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The regulation of the interactions between the actin binding proteins and the actin filaments are 
known to affect the cytoskeletal structure of F-actin. We develop a model depicting the 
formation of actin cytoskeleton, bundles and orthogonal networks, via activation or inactivation 
of different types of actin binding proteins. It is found that as the actin filament density increases 
in the cell, a spontaneous tendency to organize into bundles or networks occurs depending on the 
active actin binding protein concentration. Also, a minute change in the relative binding affinity 
of the actin binding proteins in the cell may lead to a major change in the actin cytoskeleton. Both 
the linear stability analysis and the numerical results indicate that the structures formed are 
highly sensitive to changes in the parameters, in particular to changes in the parameter ~b, 
denoting the relative binding affinity and concentration of the actin binding proteins. 

1. Introduction. Actin is an abundant protein in cells and an important 
determinant of the structure and mechanical properties of the cytoplasmic 
matrix. Actin polymerizes into filaments that are essential for many forms of 
cellular motility, including muscle contraction. In non-muscle cells, actin 
filaments are highly dynamic on a second to minute time scale. Since the 1970s, 
it has been generally recognized that in cultured cells, polymerized actin occurs 
in at least two distinguishable states of structural organization: in linear 
fibrillar bund les - -commonly  referred to as stress fibres--and in isotropic 
meshworks or networks confined to the motile lamella zones and ruffling 
membranes (Fig. la,b) (Small et al., 1982; Stossel et al., 1985; Stossel, 1984; 
Weeds, 1982). 

After the discovery of the major classes of actin binding proteins in the 1980s 
it seemed possible that the assembly and function of actin in cells might be 
explained by relatively simple mechanisms involving a small handful of 
proteins (Cooper, 1991; Pollard and Cooper, 1986; Pollard et al., 1990). 
Populations of actin filaments have been observed to rearrange in a variety of 
cells, for example during differentiation of embryonic carcinoma cells, during 
locomotion of fibroblasts or during development of yeast cells (see Way and 
Weeds, 1990; Meulemans and De Loof, 1992). It has been revealed that the 
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Figure 1. Network of F-actin filaments (a), joined and held nearly perpendicular by 
the cross-linking proteins (e.g. ABP or filamin), and bundles of F-actin filaments 
(b), joined and held nearly parallel by the bundling proteins (e.g. villin, fascin)_ 
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structured organization of actin filaments can also form and disappear rapidly 
in various cellular phenomena such as mitosis and fertilization (Pollard, 1990). 
The rearrangement of actin cytoskeleton in a cell is now known to affect many 
functions of the cell. It also plays a dominant role in various phenomena, such 
as the motility of bacteria in a cell. For example, the rapid movements of the 
bacterium Listeria monocytogenes through the host cell cytoplasm have been 
found to be mediated by the formation of a tail-like actin meshwork at the 
surface of the bacteria (Theriot and Mitchison, 1992; Civelekoglu and 
Mogilner, 1994). 

A recent paper by Sherratt and Lewis (1993) develops a model of actin 
alignment based on mechanical response to applied forces, and to forces 
generated by filaments on one another. However, the rearrangement of actin 
cytoskeleton is also known to occur in the absence of applied forces, as a 
response to activation or inactivation of the binding proteins (Way and Weeds, 
1990; Vandekerckhove, 1990; Korn, 1982; Hartwig, 1992; Harris, 1987). Also, 
the mechanical properties of the actin cytoskeleton, such as its rigidity or 
viscosity, have been shown to depend on the interactions between the actin 
binding proteins and F-actin, and specifically on the rates of reaction between 
them (Sato et al., 1987; Stossel, 1984). In this paper we present a 
complementary model based on the geometry of the molecular interactions, 
and on the differences between binding proteins that promote a variety of actin 
structures that form. 

The main purpose of this paper is to characterize the essential aspects of actin 
polymerization which permit these rapid structural changes in actin filaments. 
We first ask several questions about the formation of these structures. We ask 
which type of molecular interactions and properties observed biologically can 
account for the observed dynamics of actin in the cell. We also consider how 
properties at the molecular level (for example, affinities of binding proteins) can 
affect the macromolecular structure and organization, and how changes in the 
details of the interactions can affect the outcome of the structures that form. 
Towards this goal we will reformulate, in mathematical terms, the dynamics of 
the actin filaments in the cell based on the elements and properties reported in 
the biological literature (Stossel, 1990). Second, we address the question of a 
spontaneous switch between the orthogonal and parallel structure and the 
sharpness of this transition in a model that accounts for the presence of two 
types of actin binding proteins. 

The model(s) allow us to reach the following conclusions: 

(1) When the density of actin reaches a critical level, a spontaneous tendency 
to organize into an orthogonal or parallel structure occurs. 

(2) The structure depends on the concentrations of active cross-linking or 
parallel binding proteins, e.g. filamin and ABP-50 or fibrillin and villin. 
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(3) Furthermore, the switch between the orthogonal and the parallel aligned 
structures can occur as a result of a change in the relative binding 
affinities and concentration of the two types of actin binding proteins. 

The organization of this paper is as follows: in Section 2 we give some 
biological background and mathematical preparation for the model. In 
Section 3 we describe the model and discuss its analytical and numerical 
results. In Section 4 we extend the model to account for the existence of two 
types of actin binding proteins simultaneously and discuss the results of this 
model. Finally, we close with an overall discussion of the models and some 
preliminary results about the biological values of their parameters. 

2. Mathematical and Biological Preparation. The steps in the formation of 
the actin meshwork are as follows (see Stossel, 1990: Pollard and Cooper, 
1986). First, needle-like actin filaments are created by joining individual actin 
molecules. This process has two stages: the single molecules aggregate to form 
small groups of three or four m o l e c u l e s - - n u c l e a t i o n - - a n d  then the nuclei 
elongate, eventually generating long, stiff rods of actin. When the length and 
mass of these filaments reach a certain level, the filaments start to join under the 
influence of cross-linking proteins in orthogonal networks or bundles. As seen 
under the electron microscope, some cross-linking proteins join the actin 
filaments at approximately right angles (Hartwig, 1992; Hartwig et al., 1980, 
1992; Stossel, 1984, 1990; Tilney et al., 1992a,b; Weeds, 1982), whereas the 
bundling proteins promote binding in parallel (see Fig. 1). The way in which 
the cross-linking and the bundling proteins bring about the high angle 
branching or the parallel alignment of actin is a function of their structure 
(Stossel, 1984, 1990; Hartwig and Stossel, 1981; Pollard and Cooper, 1986). 

The model we formulate in this paper will account for the formation of 
structure in a pool of actin filaments in the cell and will focus on orientation 
rather than spatial distributions. We assume the existence of short (ready to 
bind) actin filaments rather than explicitly modelling the nucleation of 
filaments. In the formation of the meshwork or the bundles, our focus is the 
orientation. An eventual goal, not addressed in this paper, is to examine a 
model which describes both the spatial distribution of the molecules and their 
orientations. 

3. The Model. In this paper we consider a two-dimensional analogue of a 
truly three-dimensional molecular milieu. A similar simplification was made in 
Sherratt and Lewis (1993). The model here closely resembles a model for 
orientations of interacting cells described in Edelstein-Keshet and Ermentrout  
(1990). The mathematical techniques appropriate for a full three-dimensional 
treatment of the model are currently being developed (Mogilner and Edelstein- 
Keshet, 1994a,b; Civelekoglu and Mogilner, 1994). 
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3.1. Definitions. We consider only angular distributions of filaments, not  
spatial distributions. We distinguish between filaments which are bound  to 
other filaments, referred to as bound filaments, and those which are not,  referred 
to as free filaments. The model  is based on the following variables: 

0 = an angle, - rc ~< 0 ~< re, with respect to some arbitrary fixed direction, 
t = time, 

L(O, t )=  the concentrat ion of free actin filaments at orientat ion 0 at time t, 
B(O, t) = the concentrat ion of bound  actin filaments at or ientat ion 0 at time t, 

K(~b)=the probabili ty that  a filament contacting another  filament at a 
relative angle q~ binds to it in the presence of actin binding proteins, 

p(t) = the concentrat ion of unbound  binding protein at time t. 

The concentrat ions of L and B can be described by the total length of 
filaments inside a unit  element of the region, for example, length per unit area in 
a two-dimensional  model,  or length per unit  volume in a three-dimensional 
version. These are analogous to the density function F(~b, p) defined by Sherratt  
and Lewis (1993), who also neglect the spatial dependence ofF.  Note,  however, 
that  L and B in our model  are time dependent ,  as we explore a fully dynamic 
model.  / 

The nature of the probabil i ty kernel K, discussed below, is deduced from 
several remarks in Stossel (1990), Hartwig and Stossel (1981), Hartwig et al. 
(1980) and Tilney et al. (1992a,b), taking into considerat ion the molecular 
properties and the structure of the actin binding proteins. For  example, the 
or thogonal  binding protein,  ABP,  promotes  binding of filaments at right 
angles; see the his togram in Hartwig et al. (1980). Fi lament  densities L(O, t) and 
B(O, t) are functions of t ime and of 0. Since 0 is an angle of orientation, all 
functions of 0 are assumed to be periodic, i.e. L ( -  ~, t) = L(~z, t) for all t. 

3.2. Model equations. In deriving the equations of the model  we proceed 
from the behaviour of an individual filament. The repertoire of a single filament 
consists of: 

(a) rotational diffusion, which results in tumbling and thus r andom 
reorientat ion of the molecules (frictional forces in the cytoplasm will 
limit this effect for larger molecules); 

(b) bindin9 upon  contact  with another  filament and an actin binding protein 
(this binding is angle dependent).  

Rotat ional  diffusion, and its associated diffusion coefficient,/~, have been 
calculated in the literature for biopolymers (see Mossakowska  et al., 1988; 
Phillips et al., 1991; Sawyer et al., 1988; Thomas  et al., 1979). 

Next, we consider how the free actin filaments binding to others can affect 
the free filament density at a given orientat ion 0, namely L(O, t). To this end, we 
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first consider the likelihood that a single free filament at orientation 0 attaches 
to another free filament, say at orientation 0', in the presence of actin binding 
protein. This likelihood depends on the density of free filaments oriented at 0', 
i.e. on L(O', t), and on their relative orientation, i.e. on (0-0') .  Thus, this 
probability will be given by: 

p(t)~K(O- O')L(O', t), 

where fl is the binding affinity and p(t) is the concentration of actin binding 
protein available at time t. Summing over the density of free filaments at all 
possible orientations results in: 

p(t)# f]= K(O--O')L(O',t)dO'. 

Finally, we consider the effect of such binding on the total density of free 
filaments oriented at 0, which is: 

aL(o, t) 
- p(t)~L(O, t) f ~ 

- - I  

K(O- O')L(O', t) dO'. 

For notational simplicity, we adopt the • notation for the above convolution 
integral, i.e. 

K,L=f]= K(O-O')L(O',t)dO'. 

As mentioned above, actin filaments bind to each other via auxiliary protein 
molecules of different structures. With cross-binding proteins, e.g. ABP or 
filamin, F-actin filaments form networks or meshworks joined at approxi- 
mately 90 ° angles (Stossel, 1990; Tilney et al., 1992a,b; Hartwig, 1992; Hartwig 
et al., 1980; Weeds, 1982), whereas the bundling proteins, e.g. villin orfascin, 
produce parallel actin filaments (Cooper, 1991; Pollard and Cooper, 1986; 
Weeds, 1982). Therefore, we consider two types of kernel K(~b), one which 
accounts for orthogonal cross-linking of F-actin, and a second one accounting 
for the bundling of F-actin. We assume that, in the presence of a binding 
protein, two filaments will have some probability of binding upon contact. 
However, the binding probability may depend on the proper configuration 
being attained. In the model, the relative angle formed by the actin filaments, 0, 
must be within some critical range for binding to occur in each case. This is 
depicted by the probability K(O). The critical range for successful binding 
depends on the molecular structure of the binding protein in context. The 
"critical angles" a and b in the equations below reflect this range for the 
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orthogonal  binding and bundling proteins. Thus, modell ing the or thogonal  
binding of F-actin, we consider kernels of the following form (see Fig. 2a): 

[0- /21 a 
otherwise 

and, modell ing parallel binding we consider the following type of kernels in 
turn (see Fig. 2b): 

tOl b 
K2(O)= Io- l b 

0 otherwise 

The only assumption about  f (0)  and g(O) is that  they are positive, symmetric 
about  0, and t h a t f i s  non-increasing on Ire/2, re/2 + a] and [ -  re/2, - re/2 + a] 
and g is non-increasing on [ -  re, - rc + b] and [0, b] (see Fig. 2a,b). The kernels 
in Fig. 2 have been chosen to ease the calculations. It was argued by Edelstein- 
Keshet and Erment rou t  (1990) that  the conclusions of the model  remain valid 
for any other function f(O) and g(O) satisfying the above conditions. The 
"critical angles" a and b, beyond which the probability of a t tachment  is zero, 
represent a "range of angular  at tract ion" (a = 20 ° and b = 30 ° in Fig. 2a and b, 
respectively). We also normalize K by requiring: 

f ]  K(O) dO= 1. 

This means that  the total probability, summed over all possible angles of 
interaction, is set to 1. 

The following functional differences are assumed between L and B type 
filaments: 

(1) free filaments reorient randomly but  bound  filaments do not; 
(2) binding of two filaments occurs if two filaments contact  in the presence of 

actin binding proteins; 
(3) all bound  filaments can become free by dissociation of proteins at some 

fixed unbinding rate 5; 
(4) filaments can elongate by addi t ion of actin monomers ,  A, at the constant  

rate e; 
(5) filaments can shorten (lost of actin monomers  from ends) at a constant  

rate 7- 
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Figure 2 Shapes of angle-dependent kernels representing the probability of binding 
of two actin filaments via orthogonal actin binding proteins (a) and bundling 
proteins (b). We assume a uniform concentration of actin binding proteins in the 
cell. The vertical axes represent the probability function and the horizontal axes 
represent the angle between two contacting filaments. The "critical angles" are as 

follows: a=20 ° (a) and b=30 ° (b). 
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The following set of equations depict the interactions described above: 

r 0L ~?L 2 
~ -  (0, t )= / t  ~ -- 7L+c~AL+6B-flpL(K,B) 

--flpL(K, L), (la) 

OB 
(0, t )=  --?B+~AB--6B+flpB(K,L)+flpL(K,L), (lb) 

where A(t) denotes the density of actin monomers at time t. The terms in 
equations (1) have the following meanings: L(K,B) represents the rate at 
which the free filaments, oriented at 0, bind to bound filaments at arbitrary 
orientation, L(K, L) denotes the rate at which they bind to free filaments at 
arbitrary orientation, and B(K, L) denotes the rate at which free filaments 
oriented at arbitrary orientation bind to bound filaments oriented at 0. Also,/~ 
denotes the rotational diffusion constant of F-actin, p denotes the actin binding 
protein concentration and/~ denotes the affinity of binding. 

The 0-independent steady-state of these equations corresponds to the case in 
which the total addition of actin monomers to filaments equals the total loss of 
actin monomers from filaments. This equilibrium state is referred to as the 
treadmilling case in Stossel (1990). Thus, the second and the third terms in 
equation (la) and the first and the second terms in equation (lb) cancel and our 
equations (1) reduce to equations (17) in Edelstein-Keshet and Ermentrout 
(1990). Also, it can be shown that the total mass density of actin filaments in the 
system is conserved, i.e. 

M= {L(O, t)+ B(O, t)} dO 

is constant. The quantity M will be treated as a constant throughout  the 
analysis. Later we will be interested in the situation in which M is allowed to 
vary slowly. 

3.3. Analysis. The analysis of the model is similar to the analysis of the 
model in Edelstein-Keshet and Ermentrout (1990). We discuss the properties 
of a uniform steady-state (a time-independent state in which every orientation 
is equally probable) (L, B) of the system, and its stability to small perturbations 
of the form: 

CLo  ik0 , 
BI0, t)j LBJ+LBoJ e ' "  e (2) 

where L 0 , B 0 are small amplitudes, k is the wavenumber (the number of peaks 
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or the number of dominant  orientations in [0, 2rc]) and 2 is the growth rate of 
the perturbation. Because 0 is periodic with period 2re, the wavenumber k must 
be an integer. We seek conditions for which the perturbations are amplified 
with time, i.e. for which 2 > 0 for some non-trivial wavenumber k. 

As a result of the linear stability analysis of the full equations as in Edelstein- 
Keshet and Ermentrout  (1990), we find that the steady-state (/2,/1) of (1) can be 
destabilized by perturbations of the form (2), provided: 

Ck ~ <~:(1 - ~ ) ,  (3) 

where 

/2 ~ 2 

C=6 ((L +=B)fip) " 

H e r e , / (  is the Fourier transform of the kernel K, and k is the wavenumber as 
above. The inequality (3) gives us a dispersion relation, i.e. a condition on the 
type of periodicity that leads to instability. Only wavenumbers satisfying (3) 
will give rise to growing structures. Thus, (3) must be satisfied for either bundles 
or networks of actin to form. We can visualize (3) graphically as done in 
Edelstein-Keshet and Ermentrout  (1990) by plotting the right-hand side and 
the left-hand side of (3) on a common set of axes. This has been done in Fig. 3 
for various settings of the parameters. The expression on the right-hand side of 
(3) as a function ofk  (the wavy curve in Fig. 3a,b) is fundamentally different for 
the two types of kernels in Fig. 2a,b and is scaled differently for different choices 
of "critical angles" a and b. The left-hand side of (3) is a parabola in k with 
coefficient C, as shown superimposed in Fig. 3a,b. 

3.4. Interpretation. The inequality (3) depends on the shape of / ( (k)  ( 1 -  
/((k)) and on the value of C. In other words, the parabola Ck 2 must be lower 
than the other function at some integer value k for instability at that 
wavenumber.  In the case where we have a kernel accounting for the orthogonal 
binding of F-actin, as in Fig. 2a, the first wavenumber at which the inequality 
(3) is satisfied is k = 4 (see Fig. 3a). This means that a perturbation of the form 
e 4i° grows, the steady-state loses stability and four orientations, 90 ° apart, 
become accentuated among all possible orientations from 0 to 2zc. As a result, 
the filaments are mostly orthogonal to each other. In the case where we have a 
kernel accounting for the bundling of F-actin, as in Fig. 2b, the first such 
wavenumber is k = 2, as shown in Fig. 3b. A perturbation of the form e 2~° grows 
and results in two accentuated orientations 180 ° apart. In this case most 
filaments lie parallel to each other. In both cases the positions of the 
accentuated orientations are determined by the initial disturbance that 
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disrupts the steady-state. However, the spacing between them is determined by 
the wavenumber causing this disruption. 

3.5. Numerical methods. The equations of the model were simulated 
numerically by methods described in Edelstein-Keshet and Ermentrout (1990). 
Numerical solutions to (1) in the case of orthogonal or parallel binding kernels 
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i .2 
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0.4 

O. 

(b) I -0.2 
Figure 3. The expression/f(k) (1 -K(k) ) ,  the wavy curve in a and b, is shown as a 
function of the wavenumber k for K, the Fourier  transform of the kernels in 
Fig_ 2a,b. Superimposed is a set of parabolas y =  Ck 2. The uniform steady-state of 
(1) can be disturbed and pattern formation can be initiated only by perturbations 
(2), whose wavenumber k is an integer satisfying Ck 2 </<(1 - K), where C depends 
on biological parameters. The sequence of parabolas from left to right in a and b can 
be generated by varying the total mass of F-actin, M =  (L + B), given that the other 
parameters are constant. Parameters are as follows: (a) the "critical angle" is a = 20 ° 
and the coefficient of the parabola C is 0_04 and 0.01 from left to right; (b) the 
"critical angle" is b = 30 ° and the coefficient of the parabola C is 0.06 and 0.02 from 

left to right. 
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are given in Figs 4a,b and 5a,b. A variety of initial densities were used, including 
random (in Figs 4a,b and 5a,b) or sinusoidal deviations from the steady-state 
or from a random homogeneous density. The magnitude of these deviations 
was roughly 10% of the initial homogeneous densities. The variables were 
discretized typically on a grid of 30-36 points (A0 = ~-36°° _- 12 ° and A0 = ~ 6  °° = 
10°). We used a finite difference scheme with At = 0.01 and forward differencing 
for 15,00(~100,000 iterations. The kernel in Fig. 2a was used for Fig. 4a,b and 
the kernel inFig. 2b was used for Fig. 5a,b. In the results shown in Fig. 4a,b the 
critical angle is a = 20 ° and in Fig. 5a,b the critical angle is b = 30 °. 

3.6. Numerical results. In Figs 4 and 5 we present the evolution of bound 
and free actin filament densities over time. Figure 4 shows the formation of 
parallel filament structures (two preferred orientations), whereas Fig. 5 shows 
orthogonal meshworks of filaments (four preferred orientations), as antici- 
pated from our assumptions about the kernels in each case. It can be seen that 
structures that develop in the bound population are similar to those that arise 
in the free actin density. Pattern formation occurred either in both populations 
or in neither. The number of preferred orientations and their location was 
identical for bound and free actin filaments. However, pattern formation 
appeared sooner in one population than in the other for certain choices of 
parameters. For example, if 6 ~ #, which means biologically that the rotational 
diffusion of filaments is considerably higher than the dissociation rate of the 
actin binding proteins with filaments, pattern formation in free actin filaments 
took considerably longer than in the bound actin filaments. Also, in all 
simulations, the free actin filament density level was considerably lower than 
the bound actin filament density level at the final stable configuration. In the 
following section we will present only the evolution of the bound filament 
density, since the evolution of the two populations is essentially the same. 

The results of the numerical simulations matched the results of the analysis 
and pattern formation in networks (Fig. 4a,b) or in bundles (Fig. 5a,b) was 
obtained for the choice of parameter values which satisfied (3). Changing any of 
the parameters M, #, 6,/~ or p affects the value of the dimensionless constant C 
that appears in (3) and thus the stability of the system. For example, when 
polymerized actin starts to assemble into filaments, the total mass of actin 
filaments, M, increases. Therefore, C decreases and this leads to the formation 
of a meshwork or bundles. Similarly, increasing the binding affinity of the 
binding protein,/~, increasing the actin binding protein concentration, p, or 
decreasing the dissociation rate of the actin binding protein, 6, in the cell result 
similarly in formation of meshworks or bundles. 

We have also observed that, in the case where the "critical angle" a or b was 
either too small, a, b ~< 5 °, or too large, a, b~>40 °, no pattern formed (for 

200,000 iterations) for any choice of the other parameter values. This means 
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Figure 4 Format ion  of orthogonal  network of F-actin in a pool of initially 
randomly distributed bound (a) and free (b) actin filaments. Numerical  results for 
(1) are shown, where K(O) is as in Fig. 2a. The horizontal axis is orientation and the 
vemcal  axis is the density of bound F-actin at a given orientation (a) and of free F- 
actin (b). Initial densities (not shown) are L - L + L o ( O  , t), and B=B+Bo(O, t), 
where L=0 .8 ,  B=9 .2 ,  L o and B o are 10% random noise. Other  parameters are 
6 = f l - 0 . 5 ,  p = 5 ,  # = 0 . 4  and M ~ 1 0 .  The grid size is A0=36  ° and At=0.01.  The 
solutions were found for 16,000 iterations, with plots shown at 3200, 6400 and 
16,000 iterations. Note  the scale on free and bound F-actin indicating that most 
filaments are bound. In a and b, four orientations 90 ° apart have been accentuated. 



600 G. CIVELEKOGLU AND L. EDELSTEIN-KESHET 

I l ] l T r I 

LL 

D 4D 90 13~ 180 
(a) lhei(~ 

m 

m 

225 270 315 3611 

I I I 1 I I I ~3 
d 

-p 

t -  

0 J  

_c 
.p 
u 
d 
I 
h_ 

0J 

d I I I I I I I 
4~ 90 135 1110 22~5 270 315 360 

(b) t h e %  

Figure 5. As in Fig. 4a,b, but  showing the fo rmat ion  of parallel  networks  of F-actin.  
Numer ica l  results for (1) are shown, where K(O) is as in Fig. 2b: (a) bound  actin; (b) 
free actin. Initial densities are as in Fig. 4, w h e r e / 2 = 0 . 5 , / ~ =  4.5. Othe r  parameters  
are 6 = 0.6,/~ = 0.5, p = 4, # = 1.2 and  M ~  5. The grid size is A0 = 10 ° and  At = 0.01. 
The  solutions were found for 30,000 i terat ions,  with plots shown at 6000, 18,000, 
24,000 and  30,000 iterations.  In a and b, two or ienta t ions  180 ° apar t  have been 

accentuated.  
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that when the range of angular attraction is too small, very few filaments 
become bound and they are released before getting a chance to form big 
groups. Most filaments remain free, and thus the directional homogeneity is 
preserved. In the latter case, i.e. when the range of angular attraction is too 
wide, the filaments bind to each other at nearly every possible relative angle. 
Most filaments become bound with no apparent structure and, hence, the 
directional homogeneity is preserved in this case too. 

To summarize, both numerical and analytical results of the model show that 
the organization of F-actin into orthogonal networks or bundles depends on 
the biological and chemical properties of the molecules, the parameters in the 
system. We will discuss the values of parameters taken from biological 
literature in the final section. 

4. The Extended Model. 
4.1. Purpose. In this section we consider the case where both orthogonal 

and parallel binding can occur. The question addressed is under what 
circumstances will one of the two forms of structure dominate. To this end we 
extend the model in Section 3 to account for the existence of two types of actin 
binding proteins simultaneously: the cross-linking and the bundling proteins. 
We now allow the actin filaments to bind orthogonally or in parallel depending 
on the ratio of the concentrations of the two types of auxiliary proteins and 
their binding affinities. We also investigate the transition from the network 
structure to the bundles and vice versa. K~ and K 2 denote the orthogonal and 
the parallel binding kernels as in Section 3.2. Also Pl,  fll and P2,/~2 will denote 
the concentrations and the binding affinities of orthogonal cross-linking (1) 
and parallel bundling proteins (2), respectively. 

4.2 .  

of binding simultaneously can be written as follows: 

"OL 6~L 2 
~ -  (0, t)=/~ ~ -  7L +c~AL +6B-- f l lp lL(K 1 * B)-- f l lpIL(K ~ , L) 

-f lzpzL(K2 • B)--flzpzL(K2 • L) 

OB 
~ t  (0, t )=  - T B + e A B - 6 B +  fl~pxB(K ~ , L)+ flIp~L(K~ , L) 

+  2p28(I 2 • L) +   p L(K2 • L). 

In order to reduce to the previous method of analysis, we now define: 

l+q5 ' 

Modified equations. The equations depicting the effect of the two types 

(4a) 

(4b) 

(5) 
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where 

f12D2 q~ - (6) 
31Pl 

and 

ill) = ill/01 ~- f12P2 = ill/01 (1 ~- ~b). (7) 

Here, Kis a combined binding kernel and tip is a combined binding affinity and 
binding protein density. Note that fi2 = 0 (or P2 = 0) results in all orthogonal 
binding and fll = 0 (or p 1 = 0) results in all parallel binding, as in Section 3. For  
example, P2 = 0 stands for the situation in which the parallel binding protein, 
villin, is absent. B2 -- 0 represents the case of binding protein that has no affinity 
to actin; similar conclusions hold for p l = 0 ,  i l l = 0  with respect to the 
orthogonal binding protein (see Table 1). The parameter  q5 represents the ratio 
of parallel binding to orthogonal binding, and is summarized in Table 1. For  
the purposes of analysis, it is convenient to vary the single parameter qS. As 
discussed later, in numerical investigations it is easier to vary fll and fi2- After 
slight rearrangement of terms, equations (4) can be reduced to the previous 
system, (1), but with the new kernel defined above, in (5). 

In this section we study both extremes as well as intermediate situations, i.e. 
we are interested in all values of ~b in 0 ~< ~b ~ o0. Also note that since K 1 and K 2 
were normalized, so is K, and further: 

R-  & + ¢& l+q  

The shape of the kernel K (see Fig. 6a,b) in this case depends not only on the 
two critical angles, but also on the parameter  q5 representing the ratio of the 
concentrations and the binding affinities of the two types of auxiliary proteins. 

Table l. The proportion of parallel and orthogonal binding can be represented 
by a single parameter ~b defined by (6) 

¢=o ¢=1 ¢=oo 

Actin binding f12 = 0  /92=0 fll = 0  /91 = 0  
proteins f l l= l  or P , = l  fllPl=fZP2 flz 1 or p2= l  

Kernel K K 1 K = K1 + K2 
2 K=K2 

Type of Orthogonal Both kinds of Parallel binding 
binding binding only binding occur only 
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4.3. Analytical results. The analysis is identical to the previous section, 
and the stability condition is exactly as given in (3), but with the new 
interpretations of/3p and K as in (5) and (7). The left-hand side of (3) in this 

.p 
W 
.E .p 

0 
(a) 

I I I I I I I I I I 

I I I I l I 
40 80 120 240 280 320 160 200 

'chet~ 
36O 

~5 

(b) 

I I III I [ II 

I II III I I 
40 80 t20 160 200 320 

~he~-a 
240 280 360 

Figure 6. Shapes of the kernels K representing the combined probabili ty of both 
orthogonal and parallel binding. The values of the "critical angles" are a = 20 ° for K 1 
and b = 20 ° for K 2 ; note that K, as in (5), is also dependent on the parameter q~. (a) 
~b=0.43 (for example /~1 =0.7, /~2=0.3 and pl =P2), (b) ~b=2.33 (for example, 

fll = 0  3, fl2=0_7 and Pt =P2)- 
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case, too, is a parabola as a function of the wavenumber k, and its coeffÉcient 
depends on the parameters in the system. The right-hand side is a function of 
the Fourier  transform of the combined kernel, K, as above. 

The inequality (3) can be rearranged to obtain: 

~ ( ( ~ B ) )  k2<(/31~lZ~1[-]~2P2K2)(/3P-/31P1/~I-]~2P2/r~2) (8) 

In order to study the transition from the extreme case where the bundling 
proteins are absent, ~b = 0, to the other extreme case where the cross-linking 
proteins are absent, q~--oe, we vary 131 from 1 to 0 and /32 from 0 to 1 
simultaneously (numerically this is more convenient than letting q~ go to oe). 
The reason for this is that we wish to investigate only the effect of the changes of 
the binding affinity or binding protein ratio while all other conditions remain 
the same [see Fig. 7a-e for plots of the function on the right hand side of (8) for 
various values of the parameters as q~ varies from 0 to infinity]. We also display 
the parabola on the left-hand side of (8) in these figures. 

As in the previous section, instability at integer wavenumbers k occurs if the 
parabola on the left-hand side of (8) is lower than the function on the right- 
hand side of (8), i.e. the uniform steady-state of (4) is disrupted and pattern 
formation is initiated by perturbations of the form (2), whose wavenumbers 
satisfy (3) or equivalently (8). The first integer wavenumber for which (8) can be 
satisfied depends on the value of q~, and for the choice of critical angles 
a = b = 20 °, k changes from 4 to 2 as q5 changes from zero to oo (or equivalently 
/~1 from 1 to 0 and/~2 from 0 to 1; see Fig. 7a-e). The transition from k- -4  to 
k = 2  is sharp, as predicted by the analysis, and will be discussed in the 
subsection below. 

4.4. Numerical results. The numerical solutions of (4) are in agreement 
with the results of the analysis. The methods of the numerical computations are 
identical to those of the previous section. Figure 8a-e shows the numerical 
solutions to (4) corresponding to the kernels used in Fig. 7a-e. We note that the 
number of peaks that arise corresponds to the integer for which the parabolas 
in Fig. 7a-e first cross below the curve on the right-hand side of (8). For  
example, this occurs at k = 4 in Fig. 7a-c, whereas at k = 2 in Fig. 7d,e. Initial 
densities were random deviations from the uniform steady-state. The results of 
cases where deviations were sinusoidal were similar and we do not present them 
here. 

We first summarize the results of the simulations in which the initial densities 
were uniform with small deviations. In the cases where the quantity q~ was 
smaller than one (and even when it was equal to one in some cases), indicating a 
higher binding affinity or a higher concentration of the orthogonal cross- 
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l i n k i n g  p r o t e i n s ,  a p a t t e r n  f o r m a t i o n  i n  o r t h o g o n a l  n e t w o r k s  r e s u l t e d  for  t h e  

c h o i c e  o f  p a r a m e t e r  v a l u e s  w h i c h  s a t i s f i ed  (8). F o r  v a l u e s  o f  q5 c l o s e r  t o  ~b = 1 i n  

s o m e  cases ,  f i rs t  t w o  p e a k s  a p p e a r e d  a n d  l a t e r  d i v i d e d  i n t o  f o u r  p e a k s .  

H o w e v e r  w h e t h e r  th i s  o c c u r s  d e p e n d s  o n  t h e  v a l u e s  o f  t h e  " c r i t i c a l  a n g l e s " ,  a 
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Figure 7. The expression on the right-hand side of (8) is shown as a function of the 
wavenumber k. K is as in Fig. 6a and b for b and d, repectively. The critical angles 
are a = 20 ° for K 1 and b = 20 ° for K~ in all cases. Also, p 1 = P2 = 2 and hence//p = 2 in 
all cases. The superimposed parabolas from left to right can be obtained by 
increasing the "total mass" of F-actin in the system. (a) /31 = 1, //2 = 0  and the 
coefficient C of the parabolas is 0.12 and 0.04; (b)//1 = 0.3,//2 - 0.7 and C = 0_12 and 
0.04; (c)//1 =0-5=/ /2  and C=0.12 and 0_04; (d)//~ =0 .7 , / / 2=0 .3  and C=0 .3  and 
0.12; (e) / /1=0, / /2=1 and C=0 .2  and 0.05. The first wavenumber for which the 
uniform steady state is disturbed is k = 4 m a c, i.e. perturbations of the form e 4 i °  

grow, resulting in four accentuated orientations 90 ° apart, a network structure. For  
d and e, the first such wavenumber is k = 2, i.e. perturbations of the form e 2i° grow, 

resulting in two accentuated orientations 180 ° apart (bundles) 



D Y N A M I C S  O F  F - A C T I N  I N  T H E  C E L L  607 

¢- 

b.  

D 

0 45 g[l 13~ 180 225 2711 313 3611 
(a) ~he% 

I I [ I I I I 

r- 

0 
b. 

o 

CD 
0 4~ 90 135 180 223 270 31~ 360 

(b) ~he% 

Figure 8. 



608 G. CIVELEKOGLU AND L. EDELSTEIN-KESHET 

r" 

I ,  

..Q 

~1 I I I I I I 
O 43 90 133 180 225 270 315 360 

(c) "l;he'l;ct 

(d) 

..Q 

CD 

0 45 90 135 180 225 270 315 360 
theta 

I I I I 1 I I 

>,, 
. p  

Figure 8. 



DYNAMICS OF F-ACTIN IN THE CELL 609 

and  b, and  the p a r a m e t e r  6, which  represents  the d i ssoc ia t ion  ra te  of  the 
b ind ing  pro te ins .  Also, for  the choice  of  p a r a m e t e r  values  for  which ~b = 1, i.e. 
equal  affinities a n d / o r  equa l  concen t r a t i ons  for  b o t h  types of  b ind ing  pro te ins ,  
the resul t ing s t ruc ture  is d e p e n d e n t  on the values  of  the "cri t ical  angles"  a and  b, 
and  can  be b o t h  o r t h o g o n a l  ne t works  or  bundles .  F o r  the values  a = 20 ° and  
b = 20 ° the f i laments  o rgan ize  in to  a n e t w o r k  when  q~ = 1 (see Fig. 8c). The  
t rans i t ion  f rom one  type  of  s t ruc tu re  to the o the r  was  very  sharp ,  as p red ic ted  

by  the analysis .  
W e  have  also s imu la t ed  cases wi th  p re s t ruc tu red  initial densit ies to ana lyse  

h o w  s table  these s t ruc tures  are to sudden  changes  in their  e n v i r o n m e n t .  F o r  
example ,  we s ta r ted  with  a poo l  of  f i laments  o rgan ized  m o s t l y  paral le l  to each  
o ther  as in Fig, 8d, and  let the p a r a m e t e r  ~b be very  small  (a sudden  change  f rom 

high paral le l  b ind ing  affinity to h igh  o r t h o g o n a l  b ind ing  affinity),  or  we s ta r ted  

1 1 I I 1 

4J 
r 
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Figure 8. Formation of the network or bundles of F-actin in a pool of initially 
randomly distributed bound filaments and two types of binding proteins: 
orthogonal and parallel. K(O) is identical to the ones used for Fig. 7a-e 
corresponding to a~ ,  respectively_ lnitial densities (not shown) are 10% random 
noise on the uniform steady-state (L, B), L=0.25 and /~=4.75, and other 
parameters are tip = p x = P 2 = 2, # = 1.84, ~ = 0.5, M ~ 5, At = 0.01 and the grid size is 
A0= 12 °. The solutions were found for 70,000 iterations, with plots shown at 1, 
42,000 and 70,000 iterations in a and b; 100,000 iterations, with plots shown at 1, 
60,000 and 100,000 iterations in c; 50,000 iterations, with plots shown at 1, 10,000 
and 50,000 iterations in d; and 130,000 iterations, with plots shown at 1,104,000 
and 130,000 iterations in e. In a-c, four orientations 90 ° apart have been 
accentuated (network structure), and in d and e two orientations 180 ° apart have 

been accentuated (bundles). 
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with a network of filaments as in Fig. 8b, and let the parameter ~b be very large 
(a sudden change from high orthogonal binding affinity to high parallel 
binding affinity). Through these simulations we have found that, for the same 
parameter values, the same type of structure results regardless of the choice of 
initial densities, i.e. whether uniform or prestructured. However, in the case of 
prestructured initial densities the orientations that appeared were usually 
determined by the initial ones, with either two new peaks appearing in between 
the existing ones (change from bundles to networks) or two alternating peaks 
disappearing (change from networks to bundles). This transition does not 
require the complete break up of the existing structure; rather the new structure 
forms on the remnants of the old one. Thus, the cell is capable of switching its 
cytoskeletal structure, preserving its polarity, rather than choosing a random 
new direction after every switch. This might be compared to the situation where 
cells moving in a particular direction tend to continue in that direction even in 
the absence of external stimuli. 

5. Discussion. The organization of actin filaments in the cell and its 
mechanical properties have been recognized to affect its shape and functions. 
Experimental and theoretical studies of the formation of different cytoskeletal 
structures and the properties of the resulting structures have been considered 
previously. However, in previous theoretical considerations the approach is a 
mechanical one, considering the effects and the balance of the forces inside and 
outside of the cell and neglecting the microscopic interactions and their 
influences on the mechanical properties of the cytogel. 

Myosin is an actin binding protein which can bind to F-actin organized in 
networks. The actin-myosin interactions are considered to be of extreme 
importance in providing the cytogel its contractile behaviour. We have not, as 
yet, included these interactions in our model. However, we plan to extend our 
model to account for the actin-myosin "sliding mechanism" (Alt, 1992). 

Oster et al. (1985) presented a model accounting for the formation of regular 
hexagonal patterns in mierovilli solely as a consequence of the mechanical 
instability of the contractile acto-myosin gel. In Oster and Odell (1984), the 
actin-myosin meshwork is considered, and the dynamic contractile behaviour 
of the cytogel is captured in a model based on the mechanical properties of the 
gel, which in turn are regulated by a chemical trigger. In these models, the 
cross-links between actin filaments are assumed to be permanent, and the 
cytogel is viewed as an elastic material. However, according to Sato et al. 

(1987), the mechanical properties of the cytoskeleton of a cell also depend (or 
are influenced by) the dynamics of the rapid rearrangement of these bonds. 
Thus, there is a problem with the above approach, namely on the time scales of 
interest, the cytoskeletal network behaves as a viscous fluid with negligible 
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elasticity. Oster (1989) gave a review of the role of the mechanical aspects in cell 
motility and morphogenesis. 

Other mechanical models of the contractile behaviour of the actin-myosin 
meshwork appear in Alt (1987) and Pohl (1990). In Alt (1987), the 
actin-myosin meshwork is viewed as a creeping viscous fluid with negligible 
elasticity. Thus, in this model the filament cross-links are not assumed to be 
permanent. Pohl (1990) modelled in vitro experiments of actin-myosin based 
contraction waves, stimulated by external forces, regarding the cytoplasmic 
matrix as a mixture of a fibroid network and an aqueous solution. Applying the 
laws of fluid mechanics to this mixture, he described the dynamic behaviour of 
the cytogel. His model is based on the Reactive Flow Model of the cytoplasm 
reviewed in Dembo (1989). Dembo (1989) reviewed the mechanical theory of 
the dynamics of the contractile cycle of the actin cytoskeleton, considering a 
dynamic F-actin network. In this model, the network was assumed to be 
isotropic and the network synthesis and breakdown, as well as the formation of 
cross-links between the filaments, were described by single terms in the 
equations. 

In a recent publication, Sherratt and Lewis (1993) considered the alignment 
of intracellular actin filaments as a response to external forces (stress and 
strains) or to an anisotropy in the stress field of the filaments themselves. Their 
approach again is a mechanical one, based on a balance of forces in the system. 
Here, the interactions between the filaments, as well as the turnover rate and 
the strength of the bonds between them, is reflected in a single parameter: the 
sensitivity parameter. 

The importance of the key structural elements in this phenomenon,  the actin 
binding proteins, has been noted in the above papers. However, the 
interactions between the actin filaments and the binding proteins and the 
consequences of these interactions have not been included in any of these 
models. 

Experimental evidence indicates that forces are not essential for the 
cytoskeletal rearrangement and the rapid changes in the cytoskeletal structure 
can be mediated by the actin binding proteins. Actin in cells can interact with 
several different proteins at once. The choice depends on the relative binding 
affinities and concentrations of different proteins and on regulatory factors 
(Way and Weeds, 1990). A new set ofactin binding proteins may be responsible 
for a change in the cytoskeletal organization of a cell (Vandekerckhove, 1990). 
Also, the actin binding proteins may act differently under different conditions. 
For example, some proteins act as cross-linking proteins in the absence of 
Ca  2 +, and as capping proteins in the presence of Ca 2 +. Therefore, the sol-gel 
transformation can be regulated by the response of a single molecule to changes 
in Ca 2+ concentrations (Korn, 1982; Hartwig, 1992). Thus, there exists 
biological evidence that the changes in the molecular properties of these 
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elements affect the resulting structure, and changes from one structure to the 
other also occur in the absence of external forces, via activation or inactivation 
of the actin binding proteins. 

Based on the above evidence, we view the cell as a pool of interacting 
molecules. We show that the formation of different structures in the actin 
cytoskeleton and the switch from one structure to the other may result from the 
differences in the molecular properties of the elements in the cell, their 
interactions and their competition. To our knowledge, our model is the first 
one which accounts for this dynamic phenomenon.  We do not imply that the 
mechanical viewpoint is unimportant,  rather we introduce this model to 
complement the existing ones. We would suggest that the polymerization and 
self-organization of actin structures could be a first step in defining polarity and 
internal structure of the cell, and that mechanical forces (some of them due to 
the cell's environment) could then reorganize, mould or fine-tune the results. 

Actin filaments are polar structures with two structurally different ends. The 
polarity of filaments has not yet been explicitly included in the above models 
but, in cases where it is important, it can readily be accommodated by a slight 
change. In some actin structures the filaments display locally uniform polarity, 
whereas in others they display opposite polarity or no polarity. The bundling 
proteins such as fascin, fimbrin and villin create polarized bundles (Pollard and 
Cooper, 1986). Unidirectionally polarized microfilament structures are found 
in microvilli of epithelial cells, and in streocilia of cochlear hair cells. Actin fibre 
structures which do not display any polarity are observed in the cell cortex, and 
in the periphery of various cells including amoebas, machrophages, leukocytes 
and blood platelets, in these latter cases the filaments intersect in a 
perpendicular fashion. In stress fibres in fibroblasts and in epithelial cells in 
culture the filaments are organized into bundles without being polarized 
(Stossel, 1984). The polarized binding of filaments can be accommodated in the 
model simply by changing the kernel, K2(0), in Section 3.2 to allow binding 
only in the case of acute contact angle. An example of this sort would be a 
kernel as in Fig. 2a, but without the hump in the middle. Our conclusions, and 
the results of the linear analysis and the numerical computations, also remain 
valid with this type of kernel. 

Examples of actin structures considered in this paper include orthogonal 
networks of filaments observed in the periphery or cortical cytoplasm of motile 
cells, for example pseudopods, lamellipodia and membrane ruffles of moving or 
spreading cells and bundles of actin filaments observed in stress fibres, 
microvilli (column-like structures) of epithelial cells and filopodia (finger-like 
projections) of blood cells (Hartwig, 1980, 1992; Stossel, 1984; Way and 
Weeds, 1990; Weeds, 1982). 

We base all interactions and physical and molecular properties on the 
biological data. Most of the parameters in the model appear in the biological 
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literature, in raw form. In Sato et al. (1987), the dissociation constant for the 
complex Acanthamoeba  e-actinin [a cross-linking protein found in amoeba as 
well as in many other organisms (Pollard and Cooper, 1986; Sato et al., 1987; 
Stossel et al., 1985)3 with actin filaments has been measured in sedimentation 
binding experiments as 26 #M. From this value, they also give estimates of the 
association and dissociation rate constants of the c~-actinin with F-actin as 
105-107 M-1  sec-1 and 2-200 sec-1, respectively. These correspond to our 
model parameters/~ and 7. The values of these rate constants are known for 
various other actin binding proteins too (Pollard et al., 1990). The rotational 
motion of F-actin has been studied extensively (Mossakowska et al., 1988; 
Phillips et al., 1991; Sawyer et al., 1988; Thomas et al., 1979). Typical values for 
the rotational correlation time of actin filaments of average length 1 #m is 
10-100 #sec), from various cells (for example, rabbit skeletal muscle or chicken 
gizzard smooth muscle actin) have been measured using various techniques, for 
example by solid-state nuclear magnetic resonance (NMR) spectroscopy. 
Here, we note that these are the results of  in vitro studies, and the average length 
of actin filaments in vitro and in vivo differ significantly (compare 1 and 0.1 #m). 
The results show that the time scale of filament motion is of the order of 
microseconds: The rotational diffusion coefficient, #, of F-actin can be 
calculated from the rotational correlation time, viewing the actin filaments as a 
rigid body diffusing about its long axis. The rotational correlation time given 
above corresponds to a rotational diffusion coefficient of 103-104 sec-1. We 
note that the dissociation and association rates are in comparable range with 
the rotational diffusion rate of F-actin. Many of the other parameters in our 
model, such as the elongation rate constant, 6, or the total filament 
concentration, M, are provided in Cooper et al. (1983) and Cooper (1991). 
Typical values are M=300-400  #M (local concentration in lamellae) and 

----10 7 M-1 sec-1. We have not yet gathered a complete set of biological 
parameters for our equations, but this is an important future goal. This is a 
rather difficult task since the parameters appearing in the literature have been 
measured under different circumstances (some in vitro and others in vivo), from 
different species and under different chemical conditions. 

We finally summarize the main points and results of this paper as follows. 

(1) The model presented here accounts for the dynamics of F-actin in a 
spatially homogeneous medium, i.e. in a well mixed cell or a specific 
homogeneous region in a cell. The structural differences of F-actin with 
respect to its spatial position are not reflected in this model. 

(2) The observed dynamics of assembly and disassembly of F-actin in the 
cell may result simply from the interactions of the molecules in the cell, 
taking into consideration their physical and molecular properties. We 
have hypothesized that successful binding occurs only if actin filaments 
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are in an appropriate relative configuration (i.e. if the angles between the 
filaments are within a suitable range of tolerance). This is, as yet, not 
clearly supported by experiment, but is a reasonable assumption of the 
model. 

(3) The switch between an orthogonal network and bundles of F-actin may 
result simply from a change in the binding affinities or in the 
concentrations of actin binding proteins (see Figs 7 and 8). These, in 
turn, can be governed by messages received by the cell and expression of 
the genes coding for these actin binding proteins. 

(4) The model is presently a two-dimensional analogue of a truly three- 
dimensional structure. By describing the evolution of an angular 
distribution we are in fact investigating pattern formation on a circle. It is 
possible to extend this idea to three dimensions by considering pattern 
formation on the surface of a sphere. This is done by representing the 
points on the surface of a sphere by (0, ~b), where 0 is in [0, 2rc] and q5 is in 
[0, re]. The equations of the model in three dimensions are largely 
analogous to (1) (Mogilner and Edelstein-Keshet, 1994a,b). One studies 
perturbations of the uniform steady-state that are spherical harmonics, 
i.e. Legendre polynomials. The dispersion relation analogous to (3) or 
(5) then involves the inner product of K with these spherical 
eigenfunctions, rather than the Fourier transform /~. This study is 
currently in progress. 
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