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The Spatial Distribution of Colonial Food Provisioners
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We present spatially explicit models to predict the optimal distribution of numerous food provisioners
that share a nesting aggregation. We compare predictions for solitary and social provisioners, and for
three foraging currencies. When distinct food patches with identical food parameters are considered,
fewer provisioners use the farther patches. The rate of decline in number of provisioners depends on
the currency used. With net rate of energy intake (net energy gain over time), the rate of decline is
relatively small under a wide range of realistic parameter values and distances; with efficiency (net energy
gain over energy cost) and empirically derived energetic costs, the rate of decline is much higher. With
lifetime fitness (lifetime food delivery under predation risk), outcomes depend on the ratio of mortality
risk during flight and during food collection at the patch. With all currencies, there is a difference
between the optimal spatial distribution of solitary and social provisioners, with a larger proportion
of social provisioners being farther from the central place. The optimal distribution of solitary
provisioners in a two dimensional field of uniformly distributed food such as a flowering meadow is
such that the density of solitary provisioners (number per unit area) declines monotonically with
distance, and provisioner number peaks at half the maximum area used.
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Introduction

Many animals nest in aggregations consisting of
numerous individuals. For example, various solitary
bees form aggregations of thousands of individuals,
with the largest recorded aggregation containing
about 12 million nests (Batra, 1984); a single honey
bee colony may have more than 60 000 bees (e.g.
Seeley, 1995); and some sea bird colonies, such as
those of thick-billed murres have up to 250 000 nests
(e.g. Gaston et al., 1983). Causes for such aggregation
are limitation of appropriate nest substrates such as
suitable islands for many sea birds, caves for bats, and
certain soils for solitary bees, defense against
predators, or communication about food sites (e.g.
Michener, 1974, Brown & Brown, 1996).

The concentration of numerous food provisioners
in a single location must have dramatic effects on the
spatial distribution of the provisioners while they are
collecting food, and on the food itself. This general
notion has been recognized for decades by economists
and ecologists [reviewed by Hamilton & Watt (1970),
and Covich (1976)]. However, explicit evaluations of
the spatial distribution of non-territorial food
provisioners that nest in large aggregations are few
and incomplete: Hamilton et al. (1967) discussed
factors determining daily dispersal of non-provision-
ing starlings from a single winter roost. They argued
that the fitness value of feeding at varying distances
from the roost should be identical because of reduced
starling density and thus increased food intake with
increased distance. Covich (1976) focused on the
shape and size of a single territory and a set of
neighboring territories. Taylor (1978) presented the
first formal model for the optimal allocation of
colonial foragers between two food sources and tested
qualitative predictions with ants (Taylor 1977).
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Although the parameter values needed for quantitat-
ive predictions did not exist in the 1970s, some of
these parameters are readily available today in studies
on the determination of individual behavior in
animals including colonial nesting birds and bees (e.g.
Welham & Ydenberg, 1993; Ydenberg & Schmid
Hempel, 1994).

Anderson (1978), Orians & Pearson (1979), and
Schoener (1979) considered optimal behavior of a
single central place forager. Their models capture the
notion of the greater cost of traveling farther from the
nest, but they do not address issues of interactions
among a large number of foragers from a single
central place. In contrast to the optimality approach
taken in the above papers, Seeley and colleagues
(Camazine & Sneyd, 1991; Seeley et al., 1991;
Bartholdi et al., 1993) have focused on models of the
mechanisms underlying allocation of honey bee
foragers among food patches. Although this mecha-
nistic approach is revealing, a general ultimate model
providing optimality predictions can contribute
further insights about how social or solitary food
provisioners sharing an aggregation should distribute
themselves in space.

Recently, variations of the ideal free distribution
(IFD) model have become prevalent in studies on the
spatial distribution of foragers including social bees.
In its basic form, the IFD assumes that (i) renewable
food is available at different rates in distinct patches,
(ii) foragers are ideal in that they know exactly the
rates of food deliveries, (iii) foragers are free to choose
any patch with no interference competition, and (iv)
other factors such as predation do not influence patch
choice. All of these assumptions and additional
factors, including costs of travel between patches,
perceptual biases, and learning, have been addressed
in analyses subsequent to Fretwell & Lucas’ (1970)
original formulation of the IFD [reviewed by Milinski
& Parker (1991), Kacelnik et al. (1992) and
Sutherland (1996)].

In order to apply IFD ideas to the foraging of
colonial breeders, one must assume that the locations
of and distances between food patches and foragers’
nests do not affect foragers’ spatial distribution,
competitive abilities, or food preferences. Indeed a
few studies on bees have made this assumption quite
explicitly (Pleasants, 1981; Possingham, 1992).
Although this is a legitimate theoretical assumption,
it is obvious that a nest’s spatial location can affect
aspects of provisioner’s foraging. Hence spatially
explicit models are needed to analyse the distribution
of provisioners that nest in large aggregations.

Here we analyse the spatial distribution of
numerous individual provisioners that use the same

central place. Specifically, we address the following
questions: first, how should either solitary or social
provisioners from a single aggregation distribute
themselves among distinct food patches at varying
distances from the aggregation? Second, how does the
foraging currency used (rate or efficiency maximiza-
tion) affect predictions on the spatial distribution?
Third, how do predictions change when predation
risk is considered? Fourth, what is the optimal spatial
distribution of provisioners in a two dimensional field
of food? Throughout our presentation, we use bees
for our numerical illustrations because bees are ideal
for empirical evaluation of our assumptions and
predictions. Even so, our models are general and thus
relevant for any aggregation of solitary or social food
provisioners such as ants and birds (Holldobler &
Wilson, 1990; Brown & Brown, 1996).

The Model

    

In this section, we derive the general equations for
evaluating the optimal subdivision of provisioners
among distinct patches that differ in their distances
from the provisioners’ aggregation. First, we derive
the equations for rate and efficiency maximization;
then we determine the algorithms for solitary and
social provisioners. The derivation below considers all
the realistic parameters needed for modeling the
distribution of colonial food provisioners. The cost of
this biological realism is that it does not allow easy
analytic solution. Hence, in Appendix A, we develop
a somewhat simpler model and include analytic
results.

Rate of energy intake

When the provisioner collects food for delivery and
acquires the same food to meet its own energetic
needs, we can consider the average long term net rate
of energy delivery per trip, which is the total energy
gained over the total time spent flying to and from
food patch i:

Ri =
Lei −Cfi

tpi + tfi
(1)

where L is the maximum load capacity in units of
volume (or weight), ei is the energy content per unit
volume (or weight), Cfi is the total energetic cost of
flight, tpi is the total time spent in patch i, and tfi is the
total time spent flying to patch i (see Schmid-Hempel
et al., 1985). For simplicity, we assume here that the
time and energy cost of unloading food is negligible.
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The overall energetic cost of flight is Cfi = tficf,
where cf is the cost of flight per time unit. The total
time spent flying to patch i and back is tfi =2di/v,
where di is the distance to patch i and v is flight
velocity. If the provisioner loads a full load, then its
patch duration is Lei/ri, where ri is the net rate of
loading in patch i. Substituting the above parameters
in (1), we get

Ri =
Lei −

2di

v
cf

Lei

ri
+

2di

v

. (2)

The net rate of loading in patch i can be described as

ri =
pieisi

si + nq
i
− cp (3)

where pi is the gross maximum per capita rate of
loading in patch i [volume (or weight) per unit time],
si is a parameter related to patch size defined in units
of number of provisioners, ni is the number of
provisioners foraging simultaneously in patch i, q is
the interference competition (qr 1), and cp is the
energetic cost of loading while in the patch (energy
per time unit).

Equation (3) relates food production rate in a patch
to the actual net loading rate experienced by a
provisioner as affected by the total number of
provisioners using that patch and the way they
interact. The gross loading rate is determined by four
variables. With almost no provisioners in the patch
(ni : 0), the rate is approximately piei. For ni q 0 and
q=1 (no interference), loading rate is affected by ni

and by si, which can be perceived as an indirect
measure of patch size; for example, si can be related
to the number of open flowers in a patch. In the case
of no interference, si is the number of provisioners at
which per capita gross consumption rate is half its
maximum rate (i.e. piei/2). With q=1, eqn (3) depicts
exploitation competition only; with qq 1, we have
both exploitation and interference competition. Note
that we assume here no patch depletion. We chose
eqn (3) to depict net consumption rate because it is a
simple yet biologically meaningful function. While it
is not directly based on empirical data, it is in
agreement with other functions used to depict
exploitation and interference in theoretical and
empirical studies (Hassell, 1978; Possingham, 1992;
Sutherland, 1996). Note that for completeness, we
included q as the parameter for interference
competition; however, for brevity, we assumed no
interference (i.e. q=1) in our numerical examples
below.

Efficiency

Empirical studies in birds and bees suggest that
efficiency, defined as the ratio of net energy gain over
energy cost, better describes individual behavior than
net rate of energy gain [eqns (1) and (2);
Schmid-Hempel et al., 1985; Ydenberg, 1997]. We
thus compared solutions using rate as the currency
with those using efficiency. For efficiency, we modified
the denominator in eqn (2) to convert patch and flight
duration into energetic costs:

Effi =
Lei −

2di

v
cf

Lei

ri
cp +

2di

v
cf

. (4)

Above we described the spatially explicit foraging
currencies required for calculating provisioner distri-
bution. We now turn to evaluate the distinct
algorithms needed for predicting the spatial distri-
bution of solitary and social provisioners. Here
‘‘social’’ refers to a colony such as in social
hymenoptera, where a colony’s fitness is determined
by the cooperative effort of all its members.

Solitary provisioners

If the foraging arena comprises several patches at
varying distances, then at equilibrium, the rate of
energy intake by (or efficiency of) a forager at any of
the patches for which ni r 1 should be identical
(Hamilton et al., 1967):

R1 =R2 = . . .=Ri (5)

where Ri is as defined in eqn (2), and

s
i
nai = s

i
ni01+

tfi

tpi1=N, (6)

where nai is the number of provisioners using patch i,
and N is the total number of active foragers in the
aggregation. Equation (6) means that the total
number of foragers using all available patches
(including the foragers on the way to and from the
patch) equals the number of foragers available. This
equation also illustrates the important point that the
number of foragers observed simultaneously in a patch
(ni) can be much smaller than the number of foragers
using the patch (nai), especially for patches far from
the nest, where flight duration (tfi) may be long in
relation to duration in the patch (tpi). For example,
for a patch for which flight duration is identical to trip
duration, only half the number of provisioners using
that patch will be observed at the patch at any given
time.
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Social provisioners

In this case, the allocation of foragers among
patches should be such that the overall rate of energy
intake (or efficiency) of the colony, Rcol, is maximized.
That is, the overall rate is the total food collected by
all members of the colony over the sum of their
foraging duration:

Rcol =

s i nai0Le−
2di

v
cf1

si nai0Lei

ri
+

2di

v 1
(7)

subject to the constraint expressed in eqn 6.
Equations analogous to (5) and (7) can be derived for
the efficiency currency.

     

While the above rate and efficiency currencies
consider only rates of energy gain and cost, it is clear
that trade-offs between food gain and mortality rate
underlie many foraging decisions (e.g. Sih, 1980,
1992; Werner & Gilliam, 1984; Lima & Dill, 1990).
We thus extend our analysis to include predation risk,
and derive equations for lifetime fitness for solitary
and social provisioners. We define mf and mp as the
probabilities of mortality per time period during flight
and in the patch respectively. Hence, the probability
of survival per provisioning trip is

sTi =(1− mftfi)(1− mptpi) (8)

(with mftfi�1 and mptpi�1). We assume that lifetime
energy gain is closely related to lifetime reproduction
in solitary provisioners and to the contribution of a
social provisioner to its colony’s fitness. Clark &
Dukas (1994) compared fitness of a social provisioner
such as a social bee for which fitness is incremented
each provisioning trip to the fitness of a solitary
provisioner such as a solitary bee, which increments
fitness only when she successfully completes provi-
sioning a cell. We use here a similar approach in order
to compare optimal spatial distribution of solitary
and social provisioners. In either case, we assume that
the provisioner always uses the same patch, with net
energy gain per trip, fi, as before:

fi =Lei −
2di

v
cf.

We also assume constant survival probability per trip,
constant food gain, and an unlimited number of
potential foraging trips.

Social provisioners

With the above assumptions, the lifetime contri-
bution to colony fitness of a social provisioner (Clark
& Dukas, 1994) is

Fsoci = sTifi + s2
Tifi +. . .=

sTifi

1− sTi
. (9a)

If survival probability per trip is high, eqn (9a) can
be approximated by

Fsoci =
fi

1− sTi
. (9b)

Note that maximization of eqn (9b) is related to
minimization of m/g (mortality rate over growth rate)
as used in analyses of ontogenetic habitat shift
(Werner & Gilliam, 1984; Gilliam & Fraser, 1987;
Clark & Dukas, 1994). Also, note the similarity
between eqn (9b) and the efficiency algorithm
[eqn (4)]. The two equations share the numerator,
which is net energy gain per trip; the denominators
of each equation involve cost, energy expenditure
per trip for efficiency, and probability of mortality per
trip for lifetime gain.

For the sake of comparison with solitary provision-
ers, we wish to quantify the contribution of a cohort
of social provisioners to their colony’s fitness, Fcol. If
the foraging arena comprises several patches at
varying distances, the distribution of social provision-
ers among these patches should result in the
maximization of

Fcol = na1Fsoc1 + na2Fsoc2 + . . . naiFsoci, (10)

where the number of individuals using all available
patches equals N [eqn (6)].

Solitary provisioners

A solitary provisioner such as a solitary bee
increments its fitness only after it has gathered enough
food to provision an offspring (Clark & Dukas, 1994).
We assume that this involves M provisioning trips; if
the provisioner survives by the end of that period, it
increments its fitness in amount proportional to the
total food collected. Hence, the provisioner’s expected
reproduction per period is

sM
TiMfi

and its total expected lifetime reproduction is

Fsoli =Mfi(sM
Ti + s2M

Ti +. . .)=
sM

TiMfi

1− sM
Ti
. (11)

At equilibrium, the distribution of solitary provision-
ers among several patches at varying distances should
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be such that expected lifetime fitness gain at any of the
patches for which ni r 1 should be identical:

Fsol1 =Fsol2 = . . .=Fsoli. (12)

   

- 

In many cases, it is pertinent to consider the
spatial distribution of provisioners as a function of
radial distance from the aggregation. For
example, such analysis may be the most practical
for evaluating spatial distribution of bees in a
large flowering meadow. We present here such
two-dimensional analysis for solitary provisioners
while assuming that on average, food parameters
(p, e, and s) are constant with distance and
direction from the aggregation. We use here the rate
currency, though similar extension to the two-dimen-
sional case can be made with efficiency or lifetime
intake.

For the two-dimensional case, we express s and
n in units of number of individuals per unit area
and denote x as the radial distance from the
aggregation. We assume that the forager distribution
is radially symmetric about the aggregation, which is
located at x=0. For simplicity, we also assume no
interference, i.e. q=1. With these changes, eqns (2)
and (3) are slightly modified: now the net rate
of loading at a radial distance x from the aggregation
is

r(x)=
pes

s+ n(x)
− cp. (13)

And the net rate of energy delivery is

R(x)=
Le−

2x
v

cf

Le
r(x)

+
2x
v

. (14)

For the solitary provisioners, at equilibrium, R(x)
should be identical at all radial distances from
the aggregation. Given that all food parameters
remain constant with radial distance, n(x) must
decline with distance until reaching 0 at distance D,
defined as the maximal distance the foragers
travel. Integrating the distribution n(x) using polar
coordinates (where an element of area is of the
form dA=2pxdx), results in the total number of
provisioners,

N=2p g
D

0

n(x)xdx. (15)

We show in Appendix B that the approximate density
profile, n(x), is

n(x)=A−Bx, where A=
s
R

(pe−R),

B=
2ps(cf +R)

RvL
(16)

and

R10 psp
12N1

1/3

e(vL)2/3. (17)

From this we can also conclude that the total number
of foragers in a 1 m circular band at distance x from
the nest is

ntot(x)=2pxn(x) (18)

where n(x) is given by eqn (16). It also follows from
eqn (16) that foragers travel only as far as a distance
D=A/B.

Results

    

First, we give the results for the distribution of food
provisioners among patches identical in all food
parameters except that they are at different distances
from the aggregation.

Solitary provisioners

Here, at equilibrium, the rate of energy intake (or
efficiency) of foragers at each patch should be
identical. If only two patches are considered, with
patch 2 farther than patch 1, the overall cost of flight
to patch 2 is higher. For rates (or efficiencies) to be
identical, either the energetic content of food in patch
2 (e2), must be higher, or the duration in patch 2 (tp2)
must be smaller; for the latter to happen, one of the
two patch parameters, production rate (p2) or size (s2)
must be larger, or the number of foragers at the patch
(n2) should be smaller [eqns (1–3)].

Note that the only difference between the rate and
efficiency currencies [eqns (2) and (4)] is the inclusion
of parameters for energy expenditure during flight
and in the patch (cf and cp) in the denominator of the
efficiency equation. Thus, if cf = cp, results using
either the rate or efficiency currencies will be similar.
The difference in predictions between the two
currencies depends on the ratio of rate of energy
expenditure in flight and in the patch, cf/cp. When
cf�cp, more provisioners will use the closer patch
with the efficiency than rate currency. By contrast, if
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cp�cf, more provisioners will use the closer patch
with the rate than efficiency currency.

Figure 1 illustrates numerical solutions [derived
from simulations using eqns (2–6)] for the optimal
allocation of central place solitary provisioners
between two patches identical in all parameters except
that patch 2 is farther than patch 1. Parameter values
used are based on empirical values recorded for bees
and flowers (Southwick et al., 1981; Wolf et al., 1989;
Seeley, 1994). As discussed in the paragraph above,
the ratio cf/cp is critical for predictions using the
efficiency currency. While energy expenditure in flight
can readily be measured, energy expenditure in the
patch can vary widely depending on the exact activity
of the provisioner; it would be much higher if the
provisioner mostly hovers than if it spends its time

sitting at a feeder. Although we used here a realistic
empirical value of cf =2cp, it is important to
recognize the inherent variation for that ratio among
and within species. We used three combinations of
patch parameters of p=1, s=25; p=1, s=50; and
p=2, s=25. With these parameters and when the
two patches are at a distance of 500 m from the
colony, average trip duration (tf + tp) are 75.6 min,
35.5 min, and 16.6 min respectively. This range of trip
duration represents typical lengths reported for bees
by various authors (e.g. Ribbands, 1953; Dukas &
Visscher, 1994). Finally, we chose parameter values
for patch distance and total number of provisioners
so that Ri and ri were always positive.

When patch 1 is only 100 m from the aggregation
and patch 2 is up to 10 times farther, the optimal

F. 1. The equilibrium distribution of solitary provisioners from a single aggregation between two identical food patches located at
unequal distances (d1 and d2) from the nest (with 3 sets of pi, si values). Patch 2 is up to 10 times farther than patch 1, with patch 1 being
100 m (a, b) or 500 m (c, d) from the aggregation. Figures (a) and (c) are for the rate currency and (b) and (d) are for efficiency. See Table
1 for other parameter values.
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number of provisioners using patch 2 is only slightly
smaller with rate as the currency; but provisioner
numbers are up to 20% smaller with efficiency
[Fig. 1(a) and (b)]. When patch 1 is 500 m from the
aggregation and for the rate currency, the proportion
of foragers using patch 2 declines sharply with
distance only if patch parameter values are relatively
large [Fig. 1(c)]. The decline with distance, however,
is more dramatic with efficiency (with cf =2cp), where
no provisioner uses patch 2 beyond 3000 m for the
richest patch values [Fig. 1(d)]. Note that we chose to
depict here and throughout the number of provision-
ers using each patch; this number is usually greater
than the number of provisioners observed simul-
taneously in a patch, because some individuals would
be on their way to or from the patch. The relation
between these two related numbers appears in eqn (6).
The difference between the two quantities must be
considered in empirical tests with patches at realistic
distances from the aggregation, which may be up to
several kilometers for honey bees (e.g. Visscher &
Seeley, 1982).

Load capacity

Above we assumed that foragers leave a patch only
after they have collected a full load. However, it is
sometimes optimal for foragers to deliver only partial
loads (Schmid-Hempel et al., 1985). To evaluate this
issue, we calculated optimal load capacity for
individual foragers using an algorithm similar to the
one employed by Schmid-Hempel et al. (1985).
Briefly, in this algorithm, energy expenditure during
flight and in the patch is a function of the
provisioner’s own weight and its load; hence during
loading, energy expenditure increases with each
addition to the load. Our results indicate that for
patches of very short distances from the nest
(Q100 m), optimal loads are well below the maximum
load, especially when efficiency is the currency
maximized. This agrees with Schmid-Hempel et al.
(1985), who used a patch distance of 30 m. For farther
distances, optimal load capacity converges to the
maximum load used here (300 j). At distances of
100 m and longer, the optimal load is still lower than
the maximum for the smallest rates of food delivery,
r=0.075 j/s. However, the difference in rate between
the optimal and maximum load is smaller than 1% at
100 m, and differences in efficiency between the
optimal and maximum load are only 7% at 100 m,
and 1.7% at 500 m. Given that the differences
between optimal and maximal load are so small even
for the shortest distances considered here, our
assumption of maximum load is well justified, at least
for the realistic bee parameters used here.

F. 2. Comparison of the equilibrium distribution of solitary
(broken line) and social (continuous line) provisioners from a single
aggregation between two food patches. The patches are identical
(with pi =1, si =50) except that patch 2 is up to 10 times farther
than patch 1, which is 500 m away from the aggregation. Results
are for rate (R) and efficiency (Eff). Other parameter values are as
in Fig. 1.

Social versus solitary provisioners

The outcome of the optimal provisioning strategy
for a solitary provisioner would be that at
equilibrium, all provisioners have identical net rate of
gain. Such a condition does not hold for the social
provisioners, where the colony’s net rate of gain is
maximized. It can be shown analytically that this
difference in optimization schemes produces distinct
spatial distribution of provisioners, with more social
provisioners exploiting the farther patch (Appendix
A). Numerical examples based on eqns (5) and (7)
show that the difference in strategies is less than 10%
when rate is maximized, and up to 30% for efficiency
(Fig. 2).

     

As with efficiency [eqn (4)], outcomes while
maximizing lifetime fitness depend on the ratio
between two parameters; this time, the parameter
ratio is instantaneous mortality rate in flight over
instantaneous mortality rate in the patch, mf/mp.
Numerical examples based on eqns (8–12) show that
when mf = mp, provisioner distribution while using
lifetime gain is similar to that obtained with rate
(Fig. 3). That is, there is relatively small reduction in
number of provisioners using the more distant patch
even when it is 10 times farther (with pi =1 and
si =50). When mf =2mp, results with lifetime gain are
similar to the ones using efficiency with a parallel ratio
cf =2cp. That is, the reduction in number of
provisioners using the farther patch is larger than
with rate. However, unlike efficiency, where there is
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some empirical foundation for using a ratio
ofcf =2cp, the ratio of mortality rates is yet unknown.
Hence, we considered also a third possibility, with
mf =0.5mp. Here the proportion of provisioners using
the farther patch is slightly reduced for solitary
provisioners and slightly increased for social provi-
sioners (Fig. 3).

Social versus solitary provisioners

As before, the difference in optimization schemes
produces distinct spatial distributions of provisioners,
with more social provisioners exploiting the farther
patch. The differences in strategies is rather small with
mf = mp and mf =0.5mp, but it is as high as 30% with
mf =2mp (Fig. 3).

    

The density of solitary provisioners declines
linearly with distance when average food parameters
do not change with distance and direction from the
aggregation and rate is maximized. The overall
number of provisioners initially increases, peaks at
half the maximal distance, D, and then declines to 0
at D (Fig. 4).

Discussion

  

The spatial distribution of provisioners that share
a central nesting site presents some balance between
the cost of foraging closer, where competition with
other provisioners is higher, and the cost of traveling
farther. Such costs may be expressed as overall trip

F. 4. The equilibrium distribution of solitary provisioners from
a single aggregation in a two dimensional field of food as a function
of radial distance from the aggregation. The continuous line depicts
provisioner density, n(x), and the broken line shows total number
of provisioners within a band of 1 meter, ntot(x). Parameter values
are N=5000, p=2, s=10−5, and other parameter values as in
Table 1. With these parameters, the equilibrium rate of energy
intake is 0.13 j s−1.

duration, rates of energy expenditure during travel
and during foraging, or mortality rates during travel
and during foraging. Although that general notion
has been recognized (Hamilton & Watt, 1970; Covich,
1976; Taylor, 1977; Anderson, 1978; Bartholdi et al.,
1993), no previous study has considered the overall
factors involved. Rather, recent foraging studies have
focused either on the behavior of a single central place
forager or on models based on ideal free distribution.

A crucial component of our model is the
assumptions about food production and exploitation
[eqn (3)]. We chose to present a renewable resource,
which is realistic for many systems and especially for
flowers and bees on which we based our numerical
examples. That resource has a per unit energy
production rate and an overall size or density. This
can be measured empirically as the number of
provisioners at which gross consumption rate is half
its maximum rate (piei/2) if interference is negligible.
Interference among individuals is likely to occur
beyond a certain density (Stillman et al., 1996) and it
can be quantified using eqn (3).

Another key feature is the choice of currency to be
maximized. Although rate still dominates foraging
theory (Stephens & Krebs, 1986; Krebs & Davies,
1991), it is now clear that mortality probabilities
associated with various activities strongly affect
foraging choice (e.g. Milinski & Heller, 1978; Lima &
Dill, 1990; Sih, 1992). To include mortality in our
model, we had to choose values for the ratio of
mortality rate during flight and in the patch.

F. 3. Comparison of the equilibrium distribution of solitary
(– –) and social (——) provisioners when lifetime gain is
maximized, with three ratios of instantaneous mortality rate in
flight over instantaneous mortality rate in the patch, mf/mp. The
numerical solutions are based on eqns (8–12), with parameter
values as in Fig. 2 and Table 1.
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T 1
Definitions of major model parameters, the values of relevant parameters in the numerical examples and sources*
L Load capacity 40 ml (Seeley, 1994)
ei Energy content per unit load volume 7.5 j ml−1 (Southwick et al. 1981)
tpi Total time spent in patch i
tfi Total time spent flying to patch i
di Distance to patch i
v Flight velocity 7 m s−1 (Seeley, 1994)
cf Cost of flight per time unit 0.05 j s−1 (Wolf et al. 1989a, b)
ri Net rate of loading in patch i
pi Gross maximum per capita rate of loading in patch 1 or 2 j s−1 (Southwick et al, 1981)
si Parameter related to patch size 25 or 50
ni Number of provisioners foraging simultaneously in patch i
q Interference competition 1
cp Energetic cost of loading in the patch 0.025 j s−1 (Wolf et al. 1989a, b)
nai Number of provisioners using patch i
N Total number of active foragers in the aggregation 500 or 5000
mf Probability of mortality per time period during flight 0.5, 1, or 2 mp

mp Probability of mortality per time period while in the patch 2.5 10−6 s−1

M Number of trips required by a solitary provisioner to gather food for an offspring 15

*Some parameter values are rough or rounded estimates.

Although there has been significant interest in the
association between foraging effort and mortality rate
(Wolf & Schmid Hempel, 1989a, b), no data exist for
the ratio of mortality rates during the two distinct
activities of traveling to and foraging in a patch. Such
information can readily be gathered at least for honey
bees by monitoring departures and arrivals of marked
bees at the hive and at distant feeders or flower
patches.

It is intriguing that when the ratio of mortality rates
is identical to the ratio of energy expenditures in
travel and in the patch, outcomes using the lifetime
fitness algorithm [eqns (8–12)] are identical to results
using efficiency [eqn (4); Fig. 2 vs. Fig. 3]. Since
Schmid Hempel et al. (1985) found that foraging
decisions of honey bees were better described by
efficiency than rate, other empirical studies have
confirmed this outcome (e.g. McLaughlin & Mont-
gomerie, 1990; Welham & Ydenberg, 1993; Seeley,
1994). Efficiency, however, is an empirically based
algorithm that has not been derived from first
principles. Houston et al. (1988) argued that when
mortality increases with effort, the currency maxi-
mized should be between rate and efficiency. Our
simpler algorithm for lifetime energy intake shows
more clearly why, under certain conditions, foraging
decisions based on balancing energy intake and
mortality risk may appear as decisions based on
maximizing efficiency.

Note, however, that we assumed that a provisioner
maximizes its life time food intake. This is legitimate
for solitary provisioners with non-overlapping gener-
ations, and for social workers of perennial colonies at
times they do not undergo rapid growth; for example,
honey bees may devote a large portion of the summer

to storing food for the winter. Neither our algorithm
nor the one used by Houston et al. (1988) is
appropriate for annual or perennial colonies experi-
encing exponential growth. In that case, a fitness
measure similar to the intrinsic rate of growth in
populations with overlapping generations (r) is
required.

Ydenberg et al. (1994) suggested that limitation on
the rate of energy assimilation can explain efficiency
maximization. This legitimate explanation requires
quantification of actual energy assimilation by
foragers to verify that it is indeed a constraint driving
foraging behavior. In addition, predictions using
efficiency maximization should be compared with
predictions using lifetime energy intake if one is to
establish either currency as the one employed by
animals. That is, first, assumptions used for either
currency must be quantified; and second, given that
both currencies maximize gain over cost, their predic-
tions should be compared to each other and not only
to predictions with rate, which are sometimes quite
different. Of course, the use of any of the
three currencies considered here may be appropriate
depending on the species studied, ecological circum-
stances, and an animal’s physiological state.

 .  

Our analyses suggest that the spatial distribution of
provisioners belonging to a social aggregation should
differ from that of solitary provisioners. Technically,
maximization of energy intake (or any other
currency) should be at the colony level for social
provisioners and at the individual level for solitary
provisioners. The outcome of individual maximiza-
tion is that at equilibrium, all individuals have
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identical intake. This condition need not hold for a
social colony, where some individuals, by collecting
food farther, reduce competition with kin closer to the
aggregation. Even though per capita gain of such
individuals is lower, the overall colony gain is higher
(Figs 2 and 3; Appendix A). This difference between
solitary and social provisioners provides another
fitness advantage of sociality (Wilson, 1971; Mich-
ener, 1974; Clark & Dukas, 1994). Of course, it
remains to be empirically evaluated whether social
provisioners are indeed sensitive to such variation in
maximization schemes. At the proximate level, this
can readily be achieved by an increased tendency of
social provisioners to collect food farther from the
colony than solitary provisioners.

    

Our results for distinct patches can readily be
extended to two dimensions as illustrated here for the
rate currency (Fig. 4). This two-dimensional analysis
may be more relevant in many natural or semi-natural
conditions. For example, predictions of our model
can be tested in a large cultivated field of flowers with
a single aggregation of solitary or social bees in its
center. Applied studies on honey bees have provided
some data on the two-dimensional distribution of
foragers in agricultural fields (e.g. Lee, 1961; Levin,
1961; Gary et al., 1978). But this information is not
suitable for evaluating our model, because the above
studies involved numerous colonies, some of which
were monitored as a part of the experiment while
others were not. Nevertheless, such empirical data
illustrate the feasibility of evaluating assumptions and
predictions of our model under realistic yet controlled
two-dimensional field settings.

      

It is of interest to evaluate how far foragers should
go from their central place to collect food. The
simplest answer can be derived from the numerator of
eqn (2), by solving for the maximum distance for
which net energy gain is positive. For the bee
parameter values used here (Lei =300, v=7, and
cf =0.05), dmax =21 km. The parallel answer for the
two-dimensional case is dmax =D=A/B where A and
B are defined in eqn (16) (see also Appendix B). For
the parameter values used for Fig. 4, D=5,375 m. A
more realistic answer for maximal travel distance
would consider the relative rates of energy gain as one
goes farther from the central place; these rates depend
on food quality and abundance, on the number of
foragers in the aggregation, and on the distribution of
foragers from neighboring aggregations. Note that
even if the rate of energy gain within several km from

an aggregation is relatively low, provisioners may
decide not to fly farther, but instead, wait in the nest
until forage conditions improve. It appears that
honey bees do indeed reduce the number of foragers
under low forage availability and increase the work
force when forage is rich (Seeley, 1996). To
understand such level of decision making either in
solitary or social foragers, one must consider lifetime
fitness and the way it is affected by alternative
strategies at low food availability, such as waiting in
the nest for a period of several days, foraging at
farther distances for rich food, or foraging at closer
distances for poor food. Another issue that needs
consideration is the discovery of food patches if these
are difficult to find at a distance. Unfortunately, we
do not yet know the typical detection distance even
for sources such as floral patches. It is likely, though,
that detection distance greatly varies among plant
species, patch sizes and weather conditions (see
Seeley, 1987, 1996).



Our analyses provide an important link between
individual behavior as expressed in models of central
place foraging and its relation to population level
distribution as analysed in ideal free distribution
models. Still, we focused here only on a restricted set
of basic issues and there are a few additional factors
requiring close examination.

Inter-aggregation interactions

So far, we have only considered a single
aggregation of provisioners because we think it is
crucial to establish an empirically sound working
model before proceeding to multi-colony interactions.
Our assumptions and predictions for rate of energy
intake under exploitation and interference compe-
tition, currencies maximized, and maximization
schemes for solitary and social provisioners can all be
tested with a single aggregation in either a distinct
patch or in a two-dimensional settings. Once newly
gathered data allow us to narrow down alternatives
considered here, it will be easier to evaluate the spatial
distribution of provisioners from more than one
aggregation.

Information and stochasticity

We implicitly assumed that provisioners have
perfect knowledge of location and quality of food
sources, provisioner density, and mortality risks. In
reality, such information must be gathered and
updated constantly because of spatial and temporal
changes (Stephens & Krebs, 1986; Bernstein et al.,
1991). To include such issues of information, we need
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to know more about a forager’s rate of acquisition of
information.

In sum, our spatially explicit models provide
testable new predictions for the spatial distribution of
numerous solitary or social food provisioners that
share a central place. Hence these models are relevant
for a variety of well studied species of birds and bees.
By including effects of distance from the central place
and the fundamental factors of exploitation and
interference competition, we provide a link between
the somewhat separate models of central place
foraging by a single individual and ‘‘ideal free
distribution’’ of many foragers.

We thank an anonymous referee, R. Ydenberg, and other
members of the Behavioural Ecology Group at Simon
Fraser University for comments, and NSERC Canada
operating grants to LK and C. Clark for financial support.
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APPENDIX A

In order to analytically compare the Social and
Solitary forager case, we used a simplified version
of the expression for rate. We defined the basic rate of
energy uptake associated with patch i, Ri by the
formula

Ri =
ai

g(ni)
, (A.1)

where

ai =Lei −2Cfi =Lei −2cf
di

v
, (A.2)

is the uptake of energy discounted by the energy spent
in travelling to the patch, and

g(ni)= tpi + tfi 1 tpi =
L

C(ni)
, (A.3)

is the time spent in the patch given that the rate of
energy gain is C(ni). [See eqn (1) in main text]. We
assumed, further, that

C(ni)=
pieisi

si + nq
i
, (A.4)

where ni is the number of individuals in the given
patch. (The simplification in the above expression
consists in neglecting the time spent in travel and the
energetic cost of loading.)

For convenience of notation, we here set ei =1. We
also assume that q=1. We are considering the case
of two patches whose sizes and qualities are identical
(s1 = s2 = s, p1 = p2 = p), but with Patch 1 closer to
the nest. Thus, d1 Q d2 and a1 q a2. Further, a1, a2 q 0
can be assumed. A comparison of the Solitary and

Social cases for the two patch problem can be made
as follows.

Solitary Case

We must find a way of subdividing the total
population, N into numbers of individuals in the two
patches, i.e., n1 + n2 =N such that R1 =R2. This
implies

a1

g(n1)
=

a2

g(n2)
. (A.5)

and leads to the equation

a1

(s+ n1)
=

a2

(s+N− n1)
. (A.6)

Solving this equation for n1 results in:

n1 =N
(a1 − a2)

s
N

+ a1

a1 + a2
(A.7)

It is useful to express this solution to eqn (A.6) in
terms of the fraction, f, of the population in patch 1

f=
n1

N
, 1− f=

n2

N
. (A.8)

We further define the ratio of net energy gains,

y=
a1

a2
. (A.9)

By simplifying eqn (A.6) and re-expressing it in terms
of the above ratios, we find that the fraction of
foragers in Patch 1 in the solitary case, f, can be
expressed in the form:

f=
y+(y−1)

s
N

(y+1)
. (A.10)

Note that f has been expressed in terms of the ratio
of energy gains, y.

Social Case

In the social case, we must find values of n1, n2 (with
n1 + n2 =N), that maximize the Total rate of energy
uptake by the whole population

R=
n1a1 + n2a2

n1g(n1)+ n2g(n2)
. (A.11)

Using the expressions for g for the two (identical)
patches, and the notation f defined above, eqn (A.11)
can be expressed in the form

R=0 ps
NL1 (a1 − a2)f+ a2

−2f(1− f)+ (
s
N

+1)
. (A.12)
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From this equation, we can make these observations:

(1) the Total Rate can be expressed in terms of
ratios of the individuals.

(2) The value of the parameter p appears only in
the braces multiplying the expression shown in
eqn (A.12) above. Thus, p can affect the scaling of the
total rate, but not the optimal value of the fraction in
patch 1, f. Thus, if the patches are identical, their
quality does not alter the distribution of individuals.
Note that the value of L affects the quantities a1, a2

which appear in the fractional expression and so this
statement is not true for L.

(3) We have used Patch 1 as the reference patch,
but clearly, the same expression could have been
rewritten in terms of the proportion going to Patch 2.

To find the optimal individual allocation, we must
find the maximum value of R with respect to the
unknown f. Setting

dR
df

=0, (A.13)

leads, after some simplification, to a quadratic
equation for f,

af2 + bf− c=0 (A.14)

where

a=2(a1 − a2), b=4a2,

c=
s
N

(a1 − a2)+ (a1 + a2). (A.15)

(All of the above coefficients are positive according to
our comments about the relative magnitudes of a1 and
a2.) The solution to this quadratic equation is

f=

−a2 +
z2
2 x(a2

2 + a2
1)+

s
N

(a1 − a2)2

(a1 − a2)
. (A.16)

The solution is expressed in a more compact form in
terms of the ratio of the energy gains for the two
patches, y= a1/a2, by dividing numerator and
denominator of eqn (A.16) by a2. The result is

f=

−1+
z2
2 X(1+ y2 +

s
N

(1− y)2

(y−1)
. (A.17)

Comparison of the Two Systems

By previous remarks about the relative magnitudes
of a1, a2, we know that yq 1, and (y−1) is positive.

We can compare eqns (A.10) and (A.17) directly, in
a limiting case that y is large, i.e. that Patch 1 is much
closer than Patch 2. We find that for y�1,

fsocial 1
1

z2X1+
s
N

, (A.18)

whereas

fsolitary 1 1+
s
N

. (A.19)

Since the quantity inside the radical is larger than 1,
clearly, for large y, fsolitary q fsocial, i.e. the proportion of
individuals that go to the closer patch (Patch 1) is
higher in the solitary case than in the social case.

APPENDIX B

The density profile for solitary foragers in a
two-dimensional field can be derived in the following
way: We consider the two equations

R=
L− g1x
L
r

+ g2x
(B.1)

r=
K

s+ n(x)
− o (B.2)

where the parameters are

L=Le, g1 =
2cf

v
, g2 =

2
v
, K= pes, o= cp (B.3)

We consider the approximation o= cp 1 0 which
greatly simplifies the problem. (The full case can also
be treated, but the results are more cumbersome, and
will not be described here.) In the solitary forager
case, the rate R is the same at every distance from the
aggregation but its value is not a priori known. We
can find a relationship between 1/r and x by
rearranging the first equation. The result is

1
r
=

1
R 01−

(g1 + g2R)x
L 1. (B.4)

We also note from the second equation (with o1 0)
that

1
r
1 (s+ n)

K
. (B.5)

Equating the two expressions for 1/r and solving for
n(x) leads to the result

n(x)=
K
R 01−

sR
K

−
(g1 + g2R)x

L 1 (B.6)
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which, in terms of the original parameters is

n(x)=
pes
R 01−

R
pe

−
2(cf +R)x

vLe 1. (B.7)

For this density profile to make sense, we must have
a positive density close the the nest (when x=0 we
require nq 0). This imposes the restriction

peqR. (B.8)

We now observe that the density profile is a function
whose form is

n(x)=A−Bx (B.9)

where, after some simplification, the quantities A, B
are

A=
s
R

(pe−R), B=
2ps(cf +R)

RvL
. (B.10)

Thus, in the approximate limit that cp =0, the density
falls off linearly with distance from the nest. This
density profile is meaningful only up to the distance
x=D at which n=0. This distance, which corre-
sponds to the farthest distance of travel and might be
called a ‘‘domain size’’ is given by

D=
A
B

=
vL(pe−R)
2p(cf +R).

(B.11)

The above results contain the parameter R which
represents the rate of energy gain actually attained at
each location. Though R is the same at every distance
x, its value is not known ahead of time. The value of

R can be found if we specify the total size of the
population, N. We have

N=2p g
D

0

n(x)xdx=2pg
D

0

(Ax−Bx2)dx

=2p0AD2

2
−B

D3

3 1 (B.12)

If we substitute the value of D into the result, we find
that

N=
p

3
A3

B2 =
p

3 0 s
R

(pe−R)1
3

0 RvL
2ps(cf +R)1

2

. (B.13)

The expression linking N to R is cumbersome, and it
would be difficult to solve for R in terms of N directly,
unless we simplify the problem further. It we make the
further assumption that Rq cf and that peqR then
we can approximate N by

N1 1
R3

pspe3

3 0vL2 1
2

(B.14)

which allows us to conclude that

R10 psp
12N1

1/3

e(vL)2/3. (B.15)

We now have the previously unknown value of R
expressed in terms of the total population size and
other parameters of the problem. We can use this
expression in the coefficients A and B so that the
function n(x) is fully determined.


