynamics under the assumption that death is
caused solely by soluble substances that diffuse
rapidly in the region. Unlike fibrous amyloid,
which persists over extended periods of time, such
factors are present only so long as glial cells are
activated by stimuli (in this case amyloid) to keep
up production. This affects the recovery process,
and (by virtue of more even spread) causes necrotic
areas to be more symmetrically distributed.

COMPARISON WITH OBSERVED PLAQUES

In this study, our primary interest is a
comparison of gross features of the morphology
of plaques that might result from one or another
set of hypotheses about effects of amyloid, glial
cells, and factors produced by such cells. Many
quantitative details of such interactions were
gathered and incorporated in the simulation,
though the number of unknown parameter
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values still limits our ability to describe the
process in detail. At this stage of the investigation,
detailed quantitative comparison of simulated
plaques to real plaques is still somewhat pre-
mature.
Hyman et al. (1995) computed size distribu-

tions of plaques in an AD patient, and reported
a log-normal distribution. We performed some
preliminary quantitative estimates of plaque size
distributions (for parameter sets corresponding
to Figs 7 and 8) and compared results with
those of Hyman et al. The comparison is
shown in Fig. 9). Here the relative proportions
(vertical axis) of plaques of various sizes
(horizontal axis, in multiples of 100mm2) have
been tabulated for a set of 50 simulations, each
run for 400 time steps (dark bars). We defined
the ‘‘size’’ of a plaque as the area occupied by
high fiber concentrations that corresponded to
killing zones, i.e. to black squares in the final
state of the region. Shown on the same
histogram (light bars) are the data from Hyman
et al.
Our results for the given set of parameters are

qualitatively similar, with most numerous pla-
ques in the 100 mm2 size category, though some
differences are notable. In particular, shown
grouped in the largest category are all cases in
which significantly larger plaques occurred,
stemming from coalescence of effects of multiple
amyloid sources in close proximity. It is still
unclear what prevents such large plaques from
forming in the real AD brain, though we might
speculate that other processes tending to limit
the production of amyloid, or to more effectively
sealing areas in proximity of a source may be
at play.

Discussion

While still at a preliminary stage, the simula-
tion described here has provided a number of
insights and results. We highlight these briefly
below.

1. The result of a stimulus depends on a
balance between competing effects. Clearly, the
balance between production and uptake of
substances determines whether the levels of
injurious factors will build up to dangerous
levels. Some removal rates (e.g. of amyloid by
microglia, of cytokines by various cells) tends to
saturate due to receptor kinetics, and can be
overwhelmed and pushed to toxic levels by high
rates of production. Protective and injurious
effects of cells also compete: for example,
microglia remove amyloid, reducing local stress,
but also secrete IL-1B that promotes new
amyloid sources. Astocytes wall off a region to
help cap the spread of toxicity, but they also
contribute to the inflammation by secreting
cytokines. While these results are not surprising,
they lend support to many of the hypotheses
current in the field (see, for example, McGeer
& McGeer 1995, 1998a, b, 1999). Since the
unfolding early events in the development of AD
cannot be investigated easily in vivo by current
techniques, the simulation can fill in gaps
between known or hypothesized interactions
and downstream consequences.
2. There are feedbacks in the system that can

exacerbate pathology. One important feedback
is the effect of microglial IL-1B on new sources
of neuronal amyloid, and on a heightening of the
toxic load. This seems reasonable with hindsight,
particularly in the context of the analogy with
spread of infections in other modeling contexts.
However, the overriding importance of the
parameter that controls this feedback was not
at all evident to us before undertaking extensive
experimentation and parameter sensitivity.
3. There are delays in the system, e.g. between

the initiation of the stimulus and arrival of
microglia, between the production of cytokines
and activation of astrocytes, between the uptake
of cytokines and the death of neurons. The
extent to which this delay affects outcomes
became apparent only after experimenting with
the simulation. This means that there is some
time when interventions could, in principle,
reverse the process and prevent massive death
of neurons. Conversely, once an inflammatory
process is initiated, there is a time delay in
halting it, even if the irritant is removed. This
delay results from the time it takes for the
inflammatory chemicals to be removed, and the
activated immune-like cells to return to a
quiescent (non-secreting) state.
4. For a given parameter set, results are quite

variable, and randomness plays an important
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role. In some cases, the outcome on health of
neurons can differ by 50% or more in parallel
runs. There are several causes for variability in
the runs, including (a) stochastic aspects of cell
motion (b) random initial distributions of cells,
and (in some cases) fiber seeds, (c) proximity of
nascent plaques to one another or to groups of
astrocytes that affect activation levels of those
astrocytes (d) random component of new amy-
loid source initiations. All these effects are likely
to play a role in a real biological setting, where
many other sources of individual cell variability
might also be important.
5. Among the variable factors is the dichot-

omy between cases in which inflammation
persists with no resolution over extended periods
vs. cases in which there is a finite transient, with
some lost tissue surrounded by a region of nearly
full recovery.
6. The simulation reveals the importance of

spatio-temporal effects. These include (a) the
importance of relative placement of cells with
respect to other cell types or to amyloid sources.
(e.g. we noted that astrocytes behave differently
away from microglia, even when they are in
proximity of an amyloid source). (b) The
importance of relative time-scale of neuronal
degeneration and other processes that lead to
that degeneration. We saw that the conditions
that pre-dispose neurons to die can become
irreversible long before neurons react, and this
tends to cause severe eventual outcomes, in
contrast to local limited death in other cases. (c)
Changes in material properties caused by astro-
cytes in proximity of a plaque result in trapping
of substances in a localized way. This affects
the way that plaques develop. (d) Distinct
patterns of mortality are noted when the factors
causing stress of neurons are local and persistent
(such as amyloid deposits) vs. soluble, labile,
and rapidly diffusing (such as cytokines or
other substances). Note that none of these effects
were ‘‘built in’’ or pre-assumed, but rather
emerged from the underlying spatio-temporal
interactions.

Aside from these observations, the simulation
is also a useful tool for exploring the sensitivity
of the system to a variety of parameters. As
noted, by shifting the balance towards produc-
tion or towards removal of any injurious
chemical factor, one can produce outcomes that
bias the results towards full health or full
mortality. The relative rates of recovery and
injury similarly affect the outcome as expected:
once a threshold is crossed, the system cannot
recover from an insult that, in other circum-
stances, might be inconsequential. This situation
may reflect real biological differences between
those people susceptible to AD and those who
are not: some slight change that shifts the
balance of effects would suffice to produce the
fatal pathology.
Less intuitively clear is the observation that

severity of the disease need not correlate
positively with sensitivity of neurons to amyloid
fibers. Indeed, we found that when amyloid
fibers are highly and rapidly toxic, neurons close
to a source of amyloid die so quickly, that the
process is halted before the amyloid deposits
spread. Even if numerous amyloid sources are
present, this results in only small regions where
neurons have died, and eliminates the sources
rapidly. This means that inflammation has little
opportunity to take hold. In the simulation,
neuronal death is the main factor controlling the
persistence time of the amyloid sources. This
may or may not be the case in real neurons, and
factors that govern the amount of amyloid
production, and its rate of fibrillization may be
equally, or more important.
One parameter that had an interesting and

highly significant effect is the fraction of neurons
capable of producing new amyloid sources when
stimulated by IL-1B. When this fraction is low
(in our case, below 0.2%), the system response
stems from one stimulus, present at initiation.
This is analogous to gradual outward spread of
an epidemic from a single site of infection, or
gradual spread of a fire from a single ignited
source. The spread of such infections tends to be
limited to the perimeter of the affected region,
where contact with a susceptible region occurs,
or to the internal ‘‘volume’’ of the region, given a
porous or fractal interior structure (Cruz et al.,
1997). This contrasts with pandemics in which
secondary sites of infection arise or fires whose
sparks ignite new areas. As a result of such
secondary sites, the process of infection can grow
exponentially (at least while susceptible areas
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remain) instead of simply spreading ‘‘radially’’
outwards.
A similar phenomenon occurs when the

fraction of neurons capable of producing new
amyloid sources rises slightly to 0.4%: we found
that in such cases, the initial stimulus nearly
always creates one or more secondary sources.
(Significantly, this can occur even after the
original amyloid source is extinguished, as
the accumulated microglial IL-1B that triggers
the new sources takes time to decay.) This causes
significant worsening of the situation, either by
feeding massive growth of one expanding plaque
(when the amyloid sources are close together) or
by spawning new plaques in adjoining regions.
The fraction of neurons that die is usually much
greater in such cases.
It is worth remarking that this type of

sharp threshold is similar to a bifurcation that
occurs when the basic reproductive rate, r of an
infection increases above 1 (r is the number of
secondary infections in a susceptible population
caused by a single infected person during the
time course of the infection). As argued here, a
similar parameter in our model represents the
ability of the inflammatory stimulus to replicate
other stimuli before being eliminated by the
response.

LIMITATIONS

In considering the results, a number of
limitations of the current model must be
appreciated. We list some of the limitations
below.

(1) To allow our simulation to be run online
interactively (www.math.ubc.ca/Bais), it has
been written in Java, a framework with limited
computational speed and memory capabilities.
We have simulated two spatial dimensions to
suit these computational resources, though this
is clearly a drastic simplification. Comments
about differences between diffusion in 2D and
3D are given in the appendix. Basically, the time
associated with a diffusion process (or, analo-
gously, the distance through which diffusion has
an effect over a given time span) can depend on
dimensionality. (2) Only a few key interacting
parts are modeled explicitly. The other effects
(chemical factors, environmental and genetic
pre-disposition) are treated as variations in basic
parameter values. We may be missing other
dynamical phenomena by our omissions. (3)
Finding a reasonable set of biological parameter
values is the single biggest challenge. After
extensive research, this set is incomplete (20–
30% missing or unknown, including rates of
decay of neuronal health). Those parameters we
could estimate (e.g. receptor binding, secretion
rates, etc.) are pertinent to a variety of species
under various conditions (in vivo, in vitro, with
distinct treatments) and are suspect, to say the
least. This difficulty is not just a problem we had
to contend with: rather, it is an indication of one
of the grand challenges facing in silico modeling
in general. This challenge is far from being
addressed and leads to natural skepticism about
validity of the results of such work. It remains to
be seen to what extent such challenges can be
overcome, even with close work coupling experi-
mental research and theoretical models. (4) The
neuro-inflammatory hypothesis, and its details
are still controversial, with wide disagreement
in the scientific community about basic facts.
The simulation would have to be changed as
new information is gathered. (5) Even in this
simplified system, the set of parameters is quite
large. This makes it difficult to explore para-
meter space and find all the relevant transitions
in behavior. This is a second ‘‘grand challenge’’
facing the new biology: how to understand the
complex behavior of large interacting networks,
even when their parts are well characterized. The
challenge is even greater when many parts of
the interacting network are unknown. (6) The
time-scale for health deterioration in neurons
may be faster in the simulation than in reality.
While we have checked that most interesting
regimes can be obtained on a slower time-scale
by suitable scaling of the parameters, this aspect
should be studied further as more information
about neuronal degeneration dynamics in vivo is
gathered.
Future work will be aimed at addressing some

of the above limitations. In particular, we plan
to investigate more realistic neuronal health
kinetics based on intracellular events, including
other chemical intermediates explicitly, study
the process on a longer time-scale, with a more
faithful replication of the time course of AD, and



FORMATION OF ALZHEIMER’S DISEASE 319
design experiments to measure some of the
uncertain parameters. We will then be in a
position to test interventions and potential drug
target designs.
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Appendix

TIME STEPPING AND SPATIAL RESOLUTION

A short time increment (dt=0.0125min) is
used to compute chemical diffusion. A longer
time increment (DT=0.5min) is used for
calculating cell movement and transitions in
the states of the cells. The region shown
corresponds roughly to a square area of side
length 400 mm, discretized into a 40� 40 spatial
grid.
Table

The diffusion coefficient of a soluble peptide scales a

molecular weight (Goodhill, 1998, 1997), a fact w
appropriate chemicals. For example, a 0.3–0.5 kDa

10–6 cm2s�1 =

Molecule type Molec. weight
(kDa)

Diffusion c

Amyloid-beta 3–4 5� 10–7 cm2s�1=30
IL-1 beta 17 3� 10–7 cm2s�1=18
IL-6 26 2.7� 10–7 cm2s�1=1

TNF-a 17 3� 10–7 cm2s�1=18
CHEMICAL DIFFUSION COMPUTATIONS

Rates of diffusion of typical substances
associated with AD were estimated from mole-
cular sizes of the chemicals (see Table A1). The
concentration of chemical in a grid space (i,j),
denoted as S1i,j, is computed using an explicit
numerical integration method based on the
concentrations of the chemical in the previous
time step, S0i,j. Choice of the explicit method was
constrained by limitations on speed and memory
available in a Java-based online application. In
cases where the material properties of the region
were not homogeneous, many numerical
schemes (ordinarily adequate for uniform mate-
rial properties) produce spurious results such as
unrealistic amplification of concentrations. The
numerical scheme was adjusted to preserve
conservation principles. For example, we would
compute flux into grid square ij from grid square
i�1, j as follows:

Ji�1;iði; jÞ ¼ Dij cði; jÞ � cði � 1; jÞð Þ=Dx:

Note that the coefficients Dij need not be
constant in this formulation. We then calculate
the new concentration in grid space ij using, for
example

Dcði; jÞ ¼ Ji�1;i � Ji;iþ1
� �

=Dx
�

þ Jj�1;j � Jj;jþ1
� �

=Dyþ sij
�
Dt:

The term sij represents a source of chemical.
Amyloid sources are stationary sites, whereas
cytokine sources are cells (microglia, astrocytes)
producing chemical at their current site of
A1
pproximately as a reciprocal of the cube root of its

e used in estimating diffusion coefficients of all
peptide has a diffusion coefficient of approximately

60mm2min�1

oefficient Effective diffusion
coefficient
(mm2min�1)

Reference

00 mm2min�1 1500 Goodhill (1997)
00 mm2min�1 900 Goodhill (1997)
620 mm2min�1 810 Goodhill (1997);

Moghe et al. (1995)
00 mm2min�1 900 Goodhill (1997)



Table A2
Rates of secretion of cytokines by various cell

types (Lee et al. 1993, Fiala et al., 1998, Van
Wagoner et al., 1999) are calculated as a local

concentration change assuming that a (single) cell
secretes substance into an adjoining volume of

10mm3.

Type Rate secreted
per cell nM min�1

Cell type

IL-1 beta 0.366 Microglia
IL-6 0.100 Astrocytes
TNF-alpha 0.049 Astrocytes

Note: For a substance of molecular weight M, the factor
converting concentrations from pg ml�1 to nM is c=[10�3/
(M)]nM[pg ml�1]�1. If there are n cells secreting for d hr,
the concentration change in the given volume will be (109/
60) c/(d n) nM min�1 per cell.
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occupancy. The formulation above ensures that
flux of substance leaving one grid square
matches with flux entering the adjoining
square. This corrected such artifacts. (See
further comments in the last section of this
appendix.)

DIFFUSION IN TWO AND THREE DIMENSIONS

Diffusion depends on dimensionality (i.e. one,
two, and three dimensions) in the following way.
Diffusion over a distance x follows the relation-
ship /x2S= qi Dt, where /x2S4 is the mean-
Tabl

Typical parameters associated with cytok

Cytokine kf

(nM�1min�1)

IL-6 (mouse)
IL-6 0.013
Human interleukin DA (high affinity) 2.4
Human interleukin DA (low affinity) 0.072
IL-1 human B-lymphoma
IL-1 murine thymoma cell
IL-1 beta
TNF mouse leukemia

TNF alpha Overexpressing Human cells
TNF alpha recombinant human

Note: Data from [1] Yamaguchi et al. (1992), [2] Hammach
[5] Dripps et al. (1991), [6] Benjamin et al. (1990), [7] Michishit
cell of volume V (in mm), with r receptors on its surface, resul
nM. Typical cell volumes are taken to be V=1000–1300 mm
square displacement, t is the time taken, and the
constant qi has values 2, 4, or 6, for diffusion in
one, two, or three dimensions. Similarly, the
transit time to diffuse over a distance L has
the form t=(L2/2D) fi where the factor fi is
dimension-dependent. For example, in diffusion
from a source to a target, setting y=L/a where
the diameter of the target is a and the distance to
diffuse is L, it was shown by Hardt (1981) that
the factor fi is proportional to ln(y) in 2D, to y in
3D and independent of y in 1D. This can make a
significant difference in the 2D and 3D cases
when the ratio y is small.

MONTE-CARLO CELL MOTION AND

STATE TRANSITIONS

Each moving particle (‘‘agent’’) in the simula-
tion represents cumulative effects of some
number of actual cells. At a given time step,
the Monte-Carlo transition of an agent from one
state to another, or from one position to an
adjoining grid space, is governed by a prob-
ability that depends on the cell environment, its
history, and certain adjustable parameters. The
value of a random number (‘‘coin toss’’)
determines whether the transition occurs or
not. Cell motion can have directed (e.g. chemo-
tactic) as well as random component. In this
respect, the simulation is a so-called ‘‘lattice-
gas’’ type of Cellular Automata (CA). The
motion of the cells takes place once per time
e A3
ines binding to the cell-surface receptors

kb(min
�1) KD= kb/kf (nM) Receptors/cell Reference

2.25 300–720 [1]
0.054 4.3 [2]
0.0084 3.8� 10�3 20–600 [3]
0.18 2.6 1000–5000 [3]

2.1 7709 [4]
0.15 [5]
1.0 [6]

Human TNF
1.7–2.8

4–5000 [7]

0.2 94 000 [8]
1.3 1100 [9]

er et al. (1996), [3] Godard et al. 1992, [4] Horuk et al. (1987),
a et al. (1990) [8] Pennica et al. (1992), [9] Ding et al. (1989). A
ts in a local ‘‘effective concentration’’ of receptors 1.655 (r/V)
3.



Fig. A1. Neuronal health is represented by an aggregate value which ranges from h = 1 (or 100%) for full health to h = 0
for dead neurons. Shown here is the rate of change of neuronal health (dh/dt) as a function of current health (h) for three
values of the injurious influence, I. The directions of the arrows indicate increasing health (to the right) or decreasing health
(to the left). (a) No injurious influence (I = 0): health increases up to full recovery at h = 1 regardless of the initial state. (b)
0oIor/4: intermediate level of toxicity. Here neurons will become partially stressed (i.e. approach the steady state marked
by heavy dot) unless they are already in very low health. In the latter case, they would die. (c) I>r/4: this is a fatal level of
toxicity and all states lose health and die unless the toxic influence is removed.
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step, DT. Grid spaces occupied by astrocytes, or
too many microglia exclude new cells.
In the simulation, microglia stick to amyloid

fibers. The probability of immobilization, PI, in
a given time step and the probability, PS, of a
cell to remain stuck to fiber in the presence of
soluble amyloid is based on data in El Khoury
et al. (1996). We have also assumed that these
probabilities have the forms

PI ¼
F

F þ G
;Ps ¼ e�kS;

where G, k are adjustable parameters.

AMYLOID FIBER GROWTH AND NUCLEATION

The rules governing fibrous and soluble
amyloid are given below. We define the follow-
ing notation: S is the concentration of soluble
amyloid and f is the fiber concentration at a
given site, Fmax is the maximal fiber level per site
allowed in the simulation, F is a weighted
average of local fiber concentration (ij fibers
weighted double those in surrounding eight grid
sites i71, j71), q is the concentration of
microglia at the given site. Then changes in the
levels of fibrous and soluble amyloid can be
represented by a stochastic, discretized version
of the set of equations below (with time step
DT):

dS

dt
¼ �R1ðS � bÞF � R1ðS � bÞ2 � k2q

S

hþ S
;

df

dt
¼ R2ðS � bÞF þ R1ðS � bÞ2 þ n

F

Fmax
� k1qf :
Growth and elongation of pre-existing fibers (first
terms in both equations) occur only when the
level of soluble amyloid exceeds some critical
value, S>b, and the rate of conversion is then
governed by the parameter R. If Sob, this term
is omitted. De novo fiber nucleation (second term
in equations) similarly occurs given a sufficiently
high level of soluble amyloid, S4b, and results
in new ‘‘seeds’’ or nuclei for fiber deposits. The
quadratic dependence on amyloid concentration
represents the fact that this step is rate-limiting.
If Sob, this term is omitted. New fibers adjoining
a deposit: an empty site adjoining a site contain-
ing fibers can be nucleated de novo with
probability that depends on a parameter n.
Soluble amyloid removal by microglia (last
terms in both equations) follows Michaelis–
Menten kinetics for the soluble form with
parameters k governing the maximum uptake
rate, and h the amyloid concentration at
which the binding is half-maximal. Microglia
cannot absorb amyloid in excess of some
maximal capacity. Fibrous amyloid removal by
microglia occurs by a distinct mechanism of
phagocytosis at an assumed 10% of the uptake
rate for the soluble form. There is currently no
limit on the amount of fiber that can be ingested
by a cell.
Neurons that have been exposed to IL-1B in

excess of the level that triggers a new source are
tested once by random draw to determine if they
can give rise to new sources of amyloid-
beta under the appropriate conditions. An
amyloid source at the site of a dead neuron is
removed.



FORMATION OF ALZHEIMER’S DISEASE 325
RATES OF SECRETION

Microglia that have taken up amyloid in
excess of some threshold level secrete the
cytokine IL-1B. Similarly, astrocytes secrete
IL6 and TNF-a once they have absorbed
sufficient IL-1B. The rates of secretion have
been calculated from data in the literature (Table
A2). We assume that the amount secreted per
unit time per cell is constant so long as the
stimulus to secrete is in effect. Chemical secretion
is calculated on the micro time step dt.

CYTOKINE RECEPTOR KINETICS

We use a Michaelis–Menten formulation for
cytokine-receptor binding kinetics and cytokine
uptake by cells: for C the cytokine concentra-
tion, we discretize the equation

dC

dt
¼ �Kmax

C

kn þ C
;

where Kmax is a maximal uptake rate, and kn the
half-maximal chemical concentration. Standard
assumptions of Michaelis–Menten kinetics (e.g.
see Edelstein-Keshet, 1988) lead to Kmax= k2 R
and kn=(kb+k2)/kf , where R is the total (local)
concentration of receptors, kf , kb are forward
and reverse-binding constants for ligand to cell-
surface receptor, and k2 is the rate of processing
of receptor–ligand complex. Typical values of
the cytokine receptor equilibrium constants
KD= kb/kf are shown in Table A3. The value
of k2 was estimated as 1.0 s

�1. This is taken to
reflect a typical time-scale pertaining to early
signal transduction events mediated by mem-
brane-bound receptors.

ASTROCYTE MOTION AND STATES

In the simulation, the state of each astrocyte
toggles between inactive and receptive as the IL-
1B concentration nearby rises above or falls
below a triggering level. Beyond a second IL-1B
concentration threshold, the cell has a prob-
ability of becoming motile. With some prob-
ability, a receptive or motile astrocyte will move a
short distance towards nearby amyloid fiber
(with superimposed random motion), but not
into a site currently occupied by microglia, fiber,
or too many other astrocytes. The maximum
speed of an astrocyte is 0.1 mm min�1 (Kornyei
et al., 2000). When the astrocyte senses amyloid
fiber in any of the eight adjoining grid sites, the
cell changes to a blocking state with some
probability. This leads to reduction in the
diffusion coefficients at the site: the value Dij is
scaled by (1-w)m where w is an adjustable
parameter and m is the number of blocking
astrocytes at the affected grid sites.

NEURONS

Neuronal health has a value 0o ho 1 at each
grid site, with initially full health, h(0)= 1

everywhere, and subsequently dh/dt= rh
(1�h)–I, at each site, so long as h > Hmin, where
Hmin is a critical health level below which there is
no recovery. If hoHmin, the rule is dh/dt=�I.
Possible outcomes of neuron health dynamics

at a given site are shown in Fig. A1. (i) If there is
no local toxicity (I = 0), full recovery occurs.
(The stable steady state, h = 1 is an attractor for
all Hmino ho 1.) (ii) Where toxicity is high,
(I4 r/4), neurons die. (All states in 0o ho 1 are
attracted to h= 0.) (iii) Where toxicity is sub-
lethal (Io r/4), the outcome depends on the
current state: neurons in poor health will die,
neurons in good health will recover partially.
(The upper steady state is depressed, signifying
lowered steady-state health, and the range of
health associated with mortality increases.)
The overall neuron health shown in Fig. 5 is

the average health over all n=40� 40 sites,
H= (1/n) ShI, where hi is the health of the i-th
neuron site.

COMMENTS ABOUT NUMERICAL METHODS

In simulating chemical diffusion, several
distinct methods (Strikwerda,1989; Press et al.,
1988) were implemented and tested rigorously
against one another, and against simple settings
in which analytic calculation of diffusion meth-
ods could be used for comparison (e.g. diffusion
from a point source in a homogeneous do-
main).We briefly describe our experiences with
several of these methods here:

K Simple explicit scheme (Strikwerda, 1989).
Problem encountered: failure of material con-
servation.
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K Implicit scheme with LU decomposition of
an n2� n2 matrix (Press et al., 1988). Problem
encountered: Matrix multiplication is expensive
and computing matrix inverse is memory in-
tensive. As soon as diffusivities change (due to
astrocytes), the inverse must be recomputed at
great expense. (Note: matrix is not tri-diagonal
because computing diffusion in more than one
dimension leads to more non-zero off-diagonal
bands.)

K Alternating Direction Implicit (ADI) with
Peaceman–Rachford Algorithm (Press et al.,
1988). Problem encountered: accuracy requires
a step size of 1/40min which results in same
speed as the explicit method with a step size of 1/
80min.

K Explicit scheme based on flux balance.
Computed the flux to follow diffusion for
non-uniform diffusivities. Limitations: Step-
size is restricted due to stability of the scheme,
but this was found to be the best method in
terms of ease of use and memory usage for our
purposes.
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