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We analyse the helical motion of organisms, concentrating on the means by which organisms 
change the direction in space of the axis of the helical trajectory, which is the net direction of 
motion. We demonstrate that the direction of the axis is determined largely by the direction of the 
organism's rotational velocity. Changes in direction of the rotational velocity, with respect to the 
organism's body, change the direction in space of the axis of the helical trajectory. Conversely, 
changes in direction of the translational velocity, with respect to the body of the organism, have 
little effect on the direction in space of the axis of the trajectory. Because the axis of helical motion 
is the net direction of motion, it is likely that organisms that move in helices change direction by 
pointing their rotational velocity, not their translational velocity, in a new direction. 

1. Introduction. Most free-swimming organisms whose bodies measure 
5-500 #m swim in helices (see Jennings, 1901, 1904). Many of these organisms 
orient to external stimuli by aligning the axis of their helical trajectories to the 
direction of the stimulus (e.g. Jennings, 1904). Because the axis of the helix is 
parallel to the organism's rotational (angular) velocity when the rotational 
velocity is constant (see Crenshaw, 1993a) it is understood that these cells align 
the axis of their trajectories by pointing their rotational velocities in the 
direction of the stimulus (see Foster and Smyth, 1980). 

The axis of the helix, however, is not always parallel to the organism's 
rotational velocity, especially when the rotational velocity is not constant, for 
example when the rotational velocity, and thus the axis of the helix, is changing 
direction. At such times the axis of the helix is a complex function of the 
organism's translational (linear) and rotational (angular) velocities and their 
first and second time derivatives (Crenshaw, 1989, 1993a). Consequently, the 
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mechanism by which the axis of the helix changes direction requires closer 
examination. 

This paper analyses how an organism changes the direction of the axis of its 
helical trajectory. This is the second paper in a series of three describing how 
organisms can use helical motion to orient to a stimulus. The first paper 
(Crenshaw, 1993a) developed much of the mathematics used throughout  the 
series. The third and final paper in this series (Crenshaw, 1993b) demonstrates 
how the mechanism of changing direction described in this second paper can be 
used by an organism to orient to a stimulus. For readers who do not want the 
details of the mathematical analyses, results are summarized without 
mathematics at the end of each paper in the series. 

We begin here with the differential geometry of three-dimensional (3D) 
curves to describe a general case of motion in which the axis of a helical 
trajectory changes direction in space. This analysis discusses only smooth 
curves--the first and second derivatives of the curve are continuous. We then 
simulate the motion of an organism as a rigid body in rotation and translation 
and examine the resulting 3D trajectory. These simulations permit analysis of 
trajectories that are not smooth. 

The general result of our analysis is that the axis of the helical trajectory is 
usually parallel to the organism's rotational velocity and that the axis of the 
helix changes direction in space whenever the organism changes the direction 
of its rotational velocity with respect to its body. Conversely, changes in the 
translational velocity lead only to transient changes in the direction of the axis, 
changes that persist only as long as the organism's translational acceleration is 
nonzero. When the translational acceleration returns to zero, the axis of the 
helix aligns with the rotational velocity, even if the final direction of the 
translational velocity has changed. Our results support independent work by 
Brokaw (1958--see discussion). 

2. The Analysis 
2.1. Differential geometry. We do not consider here the motion of an 

organism per se. Rather, we consider the motion of a point in the organism. 
This point describes a curve in three-dimensional (3D) space, and we analyse 
the geometry of that curve. We use three reference frames. (1) XYZ is fixed in 
space. (2) TNB is the Frenet trihedron in which T is the unit tangent vector; N is 
the unit normal vector; and B is the unit binormal vector. (The Frenet 
trihedron is conventionally used to describe the geometry of curves--see 
Gillett, 1984, pp. 690-699.) (3) IJK is fixed to a helical trajectory such that 
right-hand helical motion is described by the following vector function: 

H(t) = r cos(~t)I + r sin(?t)J + \ 2n / (1) 
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where K is the axis of the helix; r is the radius; p is the pitch; and 7 is the angular 
frequency of the vector (see Fig. 1 in Crenshaw, 1993a). In effect, the vector 
H(t) traces a helix. The endpoint moves around the cylinder once every 2~/7 
units of time and moves the distance p in the direction of K for every revolution 
around the cylinder, t 

The Frenet trihedron TNB moves along this curve such that the origin of 
TNB is the endpoint of H(t). The motion of TNB along the curve is described 
by a translational (linear) velocity V and a rotational (angular) velocity known 
as the Darboux vector d (see Crenshaw, 1993a). These are: 

V =I:I = VT (2) 

d = zT + ~cB (3) 

where the dot indicates the derivative with respect to time, and z and t¢ are the 
torsion and curvature, respectively, of the curve, d describes the rotation of 
TNB with respect to the arclength of the curve--i t  has units of radians/ 
arclength. It will be helpful to define a rotational velocity with respect to time, 
d*, of TNB as follows: 

d * =  Vd (4) 

where V is the speed of TNB. 
Crenshaw (1993a) demonstrates that d, and thus d*, gives the axis of the helix 

K. d* is parallel to K for a right-hand helix and antiparallel to K for a left-hand 
helix. 

One additional parameter will assist later discussion. The pitch angle 0 is the 
angle formed by the two vectors, V and d*. It is given by: 

~c 2~r 
- ( 5 )  tan 0 = iz I P 

(see Crenshaw, 1993a). 
d* is described relative to TNB in equations (3) and (4), so d* changes 

direction with respect to TNB whenever the ratio t¢/-c of the curve changes. If K 
is given by d*, what happens to the direction of K in space when d* changes 
direction relative to TNB? Consider the two reference frames, TNB and IJK, 
both free to move in space. Suppose TNB rotates in space with rotational 
velocity d*. When some vector r changes direction relative to a reference frame 
rotating with rotational velocity d*, the change in direction ofr with respect to 
space is given by: 

t For  a left-hand hehx, the sine and cosine terms are interchanged. We use right-hand helices throughout  
this analysis, but the results also apply to left-hand helices 
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i'~ = i" b + d * x  r~ (6 )  

where the subscripts, s and b, indicate that the vector is described with respect 
to space or the rotating reference frame, respectively (see Symon, 1971, 
pp. 276-278). This says that the rate of change ofr  with respect to space equals 
the rate of change of r with respect to the body of the organism plus the change 
in the direction of r due to rotation of the body. For the rotational velocity of 
TNB [equations (3-4)], this becomes: 

d*= d*+ d*x d*. (7) 

If one assumes that the orientation in space of TNB does not instantaneously 
change with respect to the arclength of the curve (i.e. the curve is smooth), t 
then equation (7) simplifies to: 

(s) 

which says d* changes direction with respect to space only when d* changes 
direction with respect to the rotating reference frame TNB. Because d* gives the 
direction of K, as discussed above, equation (8) also says that K changes 
direction in space whenever d* changes direction with respect to TNB. 

Using equations (3) and (4) we can restate this result. The direction old* with 
respect to TNB is given by tc a n d ,  [equations (3) and (4)]. Whenever the ratio 
of~c to • changes, the direction old* changes, and according to equation (5) the 
pitch angle 0 of the helix also changes. Thus, whenever 0 changes and the curve 
is smooth,  K changes direction in space. (It should be noted that some curves 
appear to violate this result, conical spirals for example. Such curves are 
discussed at the end of this section.) 

To better demonstrate how K can change direction in space, we have 
simulated this motion on a computer. The algorithm used in the following 
simulations is presented in Appendix A. Briefly, helical motion with a given r, p 
and 7 is described by equation (1); however, IJK is now free to assume any 
orientation in XYZ. The position of H(t) in XYZ is then calculated at discrete 
time increments At. At a given point in time, r or p change. [We present changes 
in 0 as changes in r and p to make the changes in motion more intuitive--see 
equation (5).] The new parameters effectively describe a new helix in space, 
which is joined to the preceding helix in such a way that (1) the origins of the 
Frenet trihedrons of the two helices coincide and (2) the axes of the Frenet 
trihedrons align at the point of transition. Motion then proceeds along the new 
helix. For any given simulation, successively smaller values of At are used until 

t The unit vectors, TNB, are functions of the first and second derivations of H (see Gillett, 1984, pp. 
693-696), so if TNB does not change onentahon at one point on the curve then the first and second 
derivatives of H are continuous. 
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the trajectories converge to approximate continuous motion. All simulations 
are right-hand helices. 

Figure la demonstrates that the direction of K changes only when 0 changes. 
r and p change at three points (marked by dots, -), but the ratio rip is constant, 
so 0 is constant. As expected, the direction of K does not change. In Fig. lb, 0 
changes at three points, which are marked by dots. As expected, K changes 
direction each time 0 changes. The changes in 0 presented in Fig. la and b are 
discrete changes. In Fig. lc, 0 is initially constant. At the dot (.), 0 begins to 
change continuously. At the circle (o), 0 returns to a constant value. K is 
straight in the initial and final sections of the trajectory because 0 is constant, 
but the axis has changed direction between these two sections. The straight 
sections are included to better display the net change in the direction of K. 

In summary, d* is parallel or antiparallel to the axis of helical motion K. 
Whenever the curve is smooth and the pitch angle (which is a function of the 
ratio of torsion to curvature or of radius to pitch) changes, the direction in 
space of d*, and thus K, changes. 

2.2. Rigid body rotation. In this section, we examine the motion of an 
organism, treating the organism's body as a rigid body represented by the 
reference frame ijk, where the origin of ijk is the organism's center of mass. The 
rotational and translational velocities of this body are: 

lOb = c01i -t- o 2 J  -t- ¢o3k (91 

Vb= V i+ Vj+ (lO) 

where the subscript, b, now indicates that the vector is described with respect to 
the body of the organism. 

The trajectory traced by the center of mass of the organism is a curve in three 
dimensions, which as before can be described by the motion of a Frenet 
trihedron TNB. Crenshaw (1993a) explains that the motion of TNB is 
determined by the motion of the organism and presents equations describing 
TNB, t¢ and z as functions OfVb, ~/b' Vb' lOb and (rib [-equations (7), (11), (12), 
(14) and (18)] .These equations are directly applicable to the discussion in the 
previous section. The axis of the helix changes direction in space whenever V b 
or (2) b change such that the ratio of to/z, and thus 0, changes. 

A careful look at the assumptions underlying the analyses in the present and 
preceding sections will be helpful. The preceding section assumes the trajectory 
is smooth. This assumption is needed to describe the orientation of TNB as ~c 
and -c change. The present section uses results from the analyses of Crenshaw 
(1989, 1993a) that describe the relationships between the motion of the Frenet 
trihedron and the body of the organism. While these previous analyses do not 
consider changes in t¢ or z, they can be applied here if again the curve is assumed 
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Figure 1. Simulation of changes in pitch angle, 0. (a) r and p of the trajectory change 
at three points (marked by dots, e), total arclength s of curve equals 12: s = 0 - 3 ,  
r=0.1, p=0.3; s = 3 - 6 ;  r=0.2, p=0.6; s = 6 - 9 ,  r=0.05, p=0.15; s = 9 - 1 2 ,  
r = 0.1, p = 0.3. Because the ratio rip does not change, 0 does not change, and K does 
not change direction in space. (b) r and p change at three points (marked by dots, •), 
total arclength s of curve equals 12: s = 0 - 3 ,  r=0.1, p=0.3; s = 3 - 6 ,  r=0.05, 
p=0.8; s = 6 - 9 ,  r=0.35, p=0.1; s = 9 - 1 2 ,  r=0.1, p=0.6. Because rip changes, 0 
changes and K changes direction in space. (c) r and p change continuously between 
the point marked by a dot (*) and the point marked by a circle (©). r always equals 
lip 2. Total arclength s of curve equals 22. p changes as follows: s = 0 - 3 ,  p=0.6; 
s = 3 - 1 9 ,  p=0 .6-0 .5  sin(3(s-3)); s = 19 -22 ,  p=0.984. Because the ratio rip 
changes, 0 changes, so K changes direction in space. Note: The trajectories are 
presented as two orthogonal two dimensional projections of the three dimensional 
curve. Each figure can be folded such that the axes form a right-hand reference 

frame. 

to be  s m o o t h .  C ons equen t l y ,  all equa t ions  p resen ted  here a s sume  the curve  is 
s m o o t h .  F o r  rigid m o t i o n ,  this m e a n s  tha t  discrete  changes  in the d i rec t ion  of  

V b or  in the  o r i en ta t ion  of  ijk wi th  respec t  to the  a rc length  of  the t r a j ec to ry  are  
no t  cons ide red  by  the equa t ions .  

This  a s s u m p t i o n  of  s m o o t h n e s s ,  however ,  is no t  needed  in the s imula t ions  of  
the m o t i o n  of  a rigid b o d y ,  because  Yb a n d  o~ b comple t e ly  descr ibe  the m o t i o n  
of  the  b o d y  (see Bea t ty ,  1986, Ch.  1). C onsequen t l y ,  discrete changes  in the 
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direction of V b and the orientation of ilk can now be considered. Violation of 
the assumption of smoothness at any point means that d*, and thus K, is not 
defined at those points, and the equations presented here are not valid at those 
points. Nevertheless, the ability of the simulations in this section to address 
instantaneous changes has great relevance to the motion of microorganisms, as 
will be addressed in the discussion. 

It is helpful if changes in V b and [.10 b are considered separately. Consider first 
the motion of an organism for which V b is held constant and only to b varies. For 
simplicity, let V 2 = V 3 =0 and o) 2 =0. In this case: 

0)3 0)1 0 - -  c°3 (11 )  
K - -  V '  z - -  V '  ~o 1 

d*=to b (12) 

[Crenshaw, 1993a, equation (30)]. Thus, ~, ~, 0 and d~ are not functions of the 
time derivatives of V b or tob" For such motion, ijk and TNB coincide. Both 
reference frames move in one direction relative to the rotating reference 
frame--in the direction of i or T. Both (Ii b and d* have two components, one 
parallel and one perpendicular to the direction of motion; in fact, d* is parallel 
to to, as equation (12) shows. Consequently, 0, and thus the direction of K s, 
changes whenever the direction of o) b changes. In other words, the direction of 
K in space changes whenever the direction of to changes with respect to the 
body of the organism. 

Motion by a rigid body has been simulated with the computer program 
described in Appendix B. Briefly, an "organism" is given an initial orientation 
in space, and initial values o f V  b and tob are defined according to equations (9) 
and (10). The organism proceeds in discrete time steps At, moving the distance 
VAt and rotating through the angle toAt. For each simulation, successively 
smaller values of At are used until the trajectories converge to approximate 
continuous motion. 

Figure 2a shows a trajectory generated by simulating the motion of the 
organism described above (V 2 = V 3 =0  and co 2 =0). In this simulation, o) b 
changes only magnitude, not direction, at discrete points (marked by dots, "). 
The axis of the helix K does not change direction in space, agreeing with our 
predictions. In the trajectory in Fig. 2b the direction of (~o b changes at three 
points (marked by dots). As expected, K changes direction in space. 
Continuous changes in the direction of tob are presented in Fig. 2c. Again, K 
changes direction in space. 

Consider now an organism that moves with three nonzero components of 
rotation. Suppose that, as before, the translational velocity is V b = Vii. In this 
case Vb a n d  9 b both equal zero, so 0 and d* are functions of Vb, tob and ~)b 
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Figure 2. Simulation of changes in the direction, with respect to the body of the 
organism, of the organism's rotational velocity to b. Translational velocity is 
constant (Vb= li). (O2=0. (a) t~ b changes magnitude at three points (marked by 
dots, o), total arclength s of curve equals 12: s = 0 - 3 ,  co1=2, 093=2; s = 3 - 6 ,  
COl = 4 ,  co3 =4;  s = 6 -  9, COl = l ,  co3 = l ; s = 9 - 1 2 ,  c~l = 3, co3 = 3. The  direction o f  cob 
does not change, so K does not change direction in space. (b) t% changes at three 
points (marked by dots, .), total arclength s of curve equals 12: s = 0 - 3 ,  091 = 2, 
¢o3 =2; s = 3 - 6 ,  ~ol = 5, o93=1; s = 6 - 9 ,  col =2, 0)3=4; s = 9 - 1 2 ,  o91=3, co3 = 1. 
The direction of o~ b changes, so K changes direction in space. (c) 1.o b changes 
continuously between the point marked by a dot (e) and the point marked by a 
circle (o), total arclength s of curve equals 22: s = 0 - 3 ,  091 =2, co3 =2; s=  3-19,  
co t = 2 + 2  sin(2(s- 3)), coa = 3 -cos (5 ( s -  3)); s=  19-22, o~ 1 =3.10, co3 = 3.11. The 

direction of ~o b changes, so K changes direction in space. 

[ C r e n s h a w ,  1993a, equa t ions  (14) a n d  (18)]. W h e n  ~b does  no t  va ry ,  d ' i s  g iven 
by  e q u a t i o n  (12) [-see C r e n s h a w ,  1993a, e q u a t i o n  (28)]. Consequen t l y ,  K is 

para l le l  (or ant ipara l le l )  to f/')b before  and  after  a change  in the d i rec t ion  of  o~ b . 
D u r i n g  the  t ime tha t  (J) b is chang ing  d i rec t ion ,  K is a funct ion of  b o t h  03 b a n d  tb b . 

M o t i o n  wi th  all three  c o m p o n e n t s  of  r o t a t i o n  va ry ing  is p resen ted  in Fig.  3, 

where  aga in  V b = Vii. o.1 b changes  at  three  discrete  points .  K changes  d i rec t ion  
in space  a t  each  point .  Be tween  changes  in the d i rec t ion  of  to b, K is para l le l  to  
to b . C o n t i n u o u s  changes  in the  d i rec t ion  o f ~  b also cause K to change  d i rec t ion  
in space.  N o  s imula t ions  are  presented .  
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Figure  3. S imula t ion  of changes  in the direct ion,  wi th  respect  to the body  of the 
o rgan i sm,  of  the o rgan i sm ' s  ro ta t iona l  velocity Oh'  Trans la t iona l  velocity is 
cons t an t  (V b = li). Ob changes  at three  po in t s  (marked  by dots ,  e), total  arc length  s 
of  curve equals  12: s = 0 - 3 ,  co 1 = 2, 0)2 = 0, 0) 3 = 2; s = 3 -  6, 0) 1 = 1, 0)2 = 2, 0) 3 = 3; 
s = 6 - 9, 0)1 = 4, ~o z = 1, o) 3 = 1; s = 9 - 12, co 1 = 2, 0)2 = 0, 0) 3 = 3. The direct ion of~o b 

changes,  so K changes  di rect ion in space.  

Now consider the motion of an organism for which ~b is constant and V b 
varies, d r, and thus K, becomes a function of Ob, Vb and the first and second 
derivatives of V b [Crenshaw, 1993a, equations (14) and (18)]. If V b changes 
only magnitude, not direction, then like the situation earlier with changes in the 
magnitude of Ob, K does not change direction in space. The only result of 
changing the magnitude ofV b is to change t¢ and -c such that their ratio, and thus 
0, does not change [Crenshaw, 1993a, equations (26) and (27)]. 

IfV b changes direction, then K changes direction in space, but in a way that is 
different than that for changes of Ob" Consider an organism that moves with 
constant V b and constant Ob" d*, and thus K, is given by equation (12)--K is 
parallel or antiparallel to co b [see Crenshaw, 1993a, equation (28)]. IfV b begins 
changing direction, then K changes direction in space because B, tc and v, and 
thus d*, are functions of'¢b [Crenshaw, 1993a, equations (12), (14) and (18)]. 
However, once V u stops changing direction, K is once again parallel or 
antiparallel to Ob, which has not changed direction. Consequently, K undergoes 
no net change in direction in space, even if there has been a net change in the 
direction of Vb---changes in the direction of V b cause only a transient change in 
the direction of K. As discussed earlier, however, 0 has changed because the 
angle between V and ~ has changed. 

There is an exception to this rule. Define 0 as the angle between V b and o~ b . If 
V b changes direction such that 0 changes from an angle less than to one greater 
than re/2, or vice versa, then K changes from parallel (or antiparallel) to ¢o to 
antiparallel (or parallel) to ~ with a concomitant change in the handedness of 
the helix (Crenshaw, 1993a). Consider an organism that moves such that 

< re/2. This organism moves along a right-hand helix for which ¢o is parallel to 
K (Fig. 4a). If the direction of ~t) b remains constant, but the direction of V b 
reverses, then ~ becomes greater than re/2. Consequently, the helix switches 
handedness, and K reverses direction (Fig. 4b). Note that if ~ = re/2 then the 
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Figure 4. The angle ~ between the translational velocity V and the rotational 
velocity ~ affects the handedness of the helix and the direction of the axis of the helix 
K. (a) ~ < ~ / 2 :  ~ is parallel to K, and the helix is right-handed. (b) ~>7c/2: m is 
antiparallel to K, and the helix is left-handed. (c) ~ = ~/2: the trajectory is a circle. (d) 

= 0: the trajectory is a straight line with ~ parallel to the direction of motion. (If 
= ~, the trajectory is a straight line with ~ antiparallel to the direction of motion.) 

trajectory is a circle (Fig. 4c), and if 0 = 0 or rc then the trajectory is a line 
(Fig. 4d). 

Motion in which Yb changes direction can also be simulated with the 
program presented in Appendix B. Now, ~J0 b is constant. Figure 5a presents a 
trajectory for which the direction of Yb changes at three discrete points (marked 
by dots). The changes in the direction ofV b are visible as kinks in the trajectory, 
demonstrating how the assumption of smoothness in the previous section has 
been violated. Nevertheless, as expected, the axes of the helical trajectories 
between the kinks are all straight and parallel. K has not changed direction in 
space. 

Figure 5b presents a trajectory for which Yb changes continuously over a 
finite period of time. The direction of V b is initially constant, resulting in an 
initially straight helix. At the dot (e) the direction of Yb begins to vary 
continuously. At the circle (o), the direction of Yb is again held constant, 
producing a straight helix at the end of the trajectory. The straight helical 
portions are placed at the beginning and end of this trajectory to better 
demonstrate the net change in the direction of K. As expected the direction in 
space of K is the same in the two straight portions there is no net change in the 
direction of K. 

Figure 5c presents a trajectory similar to that in Fig. 5b; however, now 0 has 
changed from less than re/2 to greater than re/2. As discussed earlier, K reverses 
direction in space, and the helix changes from right-hand to left-hand. 

In summary, the Darboux vector d of an organism's trajectory is determined 
by the organism's translational and rotational velocities, Yb and rob" In 
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Figure 5. Simulation of changes in the direction, with respect to the body of the 
organism, of the organism's translational velocity V b. Rotational velocity is 
constant (~b = 3i + 2j + lk). (a) V b changes at three points (marked by dots, *), total 
arclength s of curve equals 12: s = 0 - 3 ,  1/1=1, V2=l, //3=1; s = 3 - 6 ,  V1=3, 
V2=0, V3=0; s = 6 - 9 ,  VI=0, V2=3, /I3=0; s=9  12, VI=0, V2=O , V3=3. The 
direction of V b changes; however, the direction of (i) b is constant. Consequently, K 
does not change direction in space. (b) V b initially is constant and then changes 
continuously between the point marked by a dot (o) and the point marked by a 
circle (o), total arclength s of curve equals 12: s = 0 - 3 ,  V1=2, V2=2, //3=1; 
s = 3 - 9 ,  Vl=2+2sin(3(s-3)) ,  Vz=4-2cos(s-3), V3=l+sin(2(s-3)); s= 
9-12 ,  //1=0.498, V2=2.08, V3=0.463. The direction of co b is constant, and 
remains less than ~/2. Consequently, when "¢b returns to zero, the final direction in 
space of K remains unchanged. (c) V b changes continuously between the point 
marked by a dot (e) and the point marked by a circle (e), total arclength s of curve 
equals 17: s = 0 - 3 ,  V~=2, V2=2, V3=l; s = 3 - 1 3 ,  Vl=2+4sin(3(s-3)) ,  
V2=2cos(s-3 ), V3=cos(2(s-3)); s=13-17 ,  V1=-1.95, V2=-1.68, V3= 
0.408. This trajectory is similar to that in b; however, now 0 changes from less than 
~/2 to greater than ~/2. Consequently, when "¢b returns to zero, the direction in 
space of K has reversed, and the helical trajectory has switched from right-hand to 

left-hand. 

pa r t i cu la r ,  if the d i rec t ions  of  V b and  Ob are  c o n s t a n t  (i.e. if V and  ~ do  no t  
change  d i rec t ion  wi th  respect  to the o r g a n i s m ' s  body) ,  then  l] b is para l le l  to  COb. 
T h e  resul t ing t r a j ec to ry  is a helix wi th  K para l le l  o r  ant ipara l le l  to Ob" I f  the 
d i rec t ion  of  (o b changes  then  K changes  d i rec t ion  in space.  C h a n g e s  in the 
d i rec t ion  of  V b on ly  t rans ien t ly  change  the d i rec t ion  in space  of  K. 
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One final type of curve must be considered. Some curves appear to 
contradict the result of this analysis--the pitch angle of these curves changes, 
but the axis appears straight. Figure 6a presents a trajectory generated by the 
simulation of rigid body motion (Appendix B). It is a conical spiral in which the 
pitch angle constantly increases. Other curves also appear to contradict the 
present results, for example a curve with constant radius but varying pitch. Ifa 
helix of constant pitch angle is fitted to each point of such curves, then the axis 
of the helix of constant pitch angle precesses around the axis of the curve of 
variable pitch angle. It is possible for organisms to follow such a trajectory. 
However, the results of the present analysis remain unchanged. Consider 
Fig. 6b. Here the simulation presented in Fig. 6a is repeated, but at the dot the 
pitch angle stops changing. The axis of the resulting helix after the dot is clearly 
different than that of the conical spiral. In fact, a diversity of motions can be 
imagined in which the axis of a helical trajectory changes over time such that 
the net change in the direction of the axis is zero. This by no means contradicts 
the present results. 

a 

X "  

Z 

, Y  

b 

X '  , Y  
Figure 6. An apparent contradiction to the results. (a) A conical spiral in which the 
pitch angle changes, but the axis appears straight. Translational velocity is constant 
(Vb= li). The rotational velocity changes continuously: col=0.1 +(10-s)6/10 5, 
co2=0, co3=1+(10-s) /5 ,  (b) The trajectory is the same as in (a) but now the 
rotational velocity is held constant at the dot. The trajectory after the dot is a 

straight helix for which the axis is not parallel to the axis of the conical spiral. 

3. Discussion. The primary result of this analysis is that an organism changes 
the direction in space of the axis of its helical motion primarily by changing the 
direction of its rotational velocity with respect to its body. Changes in the 
direction of the rotational velocity produce both a transient change while the 
rotational acceleration is not zero and a net change if the rotational velocity 
undergoes a net change of direction. Conversely, changes in the direction of the 
translational velocity produce only transient changes in the direction of the 
axis--the axis changes direction only while the translational acceleration does 
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not equal zero, but there is no net change in the direction of the axis once the 
translational acceleration returns to zero, even if the translational velocity has 
undergone a net change in direction. 

This result sounds less intuitive when expressed in common words: an 
organism that commences rotating more rapidly around its anterior-posterior 
axis, for example, begins moving in a new net direction. Conversely, an 
organism that swims in a more dorsal direction does not move in a new net 
direction. 

The first section of this paper discusses the differential geometry of three- 
dimensional curves and deals strictly with smooth trajectories. (The Frenet 
trihedron makes no discrete changes in orientation along the arclength of the 
trajectory.) In the second section, which addresses the motion of a rigid body, 
this assumption implies that the organism does not instantaneously (with 
respect to the arclength of the curve) change the direction of its translational 
velocity or the orientation of its body. However, this assumption is not 
necessary in the simulations of rigid body motion. Consequently, these 
simulations permit discrete changes both in the orientation of the organism's 
body and in the direction of the translational velocity along the arclength of the 
trajectory. 

It is important that the simulations of rigid body motion are able to address 
both continuous and discrete changes in orientation and direction because 
microorganisms probably perform both. Many ciliates and rotifers appear to 
move in smooth trajectories, continuously rotating and translating. Propul- 
sion is generated by metachronal waves of cilia in these organisms, which 
produce a fairly continuous force (see Naitoh and Sugino, 1984; Sugino and 
Naitoh, 1988). However, as Purcell (1977) explains, the trajectories of the many 
microorganisms that propel themselves with oscillating appendages are 
kinked. For example, the flagellate Chlamydomonas propels itself with a "breast 
stroke" of its two anterior flagella. The resulting motion of the cell is forward 
during the effective stroke and then backward a shorter distance during the 
recovery stroke with a rotation during the cycle (Rfiffer and Nultsch, 1985). 
When this motion is repeated with some constant translation and rotation per 
flagellar beat, the resulting trajectory is a helix (Kamiya and Witman, 1984; 
R/iffer and Nultsch, 1985). The simulations of rigid body motion address both 
types of motion. 

This analysis assumes that organisms change the direction of their rotational 
velocities with respect to their bodies. This is difficult to measure, but there are 
numerous reports of organisms changing the radius or pitch of their helical 
trajectory, reflecting changes in the direction of the rotational velocity. 
Jennings (1904) describes changes in the radius and pitch of several organisms 
(flagellates, ciliates, rotifers). In fact, Jennings states that changes in the radius 
of a microorganism's helical path change the organism's net direction of 
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motion ("the path"). Jennings (1904, p. 54), however, is unable to explain his 
observation. 

In independent work, Brokaw (1958) also recognizes that changes in the 
direction of the rotational velocity of a cell change the direction of the axis of 
the helix. Brokaw demonstrates that spermatozoids of the bracken fern 
Pteridium aquilinum decrease the radius of their helical trajectory when exposed 
to concentration gradients of malate (see also Brokaw, 1974). Brokaw 
recognizes that this decrease in radius reflects a change in the cell's rotational 
velocity that causes the axis of the helix to change direction. (For a more 
complete description of Brokaw's work, see Crenshaw, 1993b.) 

Other observations of cells changing the radius or pitch of their helical 
trajectories include the ciliates, Ophryoglena sp. (P/trducz, 1964) and 
Paramecium caudatum (Machemer, 1989), and the spermatoza of many 
invertebrates (Miller, 1985). Furthermore, Crenshaw (1990) presents three- 
dimensional trajectories of spermatozoa of the sea urchin Arbacia punctulata. 
These spermatozoa change the pitch angle of their motion. At the same time, 
the axis of their helical trajectory changes direction. 

Interestingly, many of the observations of changes in radius and pitch 
mentioned above occur when the microorganisms and spermatozoa are 
stimulated. This raises the possibility that changes in the rotational velocity of 
an organism might orient an organism to a stimulus. Crenshaw (1993b) 
examines this question and demonstrates that the axis of helical motion 
automatically aligns to a stimulus field (a ray of light or a chemical 
concentration gradient) if the components of the organism's rotational velocity 
are simple functions of stimulus intensity. 

4. Summary of Results. (1) The major result of this analysis is that an 
organism changes the direction in space of the axis of its helical motion 
primarily by changing the direction of its rotational (angular) velocity with 
respect to its body. Changes in the direction of the translational (linear) 
velocity have little or no effect on the direction of the axis of the helical 
trajectory. The axis of a helical trajectory is the net direction of motion, 
indicating that many microorganisms change their direction of motion by 
changing the direction of their rotational velocity, not their translational 
velocity. 

(2) Changes in the direction of the rotational velocity produce both a 
transient change in the direction of the axis while the rotational acceleration is 
not zero and a net change if the rotational velocity undergoes a net change of 
direction. For example, if an organism commences rotating more rapidly 
around its anterior-posterior axis, then the axis of its helical trajectory changes 
direction in space--the organism begins moving in a new direction. 

(3) Changes in the direction of the translational velocity produce only 
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transient changes in the direction of the axis--the axis changes direction only 
while the translational acceleration does not equal zero, but there is no net 
change in the direction of the axis once the translational acceleration returns to 
zero, even if the translational velocity has undergone a net change in direction. 
For example, an organism that begins swimming more to its left-hand side does 
not move in a new direction in space. 

(4) Changes in the direction of the rotational velocity are seen as changes in 
the radius, pitch, or pitch angle of an organism's trajectory. In agreement with 
the present analysis, there are several published examples of organisms that 
change the radius, pitch, or pitch angle of their helical trajectories with 
concomitant changes in the direction of the axis. 
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Technology) for providing a copy of his Ph.D. thesis. 

A Note about Approximation Errors. First, to minimize round-off error these 
programs use double precision, floating point numbers. All programs are 
written in AmigaBasic (MicroSoft, Inc.), compiled with AC-Basic (Absoft 
Corp.), and run on an Amiga 1000 (Commodore Business Machines, Inc.). 
Copies of the programs can be obtained from H. C. Crenshaw. Second, to 
ensure that approximation error is negligible, the same simulation is run 
repeatedly with successively smaller values of At. Approximation error is 
considered small when the shape of the trajectory and the endpoint of the 
trajectory cease to change appreciably. 

A P P E N D I X  A 

Simulations of Changing Radius and Pitch. We begin with equation (1), the vector function of a 
right-hand helix. This helix is constrained to move with K as its axis. To describe a helix with any 
orientation and location in space, we describe IJK relative to XYZ. 

Future manipulations are made easier by reparameterizing equation (1) to arclength s: 

\ 2~dcJ  
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where c=  rlx/i+62, and ~ =p/2~zr. 
The task now at hand is to describe changes in r and p along the trajectory of the organism. 

Consider an organism swimming along a helical path with the orientation of IJK known with 
respect to XYZ. r and p are known and constant. At one point the organism changes r or p of its 
motion and continues moving uninterrupted along a new helix with new r or p. The first helix is 
described by equation (A1). All of the variables in equation (A1) are known. The second helix 
can be described by an identical equation: 

t t t S i  S , S p , 
H ' (s ' )=r 'cos(~ ,~ , ) I '+r  s i n ( ~ J '  + ( ~ - 7 ~ , ) K  (A2) 

\~ /  C'J \~,/ C'J \27z\/ C'J 

where the primed variables pertain to the second helix. If r' and p' are known, either a priori or as 
the functions of some external variable, the values of s', I', J '  and K' are still unknown. 
Furthermore, the position of the origin of I 'J 'K' relative to XYZ is unknown. 

As the orientation and position of I 'J 'K' are unknown, the value of s' can arbitrarily be 
assigned the value of zero. The values of I', J '  and K' and the position of the origin of this 
coordinate system can be determined from the geometry, assuming the path of the organism is 
smooth at the point of transition. If the path is smooth then T = T', N = N' and B = B'. 

I' can be determined as follows: At s '=0,  N ' = - I ' .  N'(0)=N(s), which is known, so I' is 
known. 

K' is parallel to (z'/l#l)d' (Crenshaw, 1993a). d' is given by equation (3). z' and x' are functions 
ofr' and p' (see Crenshaw, 1993a), which are known. T' and B' are known, as discussed above, so 
K' is known. 

J' equals K' x I'. 
Finally, the following equations determine the position of the origin (O) of I'YK' relative to 

XYZ: 

H(s) = H'(0) (A3) 

O = H ' ( 0 ) - r T .  (A4) 

A P P E N D I X  B 

Simulations of Varying F b and toB. Two reference frames are used in this program--XYZ and 
ijk. From here on we will refer to XYZ as 6 and to ijk as 4. Vectors with subscript 6, therefore, are 
described relative to 6, and vectors with subscript ~ are described relative to ~. 

The motion of the organism is described relative to 3, so ~ is also described relative to 3. For 

example, i, which has the coordinates (1, 0, 0) in ~, may have the coordinates (l/x/3, l / K ,  

- 1/,,f3) in 3. (Note: It would then be referred to as i6.) This permits the organism to assume any 
orientation in 6. The flow of the program is as follows. 

Step 1--Determine Initial Location and Orientation. The organism is placed at an initial point 
P~, and i~j~ and k~ are given initial values. 

Step 2--Determine to and V. V¢ and toe can either change or remain the same in this step: 

v~ = v~li + v~2j + V~3k 

toe = 6°¢1i + ~2J + ~¢3 k" 
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(Note: i, j and k do not have subscripts. These equations are correct, regardless of the reference 
frame.) 

Step 3---Move to a New Position. Now that the organism has a defined position, orientation, 
V~, and co~, the organism moves forward at the designated velocity over a predefined period of 
time, At: 

pa=P~+V~at  

where P~ is the new position in 6 (at time t + At); Pa is the previous position (at time t); VaAt is the 
distance travelled; and Ya is given by 

V a =  ( V g l i a l  -I- Vg2j#,I q- Vg3kal . . . . . . . .  ) .  

Step 4--Rotate  to a New Orientation. After moving forward, the organism rotates at the 
rotational velocity determined in Step 2 over the period of time At. This is done as follows: 

i~ = ia + ia At 
j~ =ja +ja At 
k~ = ka + l~ At 

where i~j~k~ describes the new orientation 

!a = ~ x i a 

L = ~ .  x L 
l~a = ~a x k a 

and 

~ = ( e o ~ l i a l  + ~ o { 2 J o l  q - o { 3 k a l ,  • . . , • . . ) .  

Step 5 i R e p e a t  Steps 2 Through 4. Now that the organism's new position and orientation are 
known, the program returns to Step 2 and repeats the process as many times as required. 

7 
0 
/,2 
"C 

IO 

B 
d 
d* 
H 
iik 

, IJK 
XYZ 
N 

N O M E N C L A T U R E  

angular frequency of helical motion 
angle between axis and tangent of helical path 
curvature 
torsion 
angle between V and 
rotational (angular) velocity of organism 
unit binormal vector 
Darboux vector (units of radians/arclength) 
converted Darboux vector (units of radians/time) 
vector function of a helical trajectory 
reference frame fixed to organism 
reference frame fixed to helical trajectory 
reference frame fixed in space 
unit normal vector 
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p pitch of helical motion 
r radius of helical motion 
s arclength of curve 
t time 
T unit tangent vector 
V translational (linear) velocity of organism 
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