
J. Math. Biol. (1990) 29:33-58 
,Journal of 

Mathematical 
Biology 

© Springcr-Verlag 1990 

Models for contact-mediated pattern formation: 
cells that form parallel arrays 

Leah Edelstein-Keshet ~ and G. Bard Ermentrout 2 
1 Mathematics Department, University of British Columbia, Vancouver, BC, Canada V6T 1Y4 
2 Mathematics Department, University of Pittsburgh, Pittsburgh, PA 15260, USA 

Received July 18, 1989; received in revised form January 8, 1990 

AMtract. Kinetic continuum models are derived for cells that crawl over a 2D 
substrate, undergo random reorientation, and turn in response to contact with a 
neighbor. The integro-partial differential equations account for changes in the 
distribution of orientations in the population. It is found that behavior depends 
on parameters such as total mass, random motility, adherence, and sloughing 
rates, as well as on broad aspects of the contact response. Linear stability 
analysis, and numerical, and cellular automata simulations reveal that as 
parameters are varied, a bifurcation leads to loss of stability of a uniform 
(isotropic) steady state, in favor of an (anisotropic) patterned state in which cells 
are aligned in parallel arrays. 
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1. Introduction 

Pattern formation and self-organization are population phenomena that tran- 
scend properties of individuals, and yet are ultimately explained by interactions 
of individuals with their environment or with each other. Cellular biology 
provides a rich variety of examples of pattern forming mechanisms including: (a) 
the guidance of cells by predetermined chemical gradients (chemotaxis), (b) 
guidance by physical cues such as fibers, (c) differential adhesivities of cells to 
each other or to the environment (haptotaxis), and (d) mechanical stresses that 
lead to motion along the path of least resistance (Keller and Segel 1970; Murray 
and Oster 1984; Oster et al. 1983; Harris et al. 1984; Stopak and Harris 1982). 
However, relatively few cases of pattern formation outside the realm of neuro- 
biology have been attributed to direct cell-cell interactions, without chemical 
gradients, mechanical stresses or long-range communication of some sort. In this 
paper, we consider an example in which cell-cell interactions alone produce 
pattern or structure. 

The example analyzed here stems from a biological observation due to 
Elsdale (1972, 1973), who found that a collection of cells initially oriented at 
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random has the tendency to align and form parallel arrays. Elsdale's observa- 
tions were made on cultures of fibroblasts--cells which crawl on a surface, 
exhibit contact responses, and are known to use a variety of guidance cues in 
navigating. (See Stopak and Harris 1982.) However, even in absence of such cues 
(e.g., in collagen-free cultures) the alignment phenomenon persisted. 

Similar, or related, phenomena apparently occur in many systems, both 
macroscopic and microscopic, biological and physical. Alignment can be seen in 
members of a herd or flock, in tissues such as insect cuticle epidermal cells 
(Nfibler-Jung 1987), in colonies of swarming microorganisms (see, for example, 
the recent review by Shapiro 1988), and even in the physical setting of liquid 
crystals (e.g. see Priestly et al. 1974). The mechanisms clearly differ, although 
certain common features are present. 

The purpose of this paper is to determine whether Elsdale's observations can 
be explained from contact-responses of the cells alone. We do not imply or 
suggest that guidance cues, whether chemical or mechanical are not important 
influences--on the contrary, their importance has been clearly established in the 
literature cited above. Rather, we view our model as a mathematical thought- 
experiment in which all influences other than the minimal fibroblast behavior 
have been stripped away. Our aim is to expose aspects of collective behavior that 
could be accouned for at this level. 

We proceed from experimental cell-contact response data due to Erickson 
(1978) and formulate a set of equations to describe collective behavior. As an 
end result we find that, under appropriate conditions--namely when the density 
of the cells has reached a critical level--a spontaneous tendency to align along 
some common axis of orientation occurs. Thus, the individual behavior of cells 
as well as their tendency to adhere in clumps proves to be sufficient to account 
for the phenomena that Elsdale observed. External gradients, mechanochemical 
factors, stress lines in the extracellular millieu, or contact guidance by fibers or 
oriented macromolecules would then be competing influences that either enhance 
this phenomenon, or override it. The prediction that structure or pattern can 
arise from cellular contact responses alone forms the centerpiece and the chief 
new result of our paper. 

The organization of this paper is as follows: in Sects. 2 and 3, we describe the 
biological background and mathematical preparation for the models. Section 4 
sets out the strategy for the sequence of models described in Sects. 5 and 6, and 
Sect. 7 presents results of cellular-automation simulations. Finally, we close with 
some general discussion and applications to other systems in Sect. 8. 

2. Fibroblast biology 

Fibroblasts are cells which are found in connective tissue, and which play a role 
in wound-healing. They can be isolated from a variety of sources (including fetal 
connective tissue, skin, salivary gland, mammary gland, and kidney), retain 
many of their properties in vitro and can be studied in a two-dimensional system 
less complicated than that of their natural environment (but see also Bard and 
Hay 1975). Individual cells placed in a Petri plate will attach to the substrate and 
crawl. Locomotion is achieved by the extension of a leading edge (called the 
lamellipodium, or ruffled membrance) which moves forward, adheres to the 
substratum, and pulls the cell. Breaking of adhesion in the rear causes the cell 
to advance (Lackie 1986). The lamellipodium resembles protruding webbed 
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"fingers" or ruffles that appear to "feel" the environment. Net motion derives 
from competing pulls of many ruffles on the lamellipodium. For this reason, the 
cell occasionally veers off from its previous direction of motion and reorients, so 
that motion consists of straight paths interspersed with occasional turns. 

When a portion of the lamellipodium comes into contact with another cell, 
it freezes momentarily and retracts. This is contact inhibition of motion (CIM) 
and is surface-specific. According to Erickson (1978), when a pair of cells come 
into contact at a small angle, only a fraction of the lamellipodium is inhibited, 
and the contacting cell glides along its neighbor, realigns, and adheres to it. At 
larger angles of contact, (beyond some angle q~ = a), cells may crawl over or 
under one another without realigning. The dependence of the outcome on the 
angle of contact is documented by Erickson (1978) and Elsdale (1973), who find 
that the critical angle, a, is species-dependent. For example, a = 20 ° for human 
fetal lung fibroblasts (HFL) (Elsdale 1973) and a = 55 ° for baby hamster kidney 
cells (BHK) (Erickson 1978). 

Elsdale (1973) grew fibroblasts under conditions which prevent the formation 
of collagen, a substance which fibroblasts normally secrete and which then 
provides landmarks and trails that cells follow. He observed that initially the 
cells are free and move independently. However, clusters of parallel cells start to 
form. In such clusters, cells maintain motion along the axis of the cluster but 
cannot readily reorient due to contact inhibition by neighbors. Through recruit- 
ment and loss of cells, such clumps grow or diminish in size until a two-dimen- 
sional mosaic of patches, called parallel arrays is created (see Fig. 1). Typically, 
a patch consists of hundreds of cells in a single-cell-thick layer with a given axis 
of orientation. There is a tug-and-pull competition between contiguous patches 
so that if the process is allowed to continue, eventually a single array with one 
axis emerges. 

In this paper we ask several questions about the formation of parallel arrays. 
First, we ask what type of cellular interactions can account for the observation 
that cells form parallel arrays. Second we ask what determines the predominant 
orientation of such an array. Finally, we consider how details of the biology 
affect aspects of the patterns formed. Our thesis is that the selection of a 
preferred axis of orientation stems from the fact that the uniform steady state 
(one in which cells are uniformly distributed in orientation) in unstable. We use 
linear stability theory to test for the presence of such instability, and numerical 
methods for studying the dynamics. 

3. Mathematical preparation 

In deriving equations for the population of cells we proceed from the behavior 
at the individual cell level. The repertoire of a single cell consists of (a) 
persistence in the direction of motion, (b) sporadic random turns, (c) turns and 
adherence upon contact with another cell. We assume that the probability of a 
random turn by angle ~ per unit time is 0t(,), and that clockwise or anticlock- 
wise turns are equally probable: ~(q~)= 0t(-q~). We define K(q~) to be the 
probability that a cell contacting a neighbor at relative angle tp aligns with it and 
sticks. The nature of K, discussed further below, is deduced from experimental 
data. 

At the population level it is possible to formulate a set of equations which 
would describe both the spatial distribution of cells and their orientations. For 
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Fig. la,b. Artificially grown cultures 
of fibroblasts showing two stages of 
development, a. Initial configuration: 
frc¢ cells move, crawl, reorient 
randomly, and proliferate, b Later 
stages: a dense population in which 
cells are organized into parallel 
arrays. Cells are free to move along 
the axis of an array but cannot 
reorient because neighboring cells 
exert contact inhibition of motion. 
Bar scales: a 1000 it; b 100 it. 
Sketched following Elsdale (1973) 

example, C(x, O, t) might be defined as density of cells at x moving in direction 
0, and v = v(cos 0, sin 0) their velocity vector. However the resulting model is 
quite difficult to understand analytically. Since our main focus is the orientation 
of cells, we here consider only angular distributions of cells, not spatial distribu- 
tions. Thus, cell densities are functions of time and of 0, the angle of orientation: 
C(O, t) is the density of cells whose orientation (with respect to some fixed 
direction) is 0 at time t. 0 is an angle, ( - n  ~< 0 ~< rr) and all functions of 0, 
including C are assumed to be periodic ( C ( -  n, t) = C(rt, t) Vt). 

Fixing attention on some arbitrary angle 0, we observe that with probability 
0t(~p) = ~(- tp)  tp e [ -  n, n] cells initially oriented along directions 0 - ~p or 0 + ~0 
may randomly turn into the direction 0. Similarly, cells of initial orientation 0 
might turn away. Summing the cumulative effect for all turn angles tp e [ - r r ,  n] 
leads to a net rate of change of the cell density given by 

~C(O,at t) _ J'=o a(tp){ C(O + tp, t) - 2C(0, t) + C(O - tp, t)} dtp. (1) 

Equation (1) is an approximation based on motion of the cells in discrete steps 
which does not take into account a distribution of waiting times. 
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Expanding terms in the integral in a Taylor series about 8, and assuming that 
c¢(rp) is fairly sharply peaked about rp =0,  we find that the leading term 
approximation to the above is 

0C 02C 
Ot = g 002 ' (2) 

where 

~0 ~ u = ~(q,)~o ~ aq,. (3) 

Thus, individual randomness in reorientation leads to population behavior akin 
to diffusion in the variable 8. Unlike Gail and Boone (1970) this result reflects 
"random walk" of fibroblasts in orientation, not in space. A similar term occurs 
in a model for orientations of tips of branches in a growing network (Edelstein- 
Keshet and Ermentrout 1989) 

Now consider the likelihood that a single cell at angle 8 contacts and aligns 
with any other cell. This likelihood depends not only on the number (or more 
accurately density) of other cells present, but also on the orientations of these 
cells. In particular, if C(8", t) is the density of cells whose direction is 8', the 
probability that the "test" cell aligns and sticks to any one of these is 

ilK(8 - 8")C(8", t), 

(8 - 8') being the relative contact angle. Summing over the density of cells at all 
possible orientations leads to 

[3 1"  X(O - O')C(O', t) dO'. 
. I-  

But this is the probability that a single cell is diverted away from angle 8. The net 
effect on the entire density of cells at angle 8 is thus 

O__ff_C (8, t) = tiC(8, t) f "  K(8 - 8")C(8", t) dO" =- - t iCK • C. (4) 
0t J_ 

The • notation will hereafter be adopted for the above convolution integral. 
Erickson (1978) observed pairs of cells and plotted the number of contacts 

which resulted in lining up of the contacting cell as a function of the contact angle 
(see Fig. 4 in her paper). Her histogram can be interpreted as defining an 
angle-dependent contact response function from which we infer the following 
property of K(8): The probability of alignment decreases as the relative angle 
between contacting cells increases. Beyond some critical angle a, cells do not align 
(i.e., Kis positive and nonincreasing for 0 < 8 < a). To this we add an assumption 
that clockwise and anticlockwise turns are equally probable (i.e, K is symmetric 
about zero, which means that positive and negative angles are equivalent). Thus, 

and 

{~ (8) O <<. 8 <<. a, 
K(8) = (Sa) 

7[ 
a<<.8<~, 

K ( - 0 )  = X (  O), - ~r ~ 0 ~ re. (Sb) 
About f ( 8 )  we assume only that it is positive and nonincreasing. For greatest 
generality we separately treat two possibilities: (a) cells align only head-to-head 
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and only when the angle of contact is acute; (b) cells align head-to-head for acute 
contact angle 0 or head-to-tail for contact at an obtuse angle 180 ° - 0 with equal 
probability. These assumptions would, respectively, imply that 

(a) K = Ks has a single hump on [0, n] and 

Ks=O a<O<lt ,  - a > O > - T t ,  (5c) 

(b) K = Kd is double humped on [0, n] and 

K~(O) = K~(~  - O) = K~(  - ~  + 0). (Sd) 

(The subscripts s, d repsectively signify single and double humped kernels.) We 
further normalize K by requiring that 

f ' K(O) dO = 1. (5e) 
7t 

It is important to emphasize that as long as f (0)  is nonincreasing on 0 ~< 0 ~< a its 
exact shape is of no consequence as far as conclusions of our models. For 
reasons of convenience, numerical results were obtained using the two example 
cases 

(1) fl(O) = c, cos \2aJ (6) 

(2) f2(O) = c2. (7) 

See Fig. 2. However, the essential predictions apply to any nonincreasingfunction 
f. It is the symmetry properties of K and, more particularly, the dichotomy 
between single and double humped kernels that determine the behavior of the 
system. We shall see later in the analysis that stability results depend on the 
Fourier transform of the contact response /~(k) and more precisely on the 
quantity g ( l  - K ) .  A tabulation of representative choices of K(O) and corre- 
sponding formulae for/('(k) are given in Table 1 in the appendix where we also 
show that double-humped kernels have transforms that are (1 + cos kn) multi- 
ples of their single-humped counterparts. The significance of this is that zero 
crossings (F,a(k) ---0) occur for all odd integers k in double-humped kernels. 

4. Modelling strategy 

To expose the essential aspects of pattern formation we used the following 
strategy in simplifying the problem for the purpose of analytic results. First, we 
omit the details of spatial density variations in favor of simpler equations, based 
on the independent variables 0 and t. This means that we describe relative 
numbers of cells at different orientations, but do not concern ourselves with the 
spatial positions of these cells. Analytic results are then complemented by cellular 
automata simulations which explore the full spatial behavior. 

Second, we separately consider three distinct subproblems, each one represen- 
tative of a different developmental stage or level of complexity. These are (1) 
interactions at the level of lamellipodia and cell bodies; (2) interactions between 
free and bound cells; and (3) interactions between clumps of cells. Subproblem 
(3) will be considered separately (Ermentrout and Edelstein-Keshet 1990) 
since it uses different mathematical techniques. In subproblem (2) we further 
consider three limiting cases in which free cells interact only with other free cells, 
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Fig. 2a-d. Shapes of simple angle-dependent kernels mimicking experimental observations. The 
vertical axis represents probability that contact leads to reorientation and the horizontal axis is the 
angle between contacting cells. Shown are: a Kls; b K~d; c K2~; d K2a (see Table I). In these graphs 
the critical angle beyond which cells do not reorient is a = 55 ° 

only with bound cells, or with both. Aside from mathematical simplification, this 
subdivision serves a dual purpose. For  one thing, it allows us to place the 
problem of  fibroblasts into a slightly broader context of  populations with 
interacting members. More important, it permits us to pinpoint at what level of  
complexity the interactions responsible for pattern formation reside. 

A third simplification is our treatment of  the mass-conserved problem, rather 
than the problem which explicitly incorporates cell division into the equations. 
Indeed, later we treat the mass M as a slowly varying parameter. We chose this 
tactic for the following reasons: (a) Pattern formation is known to occur even in 
fibroblast cultures which are not actively dividing, provided the density (or  total 
mass) is sufficiently great. (b) When a fibroblast divides it first rounds-up and 
loses its original orientation. The orientation of the daughters is thus not simply 
correlated to that of  the parent. Thus while cell division increases the total mass, 
it does so randomly with respect to angles of  orientation. This can be modelled 
explicitly but does not contribute greatly to clarity or intuition. (c) We find that 
the total mass M can be most conveniently considered as a slowly varying 
parameter of  the system because onset of pattern formation can be explained as 
a bifurcation which occurs as M exceeds some threshold value. 

Thus, while each of  our simplifications contribute to mathematical tractabil- 
ity, together, the dissection of  the problem into several component parts helps to 
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reveal the inner workings more effectively than undertaking analysis of a 
complicated model for the whole phenomenon. 

5. Model for lamelHpodium/ceH-body contacts 

Our first model focuses at the level of the components of a cell, namely its 
reactive leading edge, and its passive body. We consider the angular distributions 
of the cell bodies and of their lamellipodia. Let B(O, t) be the density of cell 
bodies whose axis of orientation is 0 and L(O, t) the density of lamellipodia 
whose direction of motion is 0 at time t. (See methods of Dunn and Brown 
1987.) The orientation of the body and the direction of motion of its lamel- 
lipodium need not always be the same because it takes some time for the 
orientation of a cell to ooze into the direction in which it is being pulled. Only 
when cells are in a parallel array are all cell bodies and lamellipodia exactly 
aligned. 

Our model borrows certain notions from the work on branching networks 
previously cited. Lamellipodia are viewed as the moving particles which can 
reorient both randomly and through contact. On the other hand, cell bodies are 
the "tracks" of these particles, in the sense that they are continually "deposited" 
along directions in which lamellipodia are moving, and lost (due to retraction) 
from other directions. Cell bodies cannot themselves reorient, but they do cause 
lamellipodia to reorient, i.e. to disappear from one angle and reappear at some 
other. 

This conceptual framework is conveyed by the equations: 

Cell bodies aB(O, t ) /d t  = v L  - yB,  (8a) 

Lamellipodia ~L(O, t)/Ot = # d2L/dO 2 - f l L K  • B + f l B K  • L.  (8b) 

The two convolution terms in Eq. (8b) represent lamellipodia reorienting due to 
contact with cell bodies. The first of these depicts lamellipodia at angle 0 being 
turned via contact with cell bodies at other angles tp e ( -  n, n). The second term 
represents the fact that cell bodies oriented at angle 0 can attract lameUipodia 
whose orientations are initially different from 0. In the equation for cell bodies, 
v L  is the rate that cell-body material is deposited in the track of a moving 
lamellipodium, and - y B  is the "loss" of this material due to retraction where 
adhesion is broken. The correspondence (B, L) ~ (O, n) leads to equations similar 
to the branching network model (23a,b) in Edelstein-Keshet and Ermentrout 
(1989). 

One can define a quantity ("total mass") which is conserved by the dynamics 
of Eqs. (8). If the relative masses of the cell body and the lamellipodium are f, 
and 1 -t~ then the total mass, 

'f_ M = ~ f ib  + ( 1 - f ) L  dO, (9) 
I t  

is conserved provided that 

-~ ~ L dO = ~ B dO. (10) 

This means that mass is redistributed as cells reorient but is not created or 
destroyed. 
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Homogeneous steady states of Eqs. (8), i.e., populations (B, L-) in which all 
orientations are equally represented, satisfy 

v £  - ~B = 0, (11) 

i.e. 

£ = ~B/v, B = M/[3 +),(1 - 6)/v]. (12) 

of steady states lying along a straight line with M a This is a continuum 
parameter. For a fixed initial mass, one point on this line is an attainable steady 
state. If  this steady state is stable, the population would persist in a density ratio 
of 7/v lamellipodia to cell bodies and no angle or orientation would be favored, 
in short no alignment of cells would occur. However, if noise can disrupt such a 
state, i.e. the steady state is unstable, this situation might change to one where 
some angles are favored. To investigate this possibility we consider perturbations 
of the form 

B(O, t) 
L(O, t ) ] = [ ~ ] + [ L : ]  eik°e~t" (13) 

Here B0, Lo, the perturbation amplitudes, are small and k, the wavenumber of 
the perturbation, is an integer since boundaries are periodic. 

By methods of  Edelstein-Keshet and Ermentrout (1989) the Jacobian of the 
system of Eqs. (8) is 

J = ilL( 1 - / ~ )  - , k  2 - fl/i( 1 - / ( )  ' (14) 

where/~ is the Fourier transform of the kernel K and k is as above. (K has been 
normalized, and so/~(0) = 1.) We also define 

;] 
Then J0 governs perturbations which are angle-independent. We examine 
whether the homogeneous steady state could be stable to homogeneous but 
unstable to angle-dependent perturbations. 

From the above definitions we find that Tr(J0) = --7, Det(Jo) = 0, and 

Det(J) = 7ldc 2 + fl(rB - vL-')( 1 - K) = ~j/,lk 2. (16) 

We thus find that Tr(Jo) < 0, Det(J0) = 0, and Det(J) > 0 for all k. This implies 
stability of the steady state to all perturbations of the form (13) so that pattern 
formation could not occur through a bifurcation from the uniform steady state. 
Numerical experiments (not shown here) reveal that the uniform steady state is 
established from arbitrary initial densities, i.e. is globally stable. We must 
conclude that an explanation of parallel orientations does not reside at the level 
of cell-body/lamellipodia contact responses. Some higher level of interactions 
must then be responsible. 

To understand this from an intuitive point of view, consider what happens in 
a group of cells when noise momentarily causes one direction to be favored. 
Even if some alignment occurs, the continual random reorientation of lamellipo- 
dia will disrupt the pattern. There is no mechanism to overcome this scrambling 
process, and so parallel orientations cannot be maintained. The model thus 
reveals that an essential ingredient of the pattern forming mechanism is a step 
which overcomes random reorientation. We will see below that adhesion of  cells 
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and formation of multicellular complexes which prevent some cells from reori- 
enting provides this step. 

6. Interactions of free cells with bound cells 

In this section we treat interactions at the level of individual cells, and define 
C(O, t) and P(O, t) as densities of free and of bound cells, respectively. Indi- 
rectly, the magnitude of P(O, t) is related to the total size of a parallel array at 
that angle. However, since spatial properties are not considered here, only the 
following functional differences between C and P type cells are assumed: (1) 
Free cells reorient randomly but bound cells do not. (2) Contact-mediated 
reorientation can occur when two cells contact; if both contacting cells are 
initially free, either one of them determines the final orientation with equal 
probability. In contact between a free cell and a bound cell, the free cell always 
reorients. (3) All bound cells can become free cells at some fixed unbinding rate 
7. 

A set of equations depicting these interactions is 

OP 
Bound cells - ~ ( O , t ) = f l ~ C K * C + f l 2 P K * C - T P ,  (17a) 

~C 0, ~2C Free cells - ~  ( t )  = # ~ - ]~1 CK • C - f l 2 C K  * P + 7P. (17b) 

Convolution terms in these equations have the following meanings: In Eq. (17a) 
K • C represents the rate at which free cells at arbitrary angles contact, align, 
and bind to other free cells at angle 0, C(O)K • C, and to bound cells at angle 0, 
P(O)K • C. In Eq. (17b) CK * C and CK • P are rates that free cells initially 
oriented at angle 0 are removed through binding to other cells, free and bound, 
respectively. In Eqs. (17) we have assumed an identical reorientation kernel K for 
contacts of type C - C  as for contacts of type C - P .  However, we permit different 
weightings ill, f12 in the relative contributions of these interactions. (See the three 
cases described below.) 

It is readily seen that the total mass of this system, defined by 

M = ~ [C(0) + P(0)] dO, (18) 

is conserved. (Cells are exchanged between two pools but not added or lost.) We 
later see that steady states and stability results depend on the dimensionless ratio 
tiM/7 (where fl is related to fir). 

To analyze this model we consider three subcases, two of which are simplified 
versions of the above. Treating the model in these three steps reveals how each 
of the interactions contribute to the stability and pattern formation process. In 
each case we discuss properties of a uniform steady state P, C and its stability to 
perturbtions of the form 

[ P ( O ' t ) l = [ ~ ] + [ P c : ] e ~ k O e a '  , (19) 
c(0, t)j 

where Po, Co are small amplitudes, k is the wavenumber and 2 the growth rate 
of the perturbation. 

Case 1. Free cells bind only to free cells (fl~ = fl, f12 = 0). 



Models for contact-mediated pattern formation 43 

In this case C(O, t) and P(O, t) denote free and paired cells oriented at angle 
0. (Note that by definition P is twice the density of  pairs.) Setting t l  = t and 
t= = 0 in Eqs. (17) we find that the interactions between paired cells and free cells 
are described by the equations: 

aP  
- ~  = t i C K  • C - ~,P, (20a) 

aC a2C 
a t  = It - ~  - t C K  * C + ~P, (20b) 

with #, K as before. A straightforward analysis reveals the following results: (1) 
The total mass of  the system, defined by Eq. (18), is conserved. (2) A single 
positive 0-independent steady state of  Eqs. (20a,b) satisfies 

/~/(7 = tC/~,  M =/~  + (7. (21) 

(3) This steady state is stable to all perturbations, both uniform and nonuniform. 
(See the appendix.) These results indicate that if cells are permitted to associate 
in pairs, but not to form larger clusters there will be a stable combination of  free 
and paired cells at all possible orientations and no preferred directions of 
orientation will spontaneously arise. Thus pairing is not sufficiently cohesive a 
force to cause accentuation of parallel orientations. 

Case 2. Free cells interact only with bound cells (fl~ = 0, f12 = fl)- 

In this case, P(O, t) denotes cells bound in multicellular groups, and we assume 
that some cell clusters are initially present: 

aP  
a--[ = p P K  • C - 7P, (22a) 

aC a2C 
0--7 = It ~ - t i C K  • P + ~,P. (22b) 

From these equations it follows that (1) the total mass of  the system, defined by 
Eq. (18), is constant. (2) For a fixed mass M the model has a single steady state 

(7 = 7//~, M = / ~ +  C. (23) 

In the PC-plane as M varies, the steady state value traces out a line which 
remains in the first quadrant, i.e. has biological relevance provided Mfl /~  > I. (3) 
This steady state is stable to uniform 0-independent perturbations but could be 
destabilized by nonuniform perturbations of  wavenumber k provided K(k) 
satisfies 

/~(/~ - -  1) < 0.  ( 2 4 )  

(See the appendix for details and the solid curves in Fig. 3 for plots of  this 
expression as a function of  k.) For case 2 we observe that instability depends 
only on the Fourier transform of K, and not on other parameters of  the system. 
As we shall see below, this artifact disappears when the full interactions of  free 
and bound cells are considered (case 3). 

Because the inequality (24), or equivalently 0 < R < 1 can be satisfied by an 
infinite set of  integer wavenumbers k, we conclude that instability will occur, but 
cannot use linear theory to make any prediction about which wavelength will be 
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accentuated as the uniform steady state is destabilized. We infer that in the limit 
of no cell pairing (i.e. no interactions between free cells) the system is unstable 
to many perturbations irrespective of parameter settings, and go on to determine 
how such interactions change this conclusion. 

Case 3. Free cells interact with all other cells (f~ = fie = f)" 

We now analyze the full set of Eqs. (17a,b) taking equal f 's.  These equations 
have a single positive steady state 

/~ fM 
M =/~ + C, (25) 

which is stable to uniform (0-independent) perturbations. After onerous algebra 
(see the appendix for details) we find that this steady state can be destabilized by 
perturbations of the form (19) provided 

A k  2 < K(k)( 1 - K(k)), (26) 

where 

= - (27) 
Y 

is a quantity which depends on the parameters of the problem. In particular, A 
depends on the dimensionless mass ratio ~,/fM which is, by (25), identical with 
the ratio of free to bound cells at steady state. Further, A depends on #/y which 
depicts the extent of angular spread in a population of free cells during the half 
life of a bound cell. Thus, unlike the previous cases, here stability depends on 
parameters governing the biological interactions. 

Before interpreting the stability condition (26) we discuss the behavior of the 
transform K(k). Several examples of typical kernels and their Fourier transforms 
are given in the appendix. It transpires, however, that the essential features of 
such transforms depend largerly on symmetry properties (i.e. whether a single- 
or a double-humped kernel is assumed) and not on the choice of functional 
representation on 0 ~< 0 < a, beyond the fact that f(O) is nonincreasing. In the 
appendix we show that if Ks(O)=Ka(O)=f(0) on 0 ~< 0 < a  where f(O) is 
nonincreasing, a < n/2, and Ks, Ka are single- and double-humped kernels then 

(a) Ka(k) = ½gs(k)(1 + cos kz 0, (28a) 

(b) 0 < / ( a ( 2 ) < l ,  0 < g s ( 1 ) < l .  (28b) 

Thus, double-humped kernels have Fourier transforms which vanish for all odd 
wavenumbers k = l, 3, 5 . . . . .  Further, the first integer value of the wavenumber 
k for which R(k)(1 -K(k) )  is positive is k = 2 for double-humped kernels and 
k = 1 for single-humped kernels. 

Returning to the stability condition (26) we plot expressions of the form 
y =/~(k)( l - /~(k))  as a function of k and compare to parabolas y =Ak 2. By 
(26) the parabola must be lower than the other function at some integer value of 
k for instability to be possible at that wavenumber. Figure 3a-d  shows the 
relationship between these curves for the kernels used as examples in Table l of 
the appendix. Since/((1 - K) < 0.25 and Ak 2 > 0, only the range 1 < y  < 0.25 is 
of interest. The graphs of/~( 1 - / ( )  generally have a series of peaks of oscillating 
and slowly decreasing heights. Here only the first few such peaks will prove to be 
important. 
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Fig. 3a-d ,  The expression y =/~(k)(  I - / ~ (k ) )  is shown (solid lines) as a function of the wavenumber 
k for Je the Fourier transform of  each of the four kernels in Fig. 2: a KI,; b Kid; c K2~; d K2a. 
Superimposed is a set of parabolas y = Ak 2 (dashed lines). For a given parabola, A = 0.25/k~ where 
k o is the intercept with the top horizontal axis. Pattern formation can only be initiated by a 
disturbance whose wave number k is an integer satisfying Ak2< ,¢(I - ~ )  where A = 6u/~)(7/flM) 2 
depends on biological parameters. The sequence of  parabolas from left to right could be generated 
by increasing the total mass of cells, M given that other parameters are constant. For double-humped 
kernels (right-hand side) k = 2 is the first integer wavenumber for which pattern formation can occur, 
and all odd wavenumbers are excluded. For single-humped kernels (left-hand side) k = 1 is the first 
such wavenumber. See text for further details 

By the general properties mentioned above, the graph of /~a(  1 - / ~ a )  where 
Ka is double humped has zero crossings for k = 1, 3, 5 . . . ,  so that the inequality 
(26) can never be satisfied for odd k. Thus k = 2 is the first wavenumber for 
which the right-hand side of (26) is positive and thus for which the inequality 
(26) can be satisfied. Consider the bifurcation phenomenon that occurs as the 
quantity A decreases from some initially high value: At first, the parabola 
y = A k  2 might be so steep that it fails to satisfy (26) for any integer. As A 
decreases, so does the steepness of the parabola. For A suitably small (second 
and first members of  the sequence in Fig. 3b,d), the parabola dips below the 
other graph at the value k = 2. At this point k = 2 becomes the first and the only 
destabilizing wavenumber, i.e. a perturbation of  the form e 2'° would grow. The 
steady state loses stability and two orientations, 180 ° apart are accentuated in the 
cell population, so that cells are mostly parallel to each other, some facing one 
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way and some facing the other way. The axis of this array, 0", is random: in the 
model, it depends on the initial disturbance that disrupted the steady state. 

In the case of single-humped kernels, the first wavenumber at which (26) can 
be satisfied (for sufficiently small values of A) is k = 1. (See, for example, Fig. 
3a,c.) Thus, in the bifurcation we have just discussed the steady state destabilizes 
to a patterned state in which one peak predominates in the distribution of 
orientations. This means that all the cells would tend to align in parallel facing 
the same direction, not back to front as before. 

A point to be emphasized here is the fact that the quantity A in (26), (27) 
depends on parameters governing biological properties of the system. Thus, 
changing any one of the parameters #, 7, M, or fl affects stability (unlike case 2). 
For example, during a normal course of development, cell division causes the 
total mass M to increase. This is synonymous with decreasing A, thus leading 
spontaneously to a bifurcation of the sort described above, i.e. to formation of 
parallel arrays. Other biological possibilities include decrease in the random 
reorientation rate #, decrease in the rate of shedding of cells from clumps, 7, or 
increase in the probability fl that contact of cells leads to binding. Any one of 
these effects in isolation could create the above bifurcation. If, on the other hand, 
parameters are fixed so that A is quite small, we find that many wavenumbers 
potentially satisfy (26) (e.g. k --4 for the third and fourth parabolas in Fig. 3b 
and k = 8 fol the last parabola in Fig. 3d). In the case of double-humped 
kernels, odd wavenumbers are excluded from patterned states. However, linear 
theory cannot then predict what happens when several competing wavelengths 
interact since the dynamics are nonlinear except close to steady state. 

In the three limiting cases discussed above, stability characteristics range 
from unconditional stability (case l) to instability for a multitude of wavelengths 
(case 2). Case 3, the most realistic, is perched midrange with stability conditional 
on a balance between parameters. In case 3 there is competition between 
opposing forces. On the one hand, the tendency to aggregate stabilizes certain 
directions, since clumps preserve a fixed orientation. On the other hand, ten- 
dency to leave clusters and random reorientation causes directional bias to be 
erased. Thus dependence on parameters becomes fairly clear: If  cells are not very 
cohesive, (i.e. V the rate of shedding is large) or #, the rate of reorientation is 
large, the tendency for scrambling will be stronger than the tendency to accentu- 
ate any particular direction, so that no pattern would be amplified. Further, if 
P/C, the ratio of bound cells to free cells at equilibrium (which incidentally, is 
the same as tiM/7 in case 3) is not large enough, the number of contacts between 
free and bound cells will be too small for efficient recruitment of cells into 
clumps. This explains some aspects of the condition for instability (26). 

We can also explain the aspects of cases 1 and 2 which lead to extremes of 
stability and instability. First, in case l, pairs of cells are fixed in orientation, but 
they do not recruit other cells and so no mechanism for amplifying a given 
orientation is present. In case 2 the opposite situation occurs since cells interact 
only with clumps. A clump that is bigger (i.e. a direction that has a greater 
density of bound cells) can compete more effectively for recruits. Thus any set of 
directions that have initial advantage could potentially grow, meaning that the 
steady state can be destabilized by many possible forms of noise, or many 
wavenumbers. 

There is an interesting distinction between cases 2 and 3. The analysis reveals 
that formation of pairs (i.e. clusters newly generated from pairs of free cells) has 
a stabilizing effect (since the condition for instability is more stringent in case 3 
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than in case 2). This makes sense since, in recruiting free cells, new clusters 
compete with more well established ones. Because new clusters form at all 
possible directions, this competition tends to scramble the possible dominance 
of a given orientation or set of orientations. As previously discussed, the 
possibility of maintaining and amplifying certain orientations then depends on 
parameters governing the cohesion versus the random turning of  cells. 

To study the dynamics of  cases 1-3 we used two approaches. Here we 
discuss numerical analysis of  Eqs. (17). (In Sect. 7 we describe a cellular 
automaton approach.) The variables were discretized on a grid of 20 points 
(AO = 360°/20= 18 ° =0.314 radians). We used a finite difference scheme with 
At = 0.01 and forward differencing for 10 000-30 000 iterations. Typical kernels 
(see Table 1 of appendix) were used in a given simulation. In the results shown, 
the critical angle a = 5 5  ° and other parameter values are fixed at 
~ = # = f l = 0 . 3 .  We used a variety of  initial densities P=Po+p' (O, t ) ,  
C = Co + c'(O, t) (p', c' random deviations with magnitudes roughly 10% of 
P0, Co respectively) and so we were able to vary the total mass M ~ Po + Co. 

Results are as follows: (1) Initially, densities of  free and bound cells are 
seen to adjust so that the average ratio P/C approaches that predicted by the 
uniform steady state. Only then does further development occur. (2) Predictions 
of the analysis matched numerical results: In case 3, as M was increased 
beyond a threshold level (Me ~ 4.0) a bifurcation of  the steady state leading to 
patterns with two peaks (k = 2) appeared (see Fig. 4). (3) In case 1, where only 
cell pairs occur, pattern formation did not occur for any conditions tested. 
(The population returned to the uniform steady state.) (4) In case 2, where cells 
interact only with clumps, the steady state would always be destabilized by 
random deviations. Patterns in case 2 characteristically took longer to form 
initially because of competition between many modes. However, they eventually 
grew faster and acquired sharper peaks than those of case 3. We found that a 
single mode was eventually selected. For example, as shown in Fig. 5, the mode 
k = 2 grows, a fact which could not be predicted by the linear stability analysis. 
(5) In case 3, when the total mass exceeded its bifurcation value, several 
wavelengths were able to grow initially. For example, with M = 5 and single- 
humped kernel K = K2~, we see that k = 1 and k = 2 grow, but k = 1 eventually 
wins (see Fig. 6). With K = K2d and M = 5, only the wavelength k = 2 can 
grow. 

7. Cellular automata models 

The spatial behavior of a population of  fibroblasts can be studied using a 
cellular automata model. We found this approach both computationally conve- 
nient and visually striking. While details of  this model will be presented in a 
separate paper, we here outline the salient features. Briefly, a rectangular region 
is subdivided into a grid of n × m squares, each of which can be either empty, 
or occupied by a free or a bound cell. For  convenience, we considered a 
discrete set of  8 orientations, either l = 8 or 1 = 16. Cells, represented by rods, 
move in the direction to which they point, i.e. along straight line segments. For 
example, for 1 = 8, a free cell occupying a given square, moves into one of  its 
eight neighboring squares each time step and makes 45 ° turns. Free cells can 
undergo reorientation upon contact with other free or bound cells, or ran- 
domly, as they move over the grid. Interactions between cells are governed by 
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Fig. 4a,b. Format ion o f  structure in a 
population o f  free and bound ceils with 
contact and random reorientation. 
Shown are numerical solutions to Eqs. 
(17) in the case when free cells interact 
with both free and bound cells (i.e. case 
3 with fll = t2 = fl = 0.3). The horizontal 
axis is orientation and the vertical axes 
are the densities of  bound and free cells 
at a given orientation. Initial densities 
(not  shown) were P(0, t) = 0.5 +po(O, t), 
C(0, t) = 4.5 + Co(0, t) where Po, Co are 
10% random noise. The contact- 
reorientation response used was K = K2d 
(see Table 1) with critical angle a = 55 °. 
(Thus  ,¢(2)(1 - g ( 2 ) )  ~ 0.25; see Fig. 
3d.) Other parameters are y = # = 0,3. 
The solutions were found for 20 000 
iterations, with plots at increments 
of  4000 iterations. In this example, 
the total mass  M = P + C "-" 5.0 
exceeds the critical value 
Mc = 20'/fl)tJ~( 2)( 1 - •( 2))] - , /z~/ r )  ~/2 z 
4.0 at which k = 2 becomes unstable. 
Thus  the density distributions develop 
two peaks, so that  two orientations, 
180 ° apart  are accentuated in the 
population. (In this case, at 0 " =  110 ° 
and at 180°+ 0".) Note scales on a 
bound cells and b free cells indicate that  
most  cells are bound 

angle-dependent contact responses in an exact discrete analogue of case 3, Sect. 
6. Here, however,the spatial as well as angular distributions can be seen. 

The initial configuration is that of a dense culture of free cells, with a random 
distribution of orientations. There is a fairly rapid coagulation into clusters of 
bound cells, but for a long time no apparent order exists in orientations of these 
clumps. On a relatively fast PC, a simulation with 500-1500 cells can be followed 
visually much like the time-lapsed photography of motions of real cultures, and 
gives one a keen appreciation of the dynamics involved. Since adjustable 
parameters allow us to tune the rate of shedding of cells, the initial mass, and other 
factors, we can study how such properties affect the appearance and evolution of 
the population including geometry (Fig. 7) and angular density (Fig. 8). 

To focus on interactions devoid of external cues, we chose periodic boundary 
conditions, "cells moving on the surface of a torus". Thus the orientations of the 
arrays cannot be influenced by external biases such as boundaries or contact with 
other tissues. Figure 7 shows typical development in the cellular automaton. 
After some lengthy exchange of "cells", organization into a few clusters occurs 
(see Fig. 7b). This stage is analogous to the stage shown in Fig. lb, in which a 
collection of parallel arrays coexist. However, if the process is allowed to 
continue (and this last stage takes comparatively long), eventually one of the 
clumps overtakes the others in competing for material, and a single array, 
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Fig. 5a,b. Numerical simulations of  Eqs. 
(17) with fll = 0 ,  #2 = #  =0 .3  (case 2), 
i.e. free cells interact only with bound 
cells. Initial densities were P(0, t) = 
O.1 + po(O, t), C(O, t) = 2.9 + co(O, t), 
with Po, Co 10% random noise as before. 
All other conditions identical with Fig. 
4. Here the values of parameters and 
total mass are irrelevant for stability of 
the steady state. Yet, the nonlinear in- 
teractions engender the selection of two 
orientations, as before. Because new 
clusters of bound cells cannot appear, 
after initial transient the orientations 
0* = 135 °, 0* + 180 ° grow faster and 
produce sharper peaks than in case 3 
shown in the previous figure 

containing cells both parallel and antiparallel will emerge (Figs. 7d, 8). This 
array is thereafter stable, although it continues to change shape somewhat since 
cells are still being liberated and captured. The fact that this eventual outcome 
is attained in the absence of boundary constraints means that the tendency to 
form a single axis of orientation is an inherent population phenomenon, inde- 
pendent of external organization. This property exhibited by our cellular au- 
tomation agrees with predictions of the continuum model of Sect. 6. 
Niibler-Jung (1987) suggested that in a field with two parallel boundaries, the 
pattern of orientations will simplify into a single parallel array, but we have 
shown that this property is not dependent on the boundaries. The winning 
direction is different in different runs using identical parameter values. This 
stems from the fact that many small tugs and pulls combine to determine the 
final outcome. If we permit boundaries to exert an effect, we would clearly 
introduce a bias which would affect the final pattern. 

Since the analytical work presented in this paper has dealt only with 
angular distributions, and has been restricted to simplified versions of the 
process, the cellular automaton simulations help us to bridge a gap in realism. 
The results of our simulations confirm the belief that individual cellular interac- 
tions, in the absence of long-range gradients, of orienting fibers, or of other 
environmental cues, can lead to formation of pattern such as the phenomenon 
of parallel orientation in fibroblast cultures. 
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Fig. 6a,b. Simulations of  Eqs. (17) with 
parameter values and initial conditions 
identical to those in Fig. 4, but with 
K = Kz ,  i.e. a single-humped contact re- 
sponse (cells reorient and stick only if 
contact is at an acute angle). From Fig. 
3c we find that the parameter settings, 
which made k = 2 unstable, also make 
k = 1 unstable. Both modes grow for 
some time, but eventually, nonlinear in- 
teractions (which cannot be explained 
on the basis of  linear stability analysis) 
favor the wavenumber k = 1. Thus a 
single orientation, 0* ,~ 205 ° is accentu- 
ated, i.e. cells tend to face in the same 
direction at that orientation. Shown are 
plots starting at 20 000 iteractions and 
evolving towards a single peak at incre- 
ments of  2000 iterations. For a larger 
total mass (e.g., M = 12), k = 2 pre- 
dominates, and the development is 
faster, leading to sharper peaks 

8. Discussion 

Previous theoretical considerations of patterns in fibroblast cultures appear in 
papers by Elsdale (1972, 1973) and by Elsdale and Wasoff (1976). Their 
approach is a topological one dealing with the discontinuities observed between 
neighboring arrays using index theory. (See also Penrose 1965.) The models we 
have described are aimed at understanding the dynamical process of array 
formation, at bridging a gap between the behavior of the individual cell and that 
of the population, but not at understanding spatial structure directly. Thus, our 
mathematical techniques differ from those of Elsdale and coworkers. (But see 
Ermentrout and Edelstein-Keshet 1990 for a treatment of interactions between 
aggregates of cells.) 

It is an interesting coincidence that phenomena of parallel alignment occur in 
numerous disparate systems, including physical and chemical ones. A notable 
example in three dimensions is that of liquid crystals. (See Priestly et al. 1975 for 
a good introduction.) An extensive body of physical theory has been developed 
to account for the orientational distribution of molecules in a variety of liquid 
crystal types, for local and long-range order, and for phase transitions in 
response to temperature and applied external fields. Statistical mechanics and 
thermodynamic methods are predominant tools of the trade, and the arguments 
revolve around minimization of free energy and/or maximization of entropy 
associated with the molecular order in an equilibrium state. 



M o d e l s  f or  c o n t a c t - m e d i a t e d  p a t t e r n  f o r m a t i o n  

" . .  =~, ; ~  ~ q '  . i .  d ~ = , J ' ;  ~,~,~, . - .  , ; ,  

?" ~ ,  ~ ~ '~  ' ~  ~i H ~ ' ' ~ ' , ; T ' ~ J  "~- . 
' ~ p ~ .J ~ i  ~ g .a  * l d " 1 w i n  ,, ' . ' ' ,  . ~ ~ ~ , *,'~ T- ~ I~ , , '  

~ . ~ ' ~ ,  ~ qV ~ ~ ~ ~ ~,~ 

~. , ~ .  ~ I ,, ~ I ~ 

f 

, , . ~ . , ~ , . _ . _ . ,  ,.a..~. ~,1,~, ~ ' ~ I , ~ ,  ~ 

, , , / 1 1  

I , x ~ ,  x i l l  

- ! 

C 

51 

~1 / ~ "1 ~ ~ ) ) ~ 1  ~ "~ 

~ ; ' "  I . . . . . . .  '~ i ' ~ ° ; v ' ~ ' ~ ~  " 

~ , ' ~  , ? ~ ~ ~ ~ , ~  ,,..-,.',, ,,..,.~,-~.-,--,-,, ,~ 

~,'," , . ,  ,~,~.;~ , '~.~,-,-.,.,--q,~,-'~~ . .  

b 

d 

r - z . ~ - z  = : 

I , 

e 

I I  

r -~' IT; - ~  

r "  

L k F  

i 

i 

Fig. 7 a - f .  Results o f  the cellular automata model  described in Sect. 7 and analogous to case 3 o f  the model  in Sect. 
6. This is a full spatial model ,  with cells ( shown as line segments) moving over a rectangular region, reorienting, 
and sticking to cells or clumps they contact.  (Mot ion  is in the direction opposite the square tails.) There are 16 possible 
orientations, at 22.5 ° increments. Shown is the sequence o f  steps at times a 0; b 150; e 350; d 650; • 850; f 2 0 0 0  after 
the start o f  the simulation. The cells are initially randomly oriented and gradually develop into parallel arrays which 
then simplify into the final structure. The simulation incorporated 600 cells on a 40 x 20 grid with periodic boundaries 
(cells moving on a torus). Parameters were as follows: probability o f  sticking on contact = 0 for cells forming a 90 ° 
contact angle, 0.2 otherwise. Probability o f  cell release from a clump per move  = 0.1. Probability o f  random 
reorientation per free cell per move  = 0.1 
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Fig. 8. The number of cells is 
shown at several orientations as a 
function of time. (Each time unit 
is equivalent to 20 steps of the 
previous figure.) One orientation 
(that shown in Fig. 7t) eventually 
wins the competition. For clarity, 
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Theories accounting for liquid crystal geometry take into account the an- 
isotropic attraction between elongated molecules, as well as steric effects due to 
impenetrability. Onsager (1949) was among the first to demonstrate that a 
collection of hard rods, even ones without any mutually attractive interactions, 
would tend, with increasing density, to favor a parallel conformation. (The 
observation stems from a trade off between orientational and translational 
entropy; in the high density limit, the effects of excluded volume which occur if 
molecules are not aligned overrides the decrease in the orientational entropy.) 

Analogies between liquid crystals and parallel cells are appealing but limited. 
First, specific details of the interactions differ. Perpendicular rods are unstable, but 
perpendicular cells are not: experiments indicate that contact angles close to 90 ° 
fail to induce cell alignment. Second, thermodynamic arguments for liquid crystals 
are inapplicable to cell biology (see Harrison 1982, 1990). We must not forget that 
biological systems such as the one here described operate far from thermodynamic 
equilibrium, and that free energy or entropy arguments do not apply to cellular 
geometry. In all aspects of their behavior, cells expend energy--they are not 
impenetrable rods whether inert or attractive--but rather miniature machines 
which shape and affect the environment and each other in a dynamic way. 

We list here some of the predictions and conclusions of our analysis. In 
interpreting such predictions, one must take into account the assumptions on 
which our models are based and the fact that they are simplified and abstracted 
versions of the real situation. 

(1) Some form of cohesion which restricts free motion is essential for the 
formation of parallel arrays. In the absence of formation of multiceUular 
aggregates, parallel orientations would not spontaneously arise, as shown in Sect. 
5. In the fibroblast example, cohesion takes the form of cell-surface chemistry that 
causes cells to stick to each other in clumps. 

(2) Binding in pairs is not sufficiently cohesive to lead to parallel orientations. 
Larger multicellular complexes are necessary to promote a given orientation by 
diminishing the scrambling effect of random cellular reorientation. 

(3) The phenomenon is not highly sensitive to details of the contact-response, 
and depends only on rather broad features of the kernels modelling this 
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response. The main effects hinge on whether the response of cells contacting at 
an angle 0 is the same as that for 180 ° - 0 or not (i.e. whether the kernel K is 
single or double humped). If cells do not respond to contacts at obtuse angles, 
we find clumps in which cells are all facing the same direction. If, on the other 
hand, obtuse or acute contact angles are equivalent, clumps always contain cells 
which face back to front. 

(4) The alignment of cells is sensitive to parameters governing the system, i.e. to 
the total mass of cells M, to the rate of adherence, fl, the rate of shedding, ~, and 
the rate of random reorientation, g. (See Eqs. 26, 27.) The relative magnitudes 
of the total mass M and the value of ~,/fl, a ratio of shedding to recruitment of 
cells by a clump, has several effects. (a) It governs relative proportions of free 
and bound cells. (b) It governs the tendency to recruit cells into clumps and thus 
determines whether patterns such as parallel arrays will form. The parameter 
influences only the latter process. 

(5) Simulations confirm that a configuration in which all cells are parallel will 
occur when these interactions are permitted without any other additional as- 
sumptions. It is not necessary to assume external organizing effects, global 
constraints, boundaries, or contact with other tissues to get a single field of 
parallel orientations (contrary to the implication in N~bler-Jung). However, 
where effects such as boundaries, gradients, or oriented fibers do exist, the 
preferred orientation of the final pattern will be influenced or predetermined. 

(6) In the models and simulations we studied, the final outcome, one which was 
attained at the end of a lengthy process of adjustment and readjustment was 
always the formation of a single parallel array. Thus, if in a given biological 
example a pattern culminates in many coexisting parallel arrays, other effects 
must be at work. Such effects could include arrestment of the developmental 
process, permanent adhesion of cells which would halt the exchange and 
competition between arrays, spatial variation in environmental effects that 
locally favor certain orientations, or interactions with other substances (e.g., 
collagen) not explicitly considered here. 

Finally, we wish to indicate the range of applicability of models like this one 
to systems other than those drawn from the biology of cells. As previously 
mentioned, similar phenomena occur in multicellular organisms at many size 
scales. Jander and Daumer (1974) describe self-organized foraging columns of 
termites in which orientation is selected by continual collisions between stray 
individuals and those in the columns. (Here, cohesion of a group is mediated by 
chemical trail-following.) Similar phenomena occur in other social insects 
(Deneubourg and Goss 1989). Swarming and herding behaviors in animal 
groups have been studied extensively (see Okubo 1986 for review), but a greater 
emphasis has been placed on spatial density distributions, rather than orienta- 
tions. In groups or herds the responses and motion of the individual are 
behaviorally affected by its immediate neighbors. Although the biological mech- 
anisms leading to herding are clearly quite remote from the cell-surface chemistry 
that governs contacts of fibroblasts, the analogies of contact response are clear. 
Thus, similar approaches may prove useful in these settings. 

As a somewhat more abstract application, one could extend models such as 
those of Sect. 6 to cases in which 0 stands for some other state variable, not 
necessarily a real orientation (e.g., a political orientation or persuasion). If 
individuals are indecisive (reorient randomly) but can persuade or be persuaded 
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by others whose views are similar (not far separated in 0), and if cohesive groups 
of persuasion form and recruit members, then a rather similar model would 
apply. This lighthearted example suggests that the mathematical methods used in 
this paper, namely integro-differential equations, have a wide range of applicabil- 
ity. Models similar to the ones here explored could therefore be useful in areas 
other than cell biology. 
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Appendix 

A. Typical kernels and their Fourier transforms 

We first show the connection between Fourier transforms of  single- and double- 
humped kernels. For K(x) = f ( x )  on 0 ~< x ~< a, define 

N = f (x)  dx, 

I(k) = Iaf(x) cos kx dx. 

By symmetry of K about zero, we find that the Fourier transform of a 
single-humped kernel is 

K(k)  = I(k)/N. 

For a double-kernel, 

Kd(k) = ~-N I(k) + - x) cos kx dx . 

By a simple variable transformation it is seen that the integral above can be 
rewritten as 

cos kn f (u) cos ku du. 

Thus 

I(k)(1 ( ) Ke(k) = - ~ - .  + cos kit) = / ~ ( k )  1 + cos kn 
2 

Next, we observe that 0 < / ~ ( 2 ) <  1. To do SOk we require that f (x )  be 
nonincreasing and that a < n/2. The argument that Ks(2) > 0 involves the sign 
of the quantity 

o f  (X) cos 2x dx. 

In case 0 < a < zr/4 the integrand is strictly positive and we are done. If  however 



Models for contact-mediated pattern formation 

Table 1 

K(O) Fourier transform 

K,s(O)={~c°s(~O/2a) 10] <a 

IOl>-a 
7t (½K,,(O) Iol < 

K~,(O) = 101 < a 

IOl~a 

K2d(O) = l 2 
kg~(o - ~) 101 > 

n ) 2  cos ka 
l~l~(k) = -- -~a k 2 - (z/2a) 2 

girl(k) = ½gl,(k)( 1 + cos kn) 

sin ka 
/(2~(k) = ka 

t~2a(k) = ½~z,(k)( 1 + cos kx) 
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n/4 < a < n/2, split the above into 

(fO~t/47t-fa/4)f(x)cos2xdx 
and observe that the second integral, which is negative, is in absolute value 
smaller than the first. 

Table 1 gives two examples each, of single-humped (/(is) and double- 
humped (Kid) kernels with their Fourier transforms, /~. The shapes of the 
kernels are shown in Fig. 2. 

B. Stability analysis. Eqs. (17) 

To determine stability of the steady states in cases 1-3 of Sect. 6 we examine 
the trace and determinant of the Jacobian of Eqs. (17) in each of the three 
cases. For notational convenience we define 

J = (AI) 
q - 

a n d  tabulate the entries 8, q, ~, 6 in Table 2. We observe that e and 6 are 
always nonnegative since /~/C > 0 and /s/ .~ > 0 at the biologically relevant 
steady states and since I/~ I < I. Thus Tr(J) = - (e + 3) is negative in each of the 
three cases. For stability to uniform perturbations and instability to 0-depen- 
dent perturbations, it is necessary that D e t ( J ) =  e 3 -  ~q be nonnegative for 
k = 0 and negative for some integer wavenumber k. Such an integer is then a 
destabilizing mode. 

Calculations of the appropriate expression is trivial in all but the last case, 
where algebraic simplication is more cumbersome. Defining Q = flC(l + ~) ,  
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S = t iP,  L = #k  2, we have  

D e t  J = (y - flC)(L + Q + S) - (y - [3CI~)(Q + SK)  

= (y  - f l C ) L  + ( ~  - 1)[Off(7 - y S  + SQ] 

= (), -- flC)L + ( ~  - 1)[Qfl((7 + P )  - ~,S] 

= ( r  - -  f l C ) L  + fl(P, - 1)[MflC( 1 + / ( )  - YeT- (A2) 
U s i n g  (y - t iC)  = flC2/p a n d  y/~ = f lCM a n d  r e g r o u p i n g  te rms  even tua l l y  leads 
to 

De t  J = - - - i f -  + ( g  - 1)£" . (A3)  
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