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We survey several types of mathematical models that keep track of age distributions in
a population, or follow some aspects of aging, such as loss of replicative potential of stem cells.
The properties of a class of linear models of this type are discussed and compared. We illustrate
the applicability of such models with a simple example based on hypothetical stem cell
dynamics developed to address age-related telomere loss in the human granulocyte pool. We
then describe the contrasting behaviour of nonlinear systems. Examples are drawn from the
class of &&dynamical diseases'' to illustrate some of the aspects of nonlinear systems. Applica-
tions of these, and other models to the problems of aging and replicative aging are discussed.
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1. Introduction

This paper provides a brief review of a number of
mathematical models, ranging from classical to
recent, that address issues related to the biology
of aging. A recent example will focus on rep-
licative aging in tissue with continued cell turn-
over. The purpose of the paper is to address
whether, and under what circumstances, model-
ling and mathematical methods could be a useful
tool to add to pre-existing tools of the discipline
of aging-related biology.

Many of the models described here have ap-
peared at a greater level of mathematical detail or
biological depth elsewhere, with a di!erent target
audience in mind. While this paper is neither
a comprehensive review, nor a de"nitive survey
of all current relevant work, we hope to highlight
a few of the key ideas in the realm of modelling, in
the context of relatively simple examples, with the
-Author to whom correspondence should be addressed.
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aim of exposing both potential strengths and
weaknesses.

We start with models that serve predominantly
as book-keeping devices, and that can be
used to follow aging populations of individuals
or cells. We then discuss some of the recent
advances from the "eld of nonlinear dynamics
and possible applications to physiology and
aging biology.

2. Linear Dynamics of Populations:
From Cells to Organisms

The collection of models in this section span
several levels of organization. The common
theme is that models can provide a quantitative
framework for keeping track of various ages,
stages of growth or cell division classes. The level
of detail that one chooses to include is arbitrary
in many respects, and should be guided to a large
extent by the biological data against which the
models are to be validated.
( 2001 Academic Press



FIG. 1. Diagram summarizing the age-structured model
represented by the system of di!erential equations (1),
P
j
represents the size of the population currently at age j.

k
j
is the mortality and p

j
is the birth rate from stage j.
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Models for age-structured populations are
part of the classical lore in the modelling litera-
ture, and have been described in detail in numer-
ous sources. Those used here for the purpose of
illustration also "t into a class that can be de-
scribed by the term &&linear'' models. This means,
essentially, that rates of change are simply pro-
portional to variables describing the state of the
system*i.e. interactions are largely ignored.
Mathematically, this makes the models very easy
to analyse and understand. To a mathematician,
the words linear and nonlinear convey rich mean-
ing: linear systems are largely predictable, and
easily classi"ed into a few well-known categories
of behaviour (exponential growth or decay with
or without simple oscillatory #uctuations). Non-
linear systems hold many surprises: the study of
nonlinear dynamic behaviour has spawned a rich
mathematical discipline in itself, and areas of
application span many scienti"c disciplines.

Below, several examples of population models
in which aging or age-structure are described.

2.1. DEMOGRAPHICS AND AGE STRUCTURE

Various phenomenological quantitative mod-
els that quantify and predict human mortality
have been developed. The idea behind such de-
mographic models was not necessarily to a!ect
our understanding or control of the aging pro-
cess, but often simply to predict actuarial risks
and pro"tability.

2.2. LAWS OF MORTALITY

&&Laws of mortality'' were "rst quanti"ed in
1825 by Benjamin Gompertz, a British actuary
(reprinted by Smith & Kei"tz, 1977). The Gom-
pertz equation, as it is now known, consists of
a simple variation on the idea of the Malthusian
exponential growth (or mortality) equation:

dN
dt

"!c (t)N (t),
dc
dt

"ac,

where t is the time ("age of cohort), N(t) is the
population size of a cohort at time t, c(t) is the
mortality, and a is the time rate of increase of
mortality with age (equivalent to assuming
that mortality increases exponentially with age).
We know this to be a naive assumption (see, for
example, the paper by Azbel, this issue). The
equations can be easily integrated to predict the
population of the cohort starting from some size
N

0
at time t"0 and into the future. We can

easily generalize the model to include cohorts of
many distinct ages. This leads to the next
example in our hierarchy of age-structured mod-
els, in which several age classes are considered
simultaneously.

2.3. AGE STRUCTURE IN A POPULATION

2.3.1. Discrete Models

We can describe the age structure of the popu-
lation by keeping track of the numbers of
individuals in a given age class. (See Fig. 1 for
notation and basic structure of the model.) Sup-
pose that ¸ is the maximal lifespan, and that n is
some arbitrary number of distinct age classes to
be followed (for example, n"¸ means we follow
aging year by year). The Leslie Model, developed
in the 1940s then allows us to follow changes in
the population as births and mortalities occur.
Let P

0
(t),P

1
(t),2, P

j
(t),2, P

n
(t) denote the

number of females in a population in age classes
0 (newborn), 1,2, j,2, n. Daughters can only
be &&born into'' age class 0, and thereafter have
some age-dependent mortality, k

j
at age j.

A given age has some age-dependent fecundity,
p
j
associated with it. If we de"ne p

j
as the average

number of daughters born to a female while she is
in the j-th age class, and k

j
as the fraction of

females in that age class that do not survive to the
next age class, then the Leslie model would read

P
0
(t#1)

1
"p

1
P

1
(t)#p

2
P

2
(t)# 2#p

j
P

j
(t)

#2#p
n
P

n
(t),
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P
1
(t#1)"(1!k

0
)P

0
(t),

F

P
j
(t#1)"(1!k

j~1
)P

j~1
(t),

F

P
n
(t#1)"(1!k

n~1
)P

n~1
(t). (1)

Here, time, t, is measured in units of ¸/n. The "rst
equation keeps track of births, while subsequent
equations track mortality from various age
classes (see Fig. 1).

From the model, we can make a few elemen-
tary quantitative predictions about the behav-
iour of the process:

f If there is no mortality and no births from the
intermediate classes, then the whole population
just moves as a group from one class to the
next, with no changes in relative proportions.
The cohort just &&ages''with time, and the initial
age structure is preserved for up to n time steps.
(After this, one has to make further assump-
tions about what happens to individuals when
they enter the last stage.)

f If there is no mortality and constant fecundity
p'0 from each age class (unrealistic for hu-
mans), then the total population P"

P
0
#P

1
#2#P

n
increases by a factor p at

each time step. This leads to exponential
growth.

f If there is constant mortality 0)k)1 at all
ages (unrealistic but intuitively appealing) and
no births, then the total population decreases
by a factor 1!k at each time step. Thus, after
t steps, there would be a multiplicative factor of
(1!k)t times the initial population, so the
population decays exponentially.

f If both mortality and fecundity are constant,
then the total population is scaled by the factor
P(p#1!k), so behaviour depends on
whether p!k is positive (growth) or negative
(decline).

The above predictions are trivial, and the scen-
arios far from realistic. (But see comparison with
models in the following sections for further in-
sights.) However, the far more interesting cases of
age-dependent mortalities and fecundities can
easily be handled in such models. Part of the
attraction of the Leslie models is that they can
tap well-developed mathematical tools of linear
algebra. In vector notation, the system of equa-
tions are written as

P(t#1)"MP(t),

where P"(P
0
,P

1
,2,P

n
) is the vector of popula-

tion sizes in each age class and M is the matrix of
coe$cients that fall into a well-de"ned math-
ematical setting. It can be shown that, provided
p
j
*0 and 0(k

j
)1, one can "nd a growth rate

j (the dominant eigenvalue of the matrix M) and
a stable age distribution P1 (corresponding eigen-
vector) such that

P(t)&cjtP1 ,

that is, the population grows in an exponential
way, while the relative proportions of people in
the various age brackets approaches a well-de-
"ned stable distribution. Both the growth rate
and the stable distribution can be obtained, given
the birth and mortality parameters [see, for
example Caswell (2001) for details].

In the Leslie Matrix model, the population in
one class will be transferred to the next age class
every time unit ¸/n, simply by virtue of the pas-
sing of chronological time. This is not necessarily
the case in other situations, for example, if we
consider stages of development, or numbers of
divisions that cells have undergone. In that case,
di!erent individuals (or cells) may undergo
a transition at random, but with some average
residence time in a given stage. If the size of the
sample population is large, this type of transition
can be described by di!erential equations in
which time is continuous, rather than discrete,
and where transitions are modelled much like
#ows through compartments.

2.3.2. Continuous Models

We "rst consider again the simple example in
which there is no mortality, and no births, but
only a simple transition to successive stages of
di!erentiation or successive classes. For example,
this would apply to a population of cells that go
through a variety of stages before emerging at



FIG. 2. Behaviour of a simple model for di!erentiation
stages in a population of cells, in which there is no mortality
and no new cells, as given by eqns (2). The number of cells in
the "rst ten di!erentiation stages S

0
,S

1
,2,S

10
are shown

by the curves plotted here vs. time. The number of cells
in class S

0
decreases exponentially. In each other class, the

number builds up, peaks, and declines. Results of the same
model are shown in Fig. 3.

FIG. 3. The distribution of cells by generation at times
t"0, 5, 10, 15,2,35 are shown for the model given by eqns
(2) and Fig. 2. Initially, most cells are in the youngest class.
With time, the peak of cells moves to higher classes. The
distribution also broadens over time.
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some fully di!erentiated form. As further simpli"-
cation, we take the case that mean residence time
in a given stage is constant and equal for all
classes. We let (S

0
, S

1
,2, S

n
) be the number of

cells at a given stage at time t and scale time in
units of the mean residence time. This leads to the
system of di!erential equations:

dS
0

dt
"!S

0
,

dS
1

dt
"S

0
!S

1
,

F

dS
j

dt
"S

j~1
!S

j
,

F (2)

The equations require some additional informa-
tion about the starting state (initial data), i.e. we
must specify the numbers of cells of each type at
the beginning of the process. Setting S

0
"N,

where N is some constant total naive (stage 0)
cells initially, and S

j
"0 for all other classes, we

can solve the system of equations successively
with the result that the number of cells in the j-th
class is given explicitly by a formula (see the
Appendix). The results are shown in Figs 2 and 3.
We can comment on a number of features of this
simple example worth noting:

1. The total number of cells here, namely
S"S

0
#S

1
#2#S

n
is constant, to a good

approximation (see the Appendix for details).
This means that the cells are merely growing
older and older, i.e. &&#owing'' into more
advanced division classes. Loss would occur
only if we assume that after some "nite number
of divisions, n, the cells are lost or simply die. In
this, the model corresponds to what was seen
earlier in the context of the discrete Leslie Matrix
model.

2. The number of naive cells, S
0

drops o!
exponentially: i.e. with age, there are fewer and
fewer of these.
3. Initially, most division classes are empty: it
takes time for these to "ll up, as cells keep divid-
ing. This also means that the distribution of the
cells is fairly narrow at the beginning.

4. For a given division class, there is some time
when it contains some largest number of cells: in
other words, the &&crest of the wave'' of cells passes
successively through division cycles.
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5. The mean number of divisions that cells
have undergone increases with time at a roughly
constant rate (see the appendix).

6. The age distribution at any given time has
a peak, but the distribution of cells of di!erent
generations widens: initially most cells are at
most 1}2 divisions away from their naive state,
but after a while there are cells at practically all
generation classes. This results from the fact that
a cell division (unlike a chronological marker,
such as a birth date) can occur at any time. The
model captures the fact that there is a distribu-
tion of individual residence times so that a spread
in the distribution occurs with time.

A survey of such models and their applications
is given in Caswell (2001). Another variant which
"ts into the same class is the continuous age-
structure model such as the Von-Foerster
McKendrick equation

LN
Lt

"!

LN
La

!k(a)N,

where N(a, t) is the population age-density at
time t and age a, k is age-dependent mortality. (In
this variant, there are no discrete stages, but
rather a continuous progression through age or
degree of maturity.) This partial di!erential equa-
tion is a &&conveyor belt'' representation of the
process shown in Fig. 1. The birth terms are
lumped together in what is referred to as
a boundary condition, i.e. a speci"cation of what
happens at a"0.

These three models are closely related, even
though the detailed techniques used to analyse
them might di!er. Furthermore, the basic stan-
dard model forms can be re"ned and made more
detailed by assumptions about how births and
mortalities depend on environmental conditions,
genetic factors, etc., possibly at the expense of
ease of analysis. Since mathematicians have an
impressive arsenal of simulation techniques at
their disposal, such re"nements are rarely an
obstacle to making predictions.

3. Application: Population Dynamics
of Stem Cells

In this section, we discuss one application of
ideas of stage and age-structured population
modelling to a problem which is related to aging
biology from yet another perspective, namely, the
process by which cells of a single individual may
age and have reduced replicative potential over
time. A distinction is generally made between
aging resulting from the decline in the function of
non-dividing cells (e.g. in neurons) and the de-
cline in the function of tissues with continued
turnover such as the skin, gut and blood. Loss in
the ability to divide a!ects the latter and our
model addresses only this aspect of aging.

Some cells in the body are relatively quiescent,
and divide rarely, while others must be replaced
constantly. Cells of the blood, skin, and digestive
tract constantly wear away and must be replaced
by new cells. According to Potten and Loe%er
(1990), stems cells of the gut divide more than
5000 times. The number of blood cells produced
daily in a normal adult human is 1011}1012, or
roughly 4]1016 per lifetime (Lansdorp, 1997).
A minimum number of 55 cell doublings would
be needed to supply this population (since
255"4]1016). A specialized pool of cells, called
pluripotent stem cells, is responsible for replen-
ishing the entire pool of blood cells over the
lifetime of the individual. The two equally impor-
tant criteria are that (1) a su$cient supply of
di!erentiated cells are to be produced as needed
on a continual basis and (2) the supply of stem
cells must self-renew so that future supplies of
cells are ensured.

There is controversy in the literature about
how many times stem cells can and do divide (see
Kay, 1965; Rufer et al., 1999). Stem cells were
initially considered to be immortal but now this
idea has come into question: it is thought that
there is a "nite replicative potential, and that
aging correlates with loss of competent stem cells
(Lansdorp, 1997). Stem cells themselves are cur-
rently both too few and too cryptic to identify
and count directly, but some of their progeny can
be identi"ed, tracked, and counted. Rufer et al.
(1999) used #uorescence in situ hybridization
(FISH) techniques to measure the length of
telomeres in granulocytes and T lymphocytes
from over 500 individuals of all ages to address
the question of what underlying dynamics are at
work in the stem-cell pool. They discovered that
there is a clear decrease in telomere length with
age, which, despite considerable scatter, points to



FIG. 4. Diagram summarizing hypothetical stem cells dy-
namics. Horizontal #ow: stem cells undergo self-renewal
divisions at rate p, each time producing two daughter stem
cells. Subscripts refer to the number of cell divisions that
these cells have undergone. Vertical: the stem cells also
undergo asymmetric divisions at rate f, producing one blood
precursor and one new stem cell. Expansion by a factor of
roughly 220 produces the "nal pool of blood cells. Telomere
#uorescence is measured in the granulocyte pool, represent-
ed by circles. The tapered arrows represent expansions of
a given population.
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some continual change in the pool of stem cells
from which these cells have descended.

Telomeres are ends of chromosomes, known to
contain repeats of the form (TTAGGG)

n
. Each

cell division results in the decrease of telomere
length in a cell (some exceptions occur). In
humans, telomeres shorten by 50}200 bp (on
average 100 bp) per division. According to Hay-
#ick (1965), normal somatic cells can undergo
a "nite number of divisions before they enter into
a state called replicative senescence. Harley
(1991) proposed that replicative senescence could
be explained because the telomere repeats are
eventually depleted (however, see the discussion
below). Rufer et al. (1999) postulated that the
length of telomeres in a stem cell would, in prin-
ciple, correlate with the number of times that the
stem cell has undergone self-renewal cell division
(i.e. a division that produces new stem cells).
Assuming that the number of divisions separat-
ing stem cell from di!erentiated blood cell (e.g.
granulocyte) is constant, e.g. 20 divisions, one
could infer that the loss of telomere repeats in the
granulocyte pool over the lifespan of an indi-
vidual results from successive self-renewal divis-
ions in the stem cell pool. According to Rufer
et al. (1999), the data is best "t by a bisegmented
line: the length of telomeres in the granulocyte
pool decreases by about 3052bp per year during
the "rst half-year of life, and by about 34 bp per
year thereafter.

Population dynamics in an age-structured
population have an analogue in cell population
dynamics. (This highlights part of the power of
mathematics: the ability to generalize from one
situation to another, and to extract lessons
learned in one system to that of another, seem-
ingly unrelated system.)

Consider the possibility that stem cells can
self-renew: i.e. divide to produce two daughter
stem cells (with rate p expressed as number of
divisions per year) or undergo &&tangential divis-
ion'' to produce one stem cell and one daughter
destined to di!erentiate (with rate f, similarly
expressed as number of divisions per year). These
rates of division undoubtedly vary over time,
with age, and in response to many biological
factors which the aggregate data in Rufer et al.
(1999) does not reveal. We can at best hope to
arrive at some ideas about mean rates of division,
with those means taken over a large number of
data points from distinct individuals at distinct
ages, and over a time-scale comparable to a typi-
cal lifespan.

Let S
0
(t),S

1
(t),2, S

n
(t) denote the population

of stem cells that have already undergone
0,1,2, n self-renewal divisions at time t. (See
Figure 4 for the notation and basic structure of
the model.) (Initially, at a su$ciently young age,
most of these classes are empty, i.e. there are only
stem cells with low division numbers present.) We
consider simple models of possible cell dynamics,
and what these would imply in the examples
given below.

3.1. NULL MODEL: SUCCESSIVE DIFFERENTIATION

WITH NO BIRTH OR MORTALITY

If there is no self-renewal, then p"0. Selecting
time units that are multiples of the mean genera-
tion time (so that f"1) leads to the system of
di!erential equations precisely as shown in eqns
(2), but this system would be inadequate as
a model for stem-cell dynamics for two reasons:
(1) cells are not expanding, as the stem-cell pool is
believed to do and (2) cells are not being lost to
either mortality nor to di!erentiation, as would



FIG. 5. The number of j-th generation stem cells,
S
0
,S

1
,2, S

10
is plotted against time (in years) for the model

given by eqns (3). We used S
0
"1 at t"0 and assumed

constant values of the division rates, p"0.15, f"0.04 per
year. (These rates satisfy the relationship 100(2p#f )"34,
based on data in Rufer et al. (1999). Note that for a given
division class, the numbers build up over time up to some
maximum, and then decrease, as the &&crest of the wave'' of
cells passes through a given division class.

FIG. 6. The distribution of stem cells at successive times,
t"0, t"5, t"10,2, t"35 (in years) corresponding to
eqns (3) and to the behaviour shown in Fig. 5. Each curve
represents the distribution of cells over division classes. The
same parameter values were used here [to "t data in Rufer
et al. (1999)] as in the previous "gure.
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be the case for production of blood cells. We
therefore consider the possibility below.

3.2. EXAMPLE 1: SELF-RENEWAL AND

DIFFERENTIATION DIVISIONS

Consider the case that stem cells can both self-
renew (produce two stem-cell daughters) or
undergo an asymmetric division (one stem cell
and one di!erentiation-destined progeny per div-
ision). The "rst type of division leads to an expan-
sion of the stem-cell pool, since each cell doubles.
This will show up in the resulting growth of the
population predicted by the model with previous
de"nitions of p and f (Fig. 4). The model reads

dS
0

dt
"!(p#f )S

0
,

dS
1

dt
"(2p#f ) S

0
!(p#f )S

1

F
dS

j
dt

"(2p#f ) S
j~1

!(p#f )S
j
,

F (3)

In the above equations, the factors (2p#f ) rep-
resent the fact that each symmetric division (rate
p) produces two cells in the successive division
class, whereas each asymmetric division produces
only one such new cell. At the same time, the
&&parent'' is removed. Starting from some initial
number of cells, N, concentrated in the "rst divis-
ion class, S

0
, we "nd that the total number of

stem cells now increases exponentially with
growth rate p (see the Appendix for details). It
seems that if we had an independent estimate of
the total number of stem cells at any given time,
this fact would allow us to determine the para-
meter p. (Such independent data is not currently
available, but even if it were, it is unlikely
that such a "t can be made, as the assumption
of exponential increase is likely a gross simpl-
i"cation.)

The solution to this system is shown in
Figs 5 and 6. The mean telomere length in this
scenario decreases by roughly 100 (2p#f ) bp per
year in a large population (see the Appendix for
details). In order to "t the trend given by data in
Rufer et al. (1999), for the non-infant rate of
telomere shortening (on average, 34 bp shorten-
ing per year), p and f must satisfy the relationship

100(2p#f )"34.

For example, p"0.15, f"0.04 divisions per
year would satisfy this relationship, and was used
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in the simulations that produced Figs 5 and 6.
However, the data does not allow us to uniquely
de"ne the division rates p and f.

The parameters p and f in this model govern
the dynamics of the stem cells and also prescribe
the rate that di!erentiated products of these cells
would accrue. One simple assumption is that
there is a "xed number of divisions between
a stem cell and a granulocyte (or, for that matter,
any other progeny). The rate that the "rst di!er-
entiated blood cell precursors are produced is
fN (t)"fN

0
ept and this number would be magni-

"ed by some factor to account for expansion that
occurs between the stem cell and the granulocyte
level (e.g. 220 assuming 20 cell doublings between
these levels).

3.3. REFINEMENTS AND OTHER EXAMPLES

The basic model discussed previously can be
modi"ed or adapted in a variety of ways. We
brie#y highlight the results of varying some of the
hypotheses or lifting the restriction that division
and di!erentiation rates are constant.

1. If the self-renewal type of stem-cell division
changes gradually over the lifetime of an indi-
vidual, e.g. p(t)"p

0
!rt'0, where t is time,

then f is also non-constant, e.g. a relationship of
the form 100(2p(t)#f (t))"34. In this case, the
rate of di!erentiation divisions would increase
with age. The total number of stem cells, S (t) can
be shown to increase over time, but at a decel-
erating rate, S (t)"N

0
#p

0
t!rt2/2. The total

production of blood cells would be an increasing
function of time. This is reasonable up to adult-
hood, but not necessarily throughout life.

2. If cell-renewal division probability de-
creases with the number of divisions that a cell
has already undergone, i.e. p( j)"p

0
!rj'0,

where j is the division class of the cell (i.e. how
many divisions it has undergone), then the di!er-
entiation division would also be stage-dependent,
e.g. 100(2p( j)#f ( j))"34. In this case, it can
also be shown that both the stem-cell pool and
the blood precursor pool would continually in-
crease. The average age of the blood precursors
would increase linearly with slope 0.34 to ac-
count for the 34 bp per year change in telomere
length.
3. To avoid the unlimited growth predicted
by the above linear models, it is necessary
to impose some kind of size limitation or interac-
tion term. We discuss this in greater detail
in the following section dealing with nonlinear
models.

3.4. CRITIQUE

In his commentary on Rufer et al. (1999),
Hodes (1999) raises a number of important con-
siderations. First, he notes that multiple factors
can result in signi"cant deviations from normal
telomere loss in somatic cells. One set of factors
could include mechanisms (such as telomerase)
that increase telomere length, not only in germ-
line but also in certain somatic cells. A second
factor is a variation in the rate of shortening over
cell type and conditions, with exceptionally rapid
shortening occasionally observed. Hodes points
to two divergent interpretations of the rapid loss
of telomere length in childhood: Rufer et al.
(1999) attribute this to changes in the turnover
rate of cells, whereas Frenck et al. (1998) suggest
that it correlates with a changing rate of telomere
loss per cell division. Currently, it is not yet
possible to distinguish between these two possi-
bilities. Other models that speci"cally address
telomere shortening include Levy et al. (1992),
Rubelj & Vondracek (1999), and Olofsson &
Kimmel (1999).

At present, longitudinal studies in humans
(which would require blood samples over the
lifetime of individuals) are not yet available. Al-
though there is a clear correlation between age
and the loss of telomere repeats in granulocytes,
the rate of loss is not a simple linear relationship,
and the variations in telomere length between
subjects is large. This means that, at best,
the experimental data is approximate. A greater
impediment is that the type of data currently
available is insu$cient to constrain the model or
distinguish between several competing hypothe-
ses: undoubtedly, the rate of divisions of stem
cells may depend on the division-class of the cell,
chronological age of the individual (time), inter-
actions with other cells (e.g. feedback through
cytokines or other forms of cellular communica-
tion) or possibly other constraints. The models
presented above are among the simplest of their
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kind. Many more detailed versions have ap-
peared in the literature (see Section 4.2). How-
ever, the availability of data severely constrains
the ability to distinguish between multiple hy-
potheses.

Since this article aims to address biology of
aging, a natural question is to what extent
telomere shortening seen in the data of Rufer
et al. (1999) has a functional signi"cance in aging.
Hodes (1999) addresses this point in his commen-
tary, and sounds several cautionary notes. First,
it appears that some cells do not show replicative
senescence, indicating that a direct correlation
between telomere shortening and replicative
senescence does not exist for all cell types.
In an even more extreme statement, Miller (2000)
wrote that the idea that telomere shortening in
lymphocytes leads to replicative failure in old
age is one of the few ideas that &&can, with a fair
degree of con"dence be considered incorrect''.
It would be interesting to follow the eventual
development of these divergent points of view
on the subject. Even if a direct functional
correlation exists, we are still not in a position
to envision manipulating telomeres to alleviate
problems of aging, nor is it clear that this
can be done without also unleashing adverse
a!ects such as cellular immortality in the form of
malignancy.

4. Nonlinear Models

As the examples in the previous section reveal,
linear models have a relatively benign repertoire
of behaviour. They are suitable for describing
#ows through compartments, (as well as a
limited set of periodic phenomena not discussed
here). Most of the really interesting biological
systems are inherently nonlinear due to interac-
tions between components of a system (not
just simple interconversions). As the chemical
law of mass action demonstrates, the interaction
of components introduces dependence on
products of the variables, or other expressions
involving more than one variable in a nonlinear
way.

In this section, a brief review is undertaken of
some of the notable applications of nonlinear
dynamics to physiology, and, in particular, to the
biology of aging. Before doing so, we comment
on the fact that two elementary models for popu-
lation growth are the Malthusian model,
dN/dt"rN and the Logistic (density-dependent)
model dN/dt"rN(1!N/K). The former is lin-
ear, and has the unrealistic feature of unlimited
exponential growth. The latter is nonlinear by
virtue of the quadratic dependence on N on the
right-hand side of the equation. Its solutions have
a plateau at a population level, N"K, called the
carrying capacity. Signi"cantly more bizarre
in behaviour, the delayed logistic or discrete lo-
gistic equation, N(t#1)"rN(t)(1!N(t)/K),
also has a variety of oscillatory and chaotic
solutions as the parameter r (which, incidentally,
governs steepness of the response) increases.
This equation has an inbuilt delay, i.e.
the reaction to a change takes time. It is a
well-established fact that equations incorporating
delays can give rise to unstable behaviour, oscil-
lations, and in the case of this discrete logistic,
to chaos. (This equation spawned the interest in
chaos dating back to the mid-1970s, though its
relevance to biological systems per se is tenuous
at best.)

4.1. FEEDBACKS AND NONLINEARITIES IN

STEM CELL MODELS

In the previous section, we described a number
of the essentially linear models for stem-cell
di!erentiation and self-renewal divisions. Inter-
actions between cells of various classes, renders
such models nonlinear.

One hypothesis we explored is that the surface
area inside the long bones, which acts as the
reservoir of the stem-cell pool, has a limited size,
and hence causes renewal divisions to be
limited. Since this surface area scales as (body
mass)2@3, we assumed that the rate of self-renewal
divisions is p (t)"h (km2@3!S) where m"m(t) is
mass of the individual, and S"S(t) is the total
number of stem cells at time t. This assumption
means that there is a feedback from current stem-
cell pool to its own expansion, but does not
account for other feedbacks, e.g. from pools of
blood cells.

Aside from this feedback assumption, the
model equations were essentially identical to sys-
tem (3). Data for average growth in mass over
time were taken from a growth chart (Castlemead



FIG. 7. Behaviour of the nonlinear model for stem cell
dynamics discussed in Section 4.1, where the renewal divis-
ions are controlled by a limited capacity for stem cells. Stem
cell number increases during growth, then remains constant
throughout adulthood. Capacity"k mass2@3. ( ) Stem
cells (total); ( ) capacity.

FIG. 8. A plot of f (t), i.e. of the average rate of blood
cell precursor per stem cell resulting from the model of
Section 4.1.

FIG. 9. Granulocyte telomere lengths predicted by the
results of the model in Section 4.1. Data line is best "t from
Rufer et al. (1999). ( ) Model; ( ) data.
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Publications Chart No GDB11A). This nonlinear
model was investigated numerically. We found
that the total number of stem cells increased
initially during growth, and then stabilized at
some constant level through adulthood (see
Fig. 7). This means that the average rate of blood
cell production per stem cell declines over the "rst
year or two, but then eventually increases to
reach a steady constant level in adulthood [see
Fig. 8, a plot of f (t)]. In this instance, the division
rate f (t) is not a solution to 100(2p#f )"34 as
in the previous models discussed in Sections 3.2
and 3.3. The assumption of a physiological
requirement for blood cells proportional to body
mass (with blood cells needed divided by stem
cells present) determines f (t). The implications for
telomere lengths in the mature blood cells
(granulocytes) are shown in Fig. 9 along with
best-"t lines for the experimental values pub-
lished in Rufer et al. (1999). Fig. 9 shows that by
adjusting the parameters h and k, we can get close
to satisfying the relationship 100(2p#f )"34
anyway, even when it is not pre-assumed.

4.2. OTHER MODELS FOR STEM-CELL DYNAMICS

One of the best reviews of the original litera-
ture on stem-cell dynamics, suitable for non-
mathematicians appears in Wichmann (1983).
Wichmann describes modelling e!orts dating
back to the early 1960s. In many of the models
(including more recent ones), a distinction is
made between resting and actively dividing cells.
In other cases, the e!ects of feedback due to
growth factors, or other in#uences are incorpor-
ated.

As described in the review by Wichmann
(1983), the compartment structure of a model is
not particularly important in the sense that it
simply provides an (arbitrary) subdivision of the
system into a particular number of classes. How-
ever, the types of interaction and feedback terms
are highly signi"cant. For example, the model
above assumes that the activation of stem cell
division is regulated by the total stem cell popula-
tion. Other models have also included feedback
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of the downstream di!erentiated cells, for
example, incorporate activation of extra cell div-
isions when there is a de"ciency in the cell popu-
lation. The dose}response of regulators on the
production and di!erentiation rates of the cells is
also an important factor in the behaviour of the
system. As an example, some models (for later
stages of erythropoiesis) incorporate regulation
by cytokines such as erythropoietin (EPO) and
others. In fact, it has been shown that simply
making dose}response curves steeper can lead to
oscillations in cell production, whether or not the
compartmental structure of the model is changed
(Wichmann, 1983).

Oscillations can be expected to occur with any
of the following factors: (1) more extreme or
sharper feedback responses, (2) a longer time de-
lay between cause and e!ect (e.g. feedback of cells
far down stream of the regulated compartment),
(3) cell death. All of these factors have been
explored mathematically in a variety of settings,
see for example, Mackey (2000), who describes
detailed stages, including transitions between
proliferating and resting cell cycle phases; Hearn
et al. (1998), who modelled cyclical neutropenia
(period 19}21 days in humans, 11}15 days
in the grey collie); Belair et al. (1995a),
Maha!y et al. (1998), who have also combined
the feedback e!ects of cytokines such as EPO on
the production of blood cells, and the e!ect of
delays.

4.3. DYNAMICAL DISEASES

Most physiological systems are controlled by
feedback mechanisms that ensure homeostasis,
or, in some cases, regular cyclic behaviour. In
pathological states, the constant outputs of some
systems may break down into oscillatory behav-
iour: an example is tremor that accompanies pur-
poseful movements in Parkinson's disease. Other
physiological systems may either cease to cycle
(as in the oestrous hormonal cycle) or acquire
irregular, inappropriate frequency oscillations, or
potentially more bizarre aperiodic dynamics. The
investigation of dynamical behaviour of biolo-
gical control systems has led to the idea that
some diseases stem not from defective single com-
ponents, but from changes in strengths of connec-
tions, changes in slopes or threshold levels in
stimulus}response curves, or in delay time for
receiving or processing a signal. Succinctly
put, such e!ects correspond to parameters
of intact control systems that are operating
outside of the range of normal dynamical
behaviour. The qualitative changes in behaviour
that accompany these correspond to bifurcations
in the underlying nonlinear systems. This idea,
termed &&dynamical diseases'' (Mackey & Glass,
1977; Glass & Mackey, 1979) received wide-
spread attention in the modelling community
(Mackey & Milton, 1987, Glass et al., 1988,
Kaplan & Glass, 1995), though somewhat less
wide recognition in the biological community.
[See Belair et al. (1995a,b) for a good review and
insights.]

4.3.1. Cheyne}Stokes Respiration

A simple example of a &&dynamical disease'' is
Cheyne}Stokes respiration (Mackey & Glass,
1977). The level of CO

2
in the blood is governed

by production (through metabolism) and loss (via
ventilation). The latter depends on CO

2
level via

feedback control in brain-stem receptors, with
a sigmoidal stimulus}response. A delay of up to
about q"0.2min is normal (Mackey, pers.
comm.) this accounts for the time it takes for
circulation from lungs to reach the brain stem.
A model of this simple feedback mechanism by
the above authors revealed that the system has
a stable steady state (or &&set point'') (e.g. 40mm
Hg partial pressure for CO

2
and about 7 l min~1

for ventilation rate) for a range of parameter
values. However, increased CO

2
production,

increased delay (e.g. due to congestive heart fail-
ure or similar circulatory defects) or a sharpening
of the slope of the response curve can lead to
instability, and dramatic #uctuations in breath-
ing pattern and blood CO

2
levels, typical of

Cheyne}Stokes Respiration.

4.3.2. Parkinson1s Disease

In many of the more recent investigations of
periodic or dynamical disease conditions, the de-
tails of the underlying control mechanism are
not so clear-cut. Beuter & Vasilakos (1995)
investigated the possibility that the oscillations
in muscle control that show up as tremor
in Parkinson's disease can be considered as a
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dynamical disorder: abnormal oscillations ap-
pear (tremor), normal rhythms disappear (e.g.
reduced swinging of arms in walking) and new
periodicities develop; all these features are sug-
gestive of the hypothesis of a dynamic disorder.
The idea proposed by Beuter & Vasilakos (1995)
is that central and peripheral feedback loops in-
teract dynamically to control limb position, the
former having greater impact, and the latter re-
sponsible for minor corrections. Changes in the
coupling between these systems over time could
lead to the changes in dynamics. A simpli"ed
model for interactions between central and
peripheral systems with a delay due to "nite
conduction velocity in the nervous system and
nonlinear sigmoidal responses showed behaviour
similar to experimental observations. However,
the detailed mechanisms of the interacting loops
are not known, nor can they be inferred easily
by studying the dynamics of the experimental
system. Parkinson's is a complex disease with
multiple facets, and not easy to dissect with an
elementary model.

4.3.3. Diagnostic and ¹herapeutic ¹ools

Milton & Black (1995) investigated some 32
diseases with interesting dynamics. In only a few
cases are the systems su$ciently simple or well-
understood to intervene directly and suggest
ways of resetting physiological parameters to
their normal levels. However, even without
knowing details of the underlying mechanisms,
some dynamical considerations can suggest
therapeutic measures. As an example, epileptic
seizures can be brought under control by
precisely timed input stimuli, e.g. a loud
noise at a critical time determined via electroen-
cephalogram monitoring. As described in the
excellent review by Belair et al. (1995,b),
the irregularities in physiological data which
could stem from both noise and deterministic
factors can also be used to distinguish between
subgroups of individuals who are at risk for
certain life-threatening conditions. Simply
collecting the data and analysing it, either as
time series, or with more advanced autocorrela-
tion or power spectra methods can provide signa-
ture patterns that are identi"ed with abnormal
conditions.
4.3.4. Power Spectra as 00Signatures11

In the healthy organism, control systems oper-
ate at many levels, from the neuronal and hor-
monal to the subcellular. These are characterized
by many disparate time scales, and, in many
cases, by cycles of vastly di!erent periodicities.
A power spectrum is a succinct summary of the
numerous frequencies that make up a system.
A particularly striking example of this &&signa-
ture'' data analysis is the work of Lipsitz (1995)
on heart rate power spectra using measures of the
&&complexity'' of cardiovascular dynamics. The
measures he investigated are based on a number
of quanti"ers such as approximate dimension and
approximate entropy, used in studying complex
dynamics of nonlinear systems in broader
contexts. (These indicate, roughly speaking, the
predictability of the system.)

4.3.5. Age-related Changes in 00Complexity11

According to Lipsitz, it is important to under-
stand changes in the dynamics of heart rate and
blood pressure, not just their mean values. (Mean
values are nearly the same in young and old,
while dynamics are strikingly di!erent.) Normal
healthy aging is accompanied by a reduction in
the sensitivity of the barore#ex response that acts
as feedback to regulate both beat-to-beat blood
pressure and heart rate. This leads to a decrease
of variability over age, and particularly, a loss of
the higher-frequency #uctuations. Loss or decline
of complex physiological heart rate variability
can be used as a marker of abnormality and as
a diagnostic or prognostic tool in conditions such
as congestive heart failure, coronary disease, and
others. In this case, even though the detailed
mechanisms that are responsible for the dynam-
ics are not known in detail, the lessons of com-
plexity learned in the course of a more general
investigation of nonlinear dynamics could bear
fruit.

4.4. CRITIQUE

As discussed by Beuter & Vasilakos (1995),
many of the periodic diseases or dynamical be-
haviours in disease can be observed, but may not
lead to direct insights into the details of underly-
ing dynamics. In such cases, it is hard to consider
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therapeutic measures in which interventions
could correct for the abnormal dynamics. As
stated by Milton & Black (1995), the nature of the
relevant control parameters is still mysterious in
many cases. A good review of both the accom-
plishments and the challenges facing the dynam-
ical disease research is given in Belair et al.
(1995a, b). Practical problems include the fact
that most of the data with observed time series on
which to base the models is too short and con-
founded by the in#uence of noise. Debates about
optimal techniques for analysing the data are still
unresolved, and most of the bottom-up ap-
proaches of constructing models based on what is
known mechanistically has focused on relatively
simple bare-bones examples. According to Belair
et al. (1995b), this has lead to a paucity of practi-
cal applications of the theories to date.

4.5. OTHER PHYSIOLOGICALLY BASED MODELS

Mathematical models have addressed numer-
ous nonlinear problems in physiology, ranging
from conduction of electrical signals in neurons,
to cardiac dynamics, to kidney function (see re-
cent review in Keener & Sneyd, 1998). Some of
these models have led to new disciplines, a no-
table example being the Hodgkin}Huxley model
for action potential in neurons, and its role in
inspiring modern neurophysiology. There is as
yet a paucity of physiologically based models
that speci"cally address aging biology. Here, it is
interesting to point out one or two promising
directions.

The mathematics of pacemakers, and coupled
oscillators is a rich and exciting "eld, a subset of
dynamical systems in which sophisticated mathe-
matics interfaces aptly with biological experi-
ments and theoretical predictions. The recent
decades have seen some remarkable success sto-
ries in this "eld (see e.g. Kopell, 1995, 2000). Some
of this theory is now taught as a standard part of
undergraduate mathematics and is introduced in
an eminently readable form by Strogatz (1994),
Kaplan & Glass (1995).

At the same time, biological cycles are a vital
part of normal physiology. Hormonal systems
are notoriously driven by #uctuations, and oscil-
lations, rather than constant basal levels. For
example, gonadotropins such as follicle stimulat-
ing hormone (FSH) and lutenizing hormone
(LH), responsible for reproductive capacity in
humans are secreted by the pituitary in response
to periodic pulses of gonadotropin release hor-
mone (GnRH) from the hypothalamus. Typically,
such pulses occur once per hour. If the frequency
of these pulses is incorrect, secretion does not
occur. Both ovary, and brain act as pace-
makers*rhythmic producers of signals. Accord-
ing to Wise et al. (1996), with age, the natural
rhythm of the system may deteriorate, either
through changes in the inherent rhythm of the
components, or changes in the way that they are
connected (or coupled) to one another. This can
disrupt the delicate balance, with a resulting loss
of function leading, for example, to menopause.
An analysis of pacemakers and their interactions
is a possible contribution that modellers can
make to this area.

Further, a second set of models in the literature
may be similarly relevant to the topic of meno-
pause. These models focus on the process of fol-
licular maturation and follicle selection. (A small
fraction of the follicles in the ovary*a mere 500
or so*will ever complete the full maturation
cycle. Most are fated to die after degenerating.)
According to Wise et al. (1996) &&Reduction in the
number of follicles in the ovarian pool which
occurs normally during middle age disrupts the
dynamic equilibrium between dormant and
growing pool of follicles.'' This disruption is also
a part of the aging-related phenomenon of meno-
pause.

Some modelling of follicular dynamics dates
back to Lacker (1981, 1988), who modelled inter-
actions of growing follicles, estrogen, LH, and
FSH. For analytical tractability, Lacker assumed
that follicles have identical responses and follow
identical growth laws. Some of these restrictive
assumptions were later relaxed, e.g. by Chavez-
Ross et al. (1997). The models describe the
competition of the follicles for dominance and
maturation. Recent papers (Faddy & Gosden,
1996; Faddy et al., 1992) "t simple exponential
decay to data in their treatment of the decline in
follicle number and menopause. Although the
more detailed mechanistic models for follicle
maturation have not yet addressed the phenom-
enon of menopause, they provide a framework in
which such an investigation could be undertaken.
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5. Models of the Aging Process

As of the writing of this paper, the literature of
models that have addressed the biology of aging
per se is hardly extensive. Partly, this may result
from the fact that much of that biological core of
knowledge is, to some extent, still descriptive,
rather than quantitative. What quantitative ob-
servations do exist may be comparisons of young
and aged individuals, rather than full appreci-
ation of the entire dynamic process of aging. In
this section, we brie#y describe an exception to
this situation, that of network models by Kowald
and co-workers.

5.1. NETWORK MODELS FOR AGING

Some of the qualitative views of aging as an
accumulation of errors have been incorporated in
detailed models for the interactions of normal
and defective proteins, free radicals, antioxidants,
and the protein production machinery in the cell.
These models, given by Kowald & Kirkwood
(1994, 1996), Kirkwood & Kowald (1997), have
been called the network theory of aging, as they
illustrate the network-like interconnections of
many components of the system that are required
to control cellular homeostasis. A typical model
in this collection consists of sets of di!erential
equations for correct and erroneous proteins,
ribosomes, RNAs, and their interactions with
radicals. The di$culty in constructing such mod-
els is that many speci"c assumptions about rad-
ical disposal, energy consumption, and detailed
e!ects must be assembled. Some, but certainly
not all, of these assumptions can be derived from
experimental or biological data. A typical model
also contains a large number of parameters (e.g.
30 or more) and estimates for these require pains-
taking work.

A network model such as that of Kowald
& Kirkwood (1994), while being conservative in
detail as far as the biologists are concerned, is
complex and non-trivial as far as a mathematic-
ian is concerned. As a result, investigative work of
this type is mainly done with simulations, rather
than analysis. How to e!ectively explore the rel-
evant parameter space in such a large-scale
model is a challenge. To paraphrase Wichmann
(1983), high complexity in a model (i.e. a high
level of detail) does not always mean high quality.
A tradeo! exists between the inclusion of numer-
ous interactions, whose parameters are not well-
measured, or subject to large error (in which case
the predictions of the model have a large uncer-
tainty) and oversimpli"cation which neglects key
features. Nevertheless, certain results of such
models are instructive; for instance, Kowald &
Kirkwood (1996) have shown that aging leads to
increases in inactive proteins, in the persistence
time of the protein, in the fraction of damaged
mitochondria, while decreasing the amount of
energy produced per mitochondrion. They also
observe gradual cumulative changes (e.g. in
mitochondria) that eventually, by virtue of inter-
action with the cytoplasm, lead to error.

Kowald & Kirkwood (2000) model delayed
degradation of defective mitochondria (suggested
by de Grey, 1997) as a possible cause of deteriora-
tion in aging cells. Damaged mitochondria repli-
cate more slowly, but also have a slower rate of
degradation according to this theory (Kowald,
1999). This results in the buildup of damaged
mitochondria. Their model incorporates two ma-
jor classes of mitochondria, with and without
DNA damage, and further subdivide these into
subclasses depending on the extent of membrane
damage (low, medium and high) with transitions
between classes. From this perspective, the model
bears parallels with some of the compartmental
modelling described earlier in this review. How-
ever, Kowald and Kirkwood assume that free
radicals produced by the mitochondria a!ect
those transitions between classes, so that the
model is nonlinear. Their results point to the fact
that the e!ect of mitochondrial degradation is
signi"cant: if the turnover rate is too low or too
high, there is an instability. The model contains
roughly 20 parameters whose values are based on
experimental results, calculations, or guesses.
According to Kowald & Kirkwood (2000), an
important consequence of the model is that
post-mitotic cells accumulate damaged mitochon-
dria more quickly than mitotically active cells.
Thus, rapid cell division could slow the decline
of the mitochondrial population.

6. Discussion

From this review, it may be apparent that the
mathematical modelling currently holds no
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magic bullet or cure for aging. Indeed, the extent
of e!ort directed at speci"c phenomena asso-
ciated with aging is still in its infancy in the
modelling community.

However, it should be noted that physiolo-
gical, cellular, population, and disease modelling
is in a healthy and vigorous state, empowered by
advances in mathematical and simulation
methods, and enlivened by the recognition that
the work is best done with close consultation
between theoretical and experimental scientists.

It is to be hoped that some of this work will
extend perspectives to address the speci"c age-
related phenomena. Some of the areas are ripe
for such extensions. It only remains to broaden
the questions, focus on the e!ects of age, and "nd
willing partners in the biological and theoretical
communities to carry forward such research.
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APPENDIX

For the model given by the system of equations
(2), an explicit solution can be obtained by
solving the "rst equation to obtain S0"Ne~t,
substituting this function into the term S0 in the
second equation and solving the resulting (non-
homogenous) linear equation to obtain S1 . By
repeating a similar process step-by-step, we ob-
tain solutions for all of the variables. The result-
ing formula for the number of cells in class j is

S
j
(t)"

N
j!

tje~t.

So, for example, S
0
(t)"Ne~t, S

1
(t)"Nte~t,

S
2
(t)"1

2
Nt2e~t, S

3
(t)"1

6
Nt3e~t. The total num-

ber of cells S"S
0
#S

1
#S

2
#2 can be found

by adding the equations:

d
dt

(S
0
#S

1
#S

2
#2)

"(!S
0
)#(S

0
!S

1
)#(S

1
!S

2
)#2 .

The terms on the right-hand side cancel success-
ively, so that

dS
dt

+0.

This approximation holds well if there are
many di!erentiation classes so long as few cells
are at terminal stages of di!erentiation. Once the
cells accumulate in some end-stage, S

N
, this

formula will no longer re#ect the situation accu-
rately, i.e. it would depend on what happens at
that stage.

For eqns (2), the mean di!erentiation stage
(mean number of divisions) in the population at
time t would be de"ned as

D(t)"
1

S (t)
+ jS

j
(t),

where S (t) is the total number of cells. We can
determine the behaviour of this quantity by not-
ing that

dS
j

dt
"S

j~1
!S

j
,



MODELLING PERSPECTIVES ON AGING 525
so that

j
dS

j
dt

"jS
j~1

!jS
j
"( j!1)S

j~1
#S

j~1
!jS

j
.

Adding up equations of this form for j"
0, 1, 2,2 leads to

d
dt

+ jS
j
"+ ( j!1)S

j~1
#+S

j~1
!+ jS

j
.

The summation is taken for j"02N. This
means that the "rst two sums on the right-hand
side start with no contribution for j"0, since
S
~1

"0. These sums also do not take into ac-
count the contribution of the cells in class N to
the total population and to the mean number of
divisions. However, if cells are initially concen-
trated in class S

0
, it takes time for any to accumu-

late in class S
N
, so for initial stages of the process

the omission of this term would have minimal
e!ect. In that case, we "nd that

d
dt

+ jS
j
+D#S!D"S,

and, dividing both sides by S, which is constant,

dD
dt

+1.

(This approximation holds as long as the cells are
still in the early phases of divisions. Later, the fact
that there are "nitely many divisions will intro-
duce a correction due to the contribution of the
"nal division class.)

We can similarly understand the behaviour of
eqns (3). By summing all equations, we can easily
show that

dS/dt+pS.

This means that S (t) grows exponentially,
and that S(t)"Nept , where N is the initial
number of cells. (The approximation is, as before,
neglecting the "nal division class, and holds well
for the stages before cells arrive at that "nal
class.)

We now "nd how the mean length of telomeres
M̧ (t) behaves over time for eqns (3). First, let ¸

0
be
the average length of telomeres initially (for cells
in class S

0
) and suppose that telomeres are lost at

about 100 bp per division. Then, the length of
telomeres for cells in class S

j
would be ¸

0
!100j,

and the mean telomere length for all cells com-
bined would be

M̧ (t)"
1

S(t)
+ (¸

0
!100j)S

j
(t)"¸

0
!100

¸(t)
S(t)

,

where ¸(t)"+ jS
j
(t).

To "nd the rate of change of the total telomere
length ¸ (and hence of the mean length M̧ ) we
multiply each equation in eqn (3) by j:

d( jS
j
)

dt
"(2p#f ) ( jS

j~1
)!(p#f ) ( jS

j
)

and add the equations, to obtain

d¸
dt

"(2p#f ) + (( j!1)S
j~1

#S
j~1

)

!(p#f )+ jS
j
.

This can be simpli"ed to

d¸
dt

+(2p#f )¸#(2p#f )S!(p#f )¸

"p¸#(2p#f )S,

where the approximation has neglected the "nal
division class. Simplifying, and using the results
to compute the derivative of M̧ leads to

d M̧
dt

"!100(S(t)
d¸
dt

!¸(t)
dS
dt

)/S2(t)

+!

100
S2

[S(p¸#(2p#f )S)!pS¸].

After cancellation and algebraic simpli"cation,
this leads to

d M̧
dt

+!100 (2p#f ).

Thus, the mean telomere length decreases by
100 (2p#f ) bp per year.
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