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Chemotactic cells known as microglia are involved in the inflammation associated
with pathology in Alzheimer’s disease (AD). We investigate conditions that lead
to aggregation of microglia and formation of local accumulations of chemicals
observed in AD senile plaques. We develop a model for chemotaxis in response to
a combination of chemoattractant and chemorepellent signaling chemicals. Linear
stability analysis and numerical simulations of the model predict that periodic
patterns in cell and chemical distributions can evolve under local attraction, long-
ranged repulsion, and other constraints on concentrations and diffusion coefficients
of the chemotactic signals. Using biological parameters from the literature, we
compare and discuss the applicability of this model to actual processes in AD.
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1. INTRODUCTION

This paper presents an investigation into chemotaxis systems in which motile
cells induce the production of a number of diffusible signaling chemicals whose
distribution influences motion of the cells. A novel aspect of the model is that it
includes both chemoattraction and chemorepulsion. We show how the magnitudes
and spatial ranges of the chemical signals combine to cause instability of a homo-
geneous distribution, and to determine spacing of the cell and chemical aggregates.

The investigation was motivated by phenomena associated with formation of
senile plaques, abnormal foci that form in the central nervous system (CNS) in
Alzheimer’s disease (AD), though the chemicals we discuss cannot be definitively
identified given current biological knowledge. However, information about the
possible ranges of parameter values associated with the disease have been extracted
from the literature, to be used as a testing arena for what is essentially an abstract
theory.

We briefly describe some aspects of the disease in the next section. We review
earlier chemotaxis modeling work inSection 3, introduce the model inSections 4
and5, and perform linear stability analysis inSections 6and7. In Section 8, we
estimate parameter values (see also details in the appendix). This is followed, in
Sections 9and10 by a description of the adaptive mesh numerical method used
for integrating the equations and numerical results. A generalization of the pattern
formation is described inSection 11. The biomedical implications of the model,
limitations and open questions are discussed inSection 12.

2. BIOLOGICAL BACKGROUND OF ALZHEIMER’S DISEASE

AD is a devastating neurodegenerative disease affecting almost one out of 10
individuals above the age of 60, and more than half of those reaching age 85
(Cowley, 2000; Jones, 2000). The disease represents the eighth leading cause of
death in America, and has a typical duration of 8–20 years (Nash, 2000). AD
is characterized by a progressive decline of cognitive and mental function, and
eventual death. Although the details in the pathology and the underlying causes of
the disease are still controversial, a number of leading hypotheses have been put
forward in recent years.

It is now well established that the brains of AD sufferers develop abnormal foci
calledsenile plaques (Itagakiet al., 1989; Dickson, 1997), i.e., lesions composed
of extracellular deposits of theβ-amyloid protein, degenerating neurons and other
nonneuronal cells calledglia (Dickson, 1997). Amyloid plaques are the major bio-
logical markers of AD. They range in size from approximately 10 to 100µm, and
their distance apart is about 50–200µm. Postmortem preparations reveal 30 amy-
loid plaques per 104 µm2 of affected regions in the AD brain (Itagakiet al., 1989).

According to theamyloid cascade hypothesis, initial stages of AD include local
accumulation ofsoluble β-amyloid protein [high levels correlate with the severity
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of the disease (McLeanet al., 1999)]. This leads to local deposits calleddiffuse
plaques (Banati and Beyreuther, 1995) that, over time, build up to form relatively
insolubledense plaques (Banati and Beyreuther, 1995). Some researchers (Selkoe,
1991; Davis and Chisholm, 1997; Hardy, 1997) believe that this is the main cause
of the pathology and the resultant stress and death of neurons in the central nervous
system (Kowall, 1994; Shenget al., 1998). AD is associated with an inflammation
involving cells called microglia and astrocytes. Following activation, these glial
(nonneuronal) cells proliferate, and migrate chemotactically to sites of injury,
where they secrete a host of chemicals, including cytokines.

We will mainly be concerned here with the role of microglia, early in the
development of diffuse senile plaques, though astrocytes are also implicated in
later stages.Microglia are 10–15µm in size (Streit, 1995), distributed sparsely in
the brains of healthy individuals [e.g., 0.3 cells per 104 µm2 in temporal neocortex
(Mackenzieet al., 1995)], but found at much higher densities in AD:Itagakiet al.
(1989) observed between 100 and 350 reactive microglia cells in a section 104 µm2

in area and 30µm thick in a hippocampus of an Alzheimer’s patient (Fig. 5 of
their paper). This high density is believed to result from aggregation, rather than
proliferation of the cells (P. McGeer, personal communication).

Microglia move chemotactically with an estimated speed of 1–2µm min−1

(Farrell et al., 1990), in response to concentration gradients of amyloid proteins
and other factors (Itagakiet al., 1989). The chemotactic sensitivity of microglia to
amyloid proteins (Daviset al., 1992), to various cytokines and proteins (Yaoet al.,
1990; Chicoineet al., 1995), and the general motility of these cells (Nolte et al.,
1996) has been studied extensively.

Glial cells produce cytokines and other inflammatory factors (Mrak et al., 1995,
2000) with positive feedback via neuronal stress. Among the major cytokines
implicated in AD, Interleukin-1 (IL-1; molecular weight 17 kDa) is produced
by microglia (Benveniste, 1995), and induces production of other cytokines, such
as IL-6, TNF-α by astrocytes and other cells (Nilsson et al., 1998). Further,
IL-1 induces astrocytes and neurons to produce moreβ-amyloid which leads to
deposition of amyloid fibrils (Nilssonet al., 1998). Interleukin-6 (IL-6; 26 kDa) is
secreted mainly by astrocytes (Benveniste, 1995) stimulated by IL-1β (Leeet al.,
1993). Elevated levels of IL-6 are observed when senile plaques start to form
(Nilsson et al., 1998). Tumor necrosis factor-α (TNF-α; 17 kDa) is mainly
secreted by stimulated astrocytes and is believed to trigger apoptosis (programmed
cell death), in some types of cells, and may act as a chemorepellent under some
conditions (Chicoineet al., 1995; Venterset al., 2000).

3. REVIEW OF CHEMOTAXIS MODELS

Keller and Segeldeveloped the first mathematical model for interactions of
chemotactic cells (slime molds) and a secreted attractant (cAMP), and showed that
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the onset of cell aggregation can be regarded as an instability (Keller and Segel,
1970). A typical formulation for the system of equations for chemotaxis models in
the form of a coordinate-free system is:

∂m

∂t
= ∇ · (µ∇m) − ∇ · (χm∇c) + f (m, c),

∂c

∂t
= ∇ · (D∇c) + g(m, c),

(1)

wherem is the cell density, andc is the chemoattractant concentration.µ > 0
andχ are the cell motility and chemotactic coefficient, respectively. The sign of
χ corresponds to chemoattraction if positive, and repulsion if negative.D > 0 is
the diffusion coefficient of the chemical andg(m, c) represents production and/or
degradation of chemicals. Cell proliferation and death is depicted byf (m, c).
Examples of specific variants of the system (1) are shown inTable 1. Unless
otherwise stated, these models have been studied in one-dimensional space with
Neumann (no-flux) boundary conditions.

Three forms of the concentration-dependent chemotactic coefficient,χ(c), were
discussed bySchaaf(1985): (1) χ(c) = χ = constant, (2)χ(c) = 1/c, and
(3) a receptor-kinetics formχ(c) = 1/(k + c)2, wherek > 0. Concentration-
dependence of the random motility term,µ(c), was discussed by Rivero (Rivero
et al., 1989). The rate of removal of chemicals is linear in some models, but when
binding of chemicals to cell-surface receptors is considered, removal rates of the
form g(m, c) ∝ mc/(k + c) are used.

Experimental observations of individual cells, and arguments based on theoreti-
cal considerations have been used to develop population-level models from under-
lying stochastic mechanisms and to estimate parameters for the random motility
coefficient and the chemotaxis coefficient (Tranquillo et al., 1988; Rivero et al.,
1989; Sherrattet al., 1992). It is necessary to connect the details of the motion
of the individual with that of the group. Papers that have addressed this problem,
and derived the appropriate partial or integro-partial differential equations include
(Alt , 1980; Othmeret al., 1988) and, in an ecological setting, (Grunbaum, 1994,
1999). Othmer and Stevens(1997) modeledmyxobacteria, as individual random
walkers. They derived a master equation for the bacterial probability density as a
continuous-time discrete-space random walk, and used this to develop the contin-
uous time and space equation.

3.1. Analytical techniques in chemotaxis models. Several common forms of
analyses, including linear stability analysis, have been applied to chemotaxis to
model established conditions leading to instability of homogeneous steady states.
Grindrod et al. (1989) analyzed the local and global bifurcation of spatially
heterogeneous patterns away from the homogeneous steady states as the number
of cells increased. They also discussed periodic spatially distributed solutions for
the cells and attractant in an infinite domain.
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Table 1. A summary of assumed forms for cell birth/death,f (m, c), and chemical
production/decay rates,g(m, c), in chemotaxis models of the general form shown in
equation(1).

Source f (m, c) g(m, c) Comments

Grindrodet al. (1989) 0 b
m

m + h
− µc Existence and

stability of
solutions

Maini et al. (1991) srm(N − m) s

(
m

m + 1
− c

)
Domain effects on
dynamics

Myerscoughet al. (1998) srm(1 − m) s

(
m

m + γ
− c

)
Boundary effects
on dynamics

Lauffenburger and
Kennedy(1983)

α(1 − σc − m)
γ c

1 + c
− mc

k + c
Applications
to white blood cells
and bacteria

Sherratt(1994) 0 −δ(c)m D ≡ D(c)
χ ≡ χ(c) applica-
tions to eukaryotic
cells

Othmer and Stevens
(1997)

0
mc

1 + νc
− µc + γr

m

1 + m
χ ≡ χ(c), D = 0
applications
to myxobacteria

Painteret al. (1999) 0 g1(c1, c2) − (r1 + r2)c1
g2(c1, c2) − (r1 + r2)c2

One cell type, two
chemicals. 2D,
χ ≡ χ(c1)

Painteret al. (2000) 0 g1(c1, c2), g2(c1, c2) One cell type, two
chemicals. 2D,
χ ≡ χ(c1, c2)

A two-dimensional chemotaxis model was investigated analytically and numer-
ically by Maini et al. (1991) with logistic growth for the cells and a Michaelis-
Menten production rate of attractant. The authors investigated the roles of sym-
metric and asymmetric mixed boundary conditions, domain size, and aspect ratio
on the formation of stripes and spots. They noted that when the total number of
cells were increased, the number of aggregates also increased.

Othmer and Stevens(1997) studied finite time blow-up solutions, representing
strong aggregation inmyxobacteria. In a series of numerical examples, they
demonstrated interplay between chemotactic sensitivity, the rate of production of
the chemical and initial conditions. Some solutions collapsed to a uniform steady
state, while others formed high amplitude peaks, or a sequence of decreasing
plateaus. The authors showed that stable aggregation can occur in the absence
of long-range signaling. A one-dimensional hyperbolic model for chemotaxis has
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been analyzed byHillen and Stevens(2000). Both globally stable patterns and
blow-up solutions were found.

A paper byLee et al. (2001) places chemotaxis in the context of local and
nonlocal mathematical models for biological phenomena. The authors constructed
a one-dimensional model for chemotaxis of myxobacteria, similar to the Keller–
Segel model and showed the connection to a formulation in which long-range
signaling occurs between cells.

3.2. Biological applications. Chemotaxis models have been applied to inflam-
matory response of cells in the immune system, including polymorphonuclear
leukocytes (PMN) (Lauffenburger and Kennedy, 1983; Tranquillo et al., 1988;
Rivero et al., 1989). In these models, aggregates represent localized regions of
inflammation and foci of infection. In contrast with the interactions in the Keller–
Segel model, the role of cells is to remove, rather than produce the attractant.

Several chemotaxis models have been applied to formation of patterns on animal
skin (Maini et al., 1991; Myerscoughet al., 1998). A generalized Turing model
with chemotaxis was developed byPainteret al. (1999) to account for cell growth
and movement. The authors analyzed the effects of these two processes on pigment
patterning in a system of stripes on a growing angelfishPomacanthus. In addition,
chemotaxis in response to chemical gradients (of one of the two chemicals) led
to aggregation of one type of pigment cell into a striped spatial pattern. The
chemotactic substance was taken to be a chemorepellent, with concentration-
dependent chemotactic coefficient,χ(c) = χ0/(k2 + c2) and χ0 < 0. (The
other chemical influenced the production of this repellent.) The system of three
equations was shown to lead to stripes that split into finer stripes as the domain
size increased.

Most of the original chemotactic models considered interactions between one cell
type and one chemical. However, an attractant and a repellent were considered by
Painteret al. (2000) in a generalization ofOthmer and Stevens(1997). Numerical
simulations for a one-dimensional and a two-dimensional model revealed the
formation of patterns such as spots and stripes of various thickness, representative
of spots on a jaguar and stripes on a lion-fish.

4. MODELING GOALS

Our purpose in this paper is to investigate whether some generic aspects of plaque
distribution, such as spacing (or density) might be correlated with the level of
reactive microglia and their known chemotactic behavior. Here we leave out many
important aspects of AD. In a separate paper (Edelstein-Keshet and Spiros, 2002),
we included further biological details of the inflammation and death of neurons,
and the involvement of microglia, astrocytes, and several secreted cytokines.

In principle, the actual sites at which senile plaques form in AD might have
a purely stochastic determinant: perhaps injury, excitotoxic factors, or oxidative
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stress cause a few neurons here or there to defectively process precursor proteins
into β-amyloid, initiating foci destined to become plaques. In this case, one
would ask what subcellular events lead to such stress and abnormal neuronal
behavior, rather than how interactions of a population of glial cells determines
the development of plaques. If so, then, our model has little relevance.

Another possibility, motivating our own investigation, is that global inflammation
in the brain leads to an elevation in reactive microglia, that, interacting through
their own signaling chemicals, spontaneously aggregate, forming the foci for
senile plaques. While there is no definitive evidence that would, at present,
confirm or rule out this possibility, we can formulate this as a hypothesis to test.
With the availability of some biological parameter values governing typical rates
of diffusion, chemotaxis, and chemical production/decay in the brain, we then
compare predictions of such a model to observed plaque spacing. We thus ask:
what types of interactions between microglia and their secreted chemical factors
would lead to the formation of localized aggregates representative of diffuse senile
plaques? Is such behavior possible within biologically relevant parameter regimes?

5. DERIVATION OF THE MODEL

With the multiplicity of chemical factors and cytokines known to occur in
immune-like signaling cascades, we were interested in assessing how some
combination of chemicals, e.g., those that lead to repulsion and/or attraction of
the responding cells might interact to produce aggregates. In the CNS, and
particularly so during development, this type of interaction has a documented basis:
chemorepulsion and chemoattraction of netrins and semaphorins are well known
(Mark et al., 1997; de Castroet al., 1999; Bagnardet al., 2000). The cytokines
IL-1β and IL-6, implicated in AD, are either secreted by microglia, or secreted
by other cells in response to microglial signaling (Lee et al., 1993; Mackenzie
et al., 1995; Stalderet al., 1999; Mrak et al., 2000; Smitset al., 2000), and are
known to affect the motion of microglia. Some are known to be attractants (e.g.,
β-amyloid, IL-1 proteins) and circumstantial evidence suggests a chemorepellent
role for TNF-α (Chicoineet al., 1995) under certain conditions.

5.1. Chemoattraction–repulsion model equations. For simplicity, we take a
one-dimensional domain, 0< x < L, whereL is a typical dimension of a relevant
domain in the brain. We consider cell density,m, representing activated microglia
andci , chemical concentrations of attractant(i = 1) and repellent(i = 2). We
assume that microglia undergo random motion (motility coefficientµ = constant)
and chemotaxis towards attractant (chemotactic coefficientχ1 = constant) and
away from repellent (chemotactic coefficientχ2 = constant). No proliferation
or death of cells is considered. We assume that chemicals diffuse in the region
with constant diffusion coefficientsDi . With these assumptions, the model
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equations are:

∂m

∂t
= µ

∂2m

∂x2
− ∂

∂x

(
χ1m

∂c1

∂x
− χ2m

∂c2

∂x

)
, (2)

∂ci

∂t
= Di

∂2ci

∂x2
+ ai m − bi ci i = 1, 2. (3)

Here ai , bi ’s are rates of production and decay of the chemicals, respectively.
The decay of chemicals follows simple linear kinetics, representing uptake by
surrounding tissue, or deactivation by some other mechanism. The production
of chemicals is taken to be proportional to the density of chemotactic cells. This
represents either a constant rate of secretion by the cells, or indirect production
by other cell types in response to local effects of the motile cells. For example,
microglial IL-1β enhances the processing and production of amyloid by neuronal
tissue. Equation (2) does not include a term for proliferation, held to be
insignificant for microglia in adult brain (P. McGeer, personal communication).

We consider no-flux boundary conditions:

µ
∂m

∂x
−

(
χ1m

∂c1

∂x
− χ2m

∂c2

∂x

)
= 0, (4)

∂ci

∂x

∣∣∣∣
x=0,L

= 0. (5)

(Preliminary numerical experiments establish that these boundary conditions do
not significantly affect the solutions qualitatively.)

To recast the model in a dimensionless form, choose the constant average cell
density,m̄, as the scale for microglia density. The average concentration of the
chemicals at which production and decay balance,(ai m̄/bi ), form characteristic
scales for chemical concentrations. The effective spatial ranges for the attractant
(L1) and repellent(L2), are Li = √

Di /bi , i = 1, 2, i.e., the distance over
which chemicals spread during the characteristic time of decay. We takeL2 as
the characteristic length scale of the problem. Then the time needed for a cell to
move over one unit of this length scale,τ = L2

2/µ, can be used as a time scale.
Introducing the dimensionless variables:

x∗ = x

x̂
, t∗ = t

t̂
, m∗ = m

m̂
, c∗

i = ci

ĉi
,

where the scales are:

m̂ = m̄, ĉi = ai m̄/bi , i = 1, 2,

x̂ = L2 = √
D2/b2, t̂ = τ = L2

2/µ, (6)
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we obtain the following nondimensional system of equations, where the stars have
been dropped for notational convenience:

∂m

∂t
= ∂2m

∂x2
− ∂

∂x

[(
A1

∂c1

∂x
− A2

∂c2

∂x

)
m

]
, (7)

ε1
∂c1

∂t
= ∂2c1

∂x2
+ a2(m − c1), (8)

ε2
∂c2

∂t
= ∂2c2

∂x2
+ m − c2. (9)

The model behavior is characterized by five dimensionless parameters:

A1 = χ1a1m̄

µb1
, A2 = χ2a2m̄

µb2
, ε1 = µ

D1
,

ε2 = µ

D2
, a = L2

L1
. (10)

We also define the ratio

A = χ1

χ2

a1

a2

D2

D1
(11)

which appears in a later discussion.A represents the ratio of effective strengths of
the attraction and repulsion, whilea represents the ratio of the spatial ranges of the
repulsion and attraction.

5.2. Relation to nonlocal signaling model. The connection between chemical
signaling and nonlocal interaction models has been investigated byLee et al.
(2001). They demonstrated that when chemicals diffuse much more rapidly than
cells, i.e.,µ  Di , (which impliesεi  1), a quasi-stationary distribution of
chemicals develops on a fast time scale. (We show inTable 10that for relevant
parameter values,εi � 0.04  1, so this limit is appropriate.) This quasi-
stationary distribution is defined by the steady state equations:

0 = ∂2c1

∂x2
+ a2(m − c1), 0 = ∂2c2

∂x2
+ (m − c2).

Solutions of these equations can be expressed in terms of theGreen’s functions:

c1(x) = a

2

∫ ∞

−∞
e−a|x−x′|m(x′)dx′, c2(x) = 1

2

∫ ∞

−∞
e−|x−x′|m(x′)dx′.

[This solution is valid on an infinite domain, but since the ratio of the chemical
half-life time to the characteristic time for the chemical to diffuse over the
domain length is small in our case, boundary conditions have little influence on
the dynamics of the chemicals (Lee et al., 2001).] These expressions indicate



702 M. Lucaet al.

that at a pointx, the chemical concentrations are linear superpositions of the
concentrations resulting from secretions of each of the cells. A cell at a point
x′ induces chemical concentrations in its vicinity that decay exponentially with
distance,c1 ∼ exp(−a|x − x′|), c2 ∼ exp(−|x − x′|).

Substituting these expressions for the chemical concentrations into equation (7),
we find that the equation for cell density can be expressed as a self-consistent
integro-partial differential equation:

∂m

∂t
= ∂2m

∂x2
− ∂

∂x
(vm), (12)

where

v = A2

2
(K ∗ m) = A2

2

∫ ∞

−∞
K (x − x′)m(x′)dx′ (13)

represents thedrift velocity of the cells. The functionK (x) is the interaction
kernel given by

K (x) = sign(−x)(Ae−a|x| − e−|x|). (14)

The interaction kernelK (x − x′) represents the effect of a cell atx′ on the motion
of a cell at the pointx. The first term in this kernel stems from the gradient of
chemoattractant induced by a cell atx′; the factorA represents the relative strength
of attraction. The second term describes the mutual repulsion of the cells due to
the gradient of chemorepellent. Since the direction of drift changes when the cells
exchange places,K is an odd function.

When chemicals diffuse on a much faster time scale than the motion of the
cells, the single nonlocal diffusion-advectionequation(12) for the cell density
approximates the behavior of the chemotactic system. The cells undergo biased
random movement with constant effective diffusion, and the effective drift velocity
of a given cell is a linear superposition of the velocities imposed by all other
cells. The interaction kernelK (x) describes the rate of drift of a cell atx induced
by another cell at the origin. Negative (positive) values ofK (x) correspond to
movement toward (away from) the origin. The parametersA, a affect the shape of
the kernelK (x), as shown inFig. 3.

In the analysis and simulations below, we treat the full model. However, we
comment on the connection between the behavior of the full model and that of the
approximate nonlocal representation.

6. LINEAR STABILITY ANALYSIS

We here analyze the stability and bifurcation behavior of the full model
consisting ofequations(7)–(9). The homogeneous steady state cell and chemical
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distribution of these equations ism = 1, c1 = 1, c2 = 1. Consider small
perturbations of the steady state of the form:

m(x, t) = 1 + m′eσ t eiqx, (15a)

ci (x, t) = 1 + c′
i e

σ teiqx, (15b)

where

• q = nπ/L is thewavenumberof the perturbation, and the positive integern
is themode. (2L/n is the wavelength of the corresponding pattern.)

• σ represents the linear growth rate(σ > 0) or decay rate(σ < 0) of the
perturbations.

• m′ andc′
i are the (initially small) amplitudes of the perturbations att = 0.

Substitutingequations(15a) and (15b) into equations(7)–(9), linearizing the
system of equations and computing the determinant of its Jacobian matrix, we
obtain the following cubic equation for the eigenvaluesσ :

σ 3 + ασ 2 + βσ + γ = 0, (16)

where

α = q2 + 1

ε1
(a2 + q2) + 1

ε2
(1 + q2), (17a)

β =
[

1

ε1
(a2 + q2) + 1

ε2
(1 + q2) + A2

ε2
− a2A1

ε1

]
q2

+ 1

ε1ε2
(1 + q2)(a2 + q2), (17b)

γ = 1

ε1ε2
[(a2 + q2)A2 − (1 + q2)a2 A1 + (1 + q2)(a2 + q2)]q2. (17c)

Equation (16) represents thedispersion relation associated with the model.
Instability in the system and the corresponding onset of the pattern formation by
cells and chemicals correspond to the condition Re(σ ) > 0.

The cubicequation(16) has real coefficients. The equation thus has three roots,
one of which is always real; two others can be either real or complex conjugate
depending on the model parameters. In the absence of chemotactic interactions
(A1 = A2 = 0), the roots ofequation(16) are readily found to beσ1 = −q2,
σ2 = −(a2 + q2)/ε1, σ3 = −(1 + q2)/ε2, and are all real and negative, so that
the homogeneous steady state is stable. In the appendix, we further show that if
chemoattraction is absent(A1 = 0), all roots have negative real parts, so that,
again, no pattern formation can occur.

When chemoattractant strength increases, a break of stability occurs at some
finite value ofA1. The character of the bifurcation depends on parameter values,
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with two distinct scenarios possible: (1) a real root becomes zero (while the other
roots have negative real parts); or (2) one real root is negative while two complex
conjugate roots have their real part become zero (a Hopf bifurcation). We analyze
both possibilities in detail in the appendix and show that scenario (1) occurs when
γ = 0, αβ − γ > 0; while scenario (2) occurs whenγ > 0, αβ − γ = 0. Which
bifurcation takes place first thus depends on whether the expressionαβ − γ or γ

becomes zero first, while the other is positive. If scenario (2) occurs, we expect a
Hopf bifurcation, so that a pattern periodic in both space and time would evolve,
whereas, in scenario (1), no temporal periodicity takes place.

For values of the model parameters discussed later on in this paper, random
motion of the cells is much slower than the chemical diffusion, so thatε1, ε2  1.
For this case, it turns out (as shown in the appendix) that the bifurcation follows
scenario (1). Indeed, in this limit,α � (a2 + q2)/ε1 + (1 + q2)/ε2, β �
(a2 + q2)(1 + q2)/(ε1ε2) > 0. Using perturbation arguments, the three roots
of equation(16) can be approximated asσ1 � −γ /β, σ2 � −(a2 + q2)/ε1 and
σ3 � −(1 + q2)/ε2. For biological relevance of the results to the system we are
interested in modeling, we concentrate mainly on bifurcation under scenario (1):
when the chemoattractant strength increases,α > 0 andβ > 0, and one real
root becomes positive as soon as the inequalityγ < 0 is satisfied. We comment in
more detail on the second possibility of the Hopf bifurcation, for general theoretical
interest, inSection 11and in the appendix.

Based on the discussion above, the relevant condition for instability obtained
from the linear analysis is

γ < 0. (18)

Substitutingequation(17c) into (18) gives theinstability condition

A

q2 + a2
− 1

q2 + 1
>

1

A2
. (19)

This concludes the linear stability analysis of the full model.
It is interesting to remark on the connection between the full model of

equations(7)–(9) and the approximate model given byequation(12). Lineariza-
tion of equation(12) and substitution of the perturbation in the formm(x, t) =
1 + m′eσ t eiqx leads to the dispersion relation:

σ = −q2 + q2A2

(
A

q2 + a2
− 1

q2 + 1

)
≡ −q2 + q2A2 f (q),

where we have definedf (q) as the expression in the braces. Similar calculations
appear inLee et al. (2001) and Mogilner and Edelstein-Keshet(1995). The
condition σ > 0 is easily seen to give the same linear stability result for the
approximate nonlocalequation(12) as for the full model.
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7. RESULTS OF THE LINEAR STABILITY ANALYSIS

At the onset of instability, the behavior of the system is determined by the left-
hand side of the instability criterion (19), and in particular, by thebifurcation
function f (q). For simplicity, we study the closely related function

F(x) = A

x + a2
− 1

x + 1
, (20)

where x = q2 [so that F(x(q)) = F(q2) = f (q)], The wavenumber(s) that
correspond to values ofx that satisfy the conditionF(x) > 1/A2 determine the
wavelength of the growing pattern-forming mode. Regions of high density of cells
(‘clusters’) are here associated with the putative AD plaques.

The function F is parameterized by the dimensionless parameters,A and a.
Our goal in this section is to understand the distinct stability behaviors that are
obtained for different ranges of these parameters. We consider the properties of
F(x) in the 2D parameter spaceAa. The following three properties are crucial for
understanding how instability can occur:

1. F(x) → 0 asx → ∞.
2. F(0) = A

a2 − 1. F(0) > 0 whena <
√

A, andF(0) < 0 whena >
√

A.
3. WhenA �= 1, F has a critical point(F ′(x) = 0) at

x = xc ≡ a2 − √
A√

A − 1
≡ q2

c . (21)

The corresponding critical wavenumberqc is defined as the square-root of
the expression in (21). For A < 1, a < A1/4, the critical point,xc is a
minimum of the functionF . For A > 1, a > A1/4, the critical point is a
maximum ofF . Otherwise,F is monotonic for positivex.

Using the above features ofF , stability of the model is characterized for several
parameter regimes. InFig. 1, we show theAa parameter plane, together with
arcs of the curves, (i)A = 1, (ii) a = 1, (iii) a = A1/2, and (iv)a = A1/4. In
Figs 2and3, we plot the related bifurcation function,f (q), and interaction kernel
corresponding to parameter values from distinct domains of theAa parameter
plane. Several cases can be distinguished, one for each of the domains bounded by
the above curves. We list these eight individual regimes and describe the behavior
within each one in the appendix. Here we summarize the distinct behaviors:

1. When the chemorepulsion is strong and short-ranged (Region 1:A < 1, a >

A1/2), the homogeneous steady state is stable.
2. When the chemoattraction is strong and long-ranged (Region 2:A < 1,

a < A1/2 and A > 1, a < A1/4), the homogeneous steady state is unstable.
The linear stability analysis indicates that at the onset of instability, a long
wavelength mode(qc � 0) would grow. This means that cells from the
whole domain start to aggregate into a single cluster, or a few irregularly
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Figure 1. The parameter plane Aa, showing the curves (i) A = 1, (ii) a = 1, (iii) a = A1/2,
and (iv) a = A1/4. Stability properties in each of the domains enclosed by these curves is
described in the appendix and summarized in the text.

spaced clusters, the locations and sizes of which depend on initial conditions.
Numerical simulations described in the next sections make these predictions
more precise and detailed.

3. When there is a short-ranged chemoattraction and strong and long-ranged
chemorepulsion (Region 3: A > 1, a > A1/4), the homogeneous steady
state is unstable. The linear stability analysis indicates that at the onset
of instability, a periodic pattern with a finite wavelength would grow.
Numerical simulations illustrate the sequence of events.

4. Using A = (A1/A2) a2, it is informative to rewrite the instability criterion
(19) in the form:

A1a2 > k1 A2 + k3. (22)

Then k1 = [q2 + a2]/[q2 + 1] and k3 = [q2 + a2] are constants of
order 1 provided parameters are not too close to the boundaries of Region 3
in the Aa plane. This means that, in order for pattern formation to take
place, the effect of chemotaxis should be stronger than the effect of random
diffusion, and the strength of chemorepulsion should not greatly exceed
that of chemoattraction. Furthermore, if the effective strength of attraction
dominates repulsion too strongly, unstructured aggregation takes place.
If attraction and repulsion have comparable strengths, but attraction has a
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Figure 2. Shapes of the bifurcation function, f (q) for parameter values in several regions
of the Aa parameter plane. In case (a), f (q) < 0 implies that the uniform steady state
is stable. In case (b), large scale instability is possible. In case (c), the function F has a
maximum at a finite value that corresponds to a value of the wavenumber qc ≈ 2. This
implies emergence of a periodic pattern when bifurcation occurs.
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Figure 3. Shapes of the interaction kernel K (x) in the same regions of the parameter space
Aa as in Fig. 2. This function represents the effect of a cell at the origin on the velocity
of other cells at a distance x away from it. K > 0 (K < 0) corresponds to repulsion
(attraction), or divergence (convergence) of the cells, as indicated by the arrows.

shorter range, L2 > k3L1, where k3 ∼ 1, then a pattern with an inherent
scale evolves. The distance between the clusters of cells, determined by this
inherent length scale, is of the same order as the range of the repulsion, L2.

We illustrate the instability criterion given by equation (19) in Fig. 4. In this
figure, all wavenumbers in the range between qmin and qmax would be unstable
according to predictions of the linear stability theory. (The range of unstable
wavenumbers can be seen to depend on 1/A2.) Below, we report the results of
numerical simulations of the model equations for two sets of model parameters
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unstable modes.

from Region 3 in the Aa parameter space. (See Table 10 for the values of these
parameters.) In each case, we plot the bifurcation function to find the range of the
wavenumber q characterizing growing modes. For parameter Set 1 of Table 10,
we find that modes 5 < n < 9 grow. For parameter Set 2 of Table 10 (stronger
chemotactic interactions), modes 4 < n < 21 grow. For both sets of parameters,
the most unstable mode is n = 6. The actual number of cell aggregates and
characteristic distance between them cannot be derived from the linear stability
analysis away from the bifurcation because of complex nonlinear interactions of
the various growing modes. However, the number of peaks in the cell density
that form inside the spatial domain correlates most closely with qmax, the maximal
unstable wavenumber. As the chemotactic interactions grow, qmax increases. Thus,
stronger inter-cell interactions should lead to a greater number of more closely
spaced aggregates, which we are interpreting in the model as AD plaques. Our
numerical simulations below confirm this prediction.

8. PARAMETER ESTIMATES

In order to study the system numerically and compare predictions with biological
data, we need to ascertain values of the model parameters. We use the following
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Table 2. Calculated effective diffusion coefficients for cytokines and chemicals implicated
in AD.

Molecule type Value (µm2/ min) Reference

β-amyloid 1500 Goodhill (1997)
IL-1β 900 Goodhill (1997)
IL-6 810 Goodhill (1997),

Moghe et al. (1995)
TNF-α 900 Goodhill (1997)

Table 3. Typical numbers of cytokine receptors per cell and calculated effective local
receptor concentrations.

Cytokine Receptors (r) per Receptor
cell concentration (rc) Source

(macrophage) (nM)

IL-1β 5000 0.83 Benjamin et al. (1990)
IL-6 500 0.08 Yamaguchi et al. (1992)

TNF-α 4000 0.66 Michishita et al. (1990)

Table 4. Association rates (k+), dissociation rates (k−) and equilibrium constants (K D)

for cytokines to their receptors.

Cytokine [k−] [k+] [K D] = k−
k+ Source

min−1 nM−1 min−1 nM

IL-1β 0.004–0.04 0.004–0.04 1 Benjamin et al. (1990)
IL-6 0.047 0.012 4 Hammacher et al. (1996)

TNF-α 0.01 0.0036–0.05 0.2–2.8 Michishita et al. (1990)
Pennica et al. (1992)

units for the model variables: min for time, µm for distance, nM for chemical
concentrations and cells µm−3 for the density of cells. Refer to Tables 2–10 and
calculations in the appendix for supporting material.

The diffusion coefficient of a molecule scales approximately as the −1/3 power
of its molecular weight (Goodhill, 1997). The effective diffusivity of molecules
such as soluble amyloid, cytokines IL-1β, IL-6, and TNF-α can be estimated using
their known molecular weights (Table 2), leading to values for the parameters Di .
To correct for the fact that brain tissue is a heterogeneous, geometrically complex
medium, we incorporated a correction factor of 50% to account for tortuosity of
the neuronal extracellular space (Sykova, 1997; Mazel et al., 1998; Nicholson and
Sykova, 1998; Sykova et al., 1998).

We assumed that the rate of decay of cytokines and amyloid was approximately
the same as the rate of binding of these molecules to cell-surface receptors on
neurons and other cells. The number of receptors on typical cells, and the dynamics
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Table 5. Concentration of cytokines produced by microglia or astrocytes, in the presence
of a stimulating factor. All values are from Lee et al. (1993). LPS = lipopolysaccharide.

Cytokine Produced by Value
(

pg
ml

)
Comments (cells/ml)

IL-1β Microglia 300 0.2 × 106

(stimulated by LPS) for 4 h
IL-6 Microglia 2000 0.2 × 106

(stimulated by LPS) for 4 h
TNF-α Microglia 400 0.2 × 106

(stimulated by LPS) for 4 h
IL-6 Astrocytes 300 0.2 × 106

(stimulated by IL-1β) for 8 h
TNF-α Astrocytes 80 0.2 × 106

(stimulated by IL-1β) for 8 h

Table 6. Production rates of cytokines produced by microglia or astrocytes, in the presence
of a stimulating factor. All values were calculated using data from Lee et al. (1993).
LPS = lipopolysaccharide.

Cytokine Produced by Value
(

pg
min

)
cell type

IL-1β Microglia 6.25 × 10−6

(stimulated by LPS)
IL-6 Microglia 41.67 × 10−6

(stimulated by LPS)
TNF-α Microglia 8.33 × 10−6

(stimulated by LPS)
IL-6 Astrocyte 3.125 × 10−6

(stimulated by IL-1β)
TNF-α Astrocyte 0.833 × 10−6

(stimulated by IL-1β)

of uptake of these receptors for the given cytokine is summarized in Tables 3 and
4 (Ding et al., 1989; Benjamin et al., 1990; Pennica et al., 1992; Yamaguchi
et al., 1992). This led to estimates for the decay parameters bi (Table 7 and
calculations in the appendix). We assumed that if the tissue has average receptor
concentration rc (units of nM), and the association rate for cytokine to receptor
is k+(nM−1 min−1), then the rate of removal of the chemical is on the order of
b ≈ k+rc. Using the derived estimates for Di and bi , we could estimate the
spatial ranges Li ≈ √

Di/bi = 300 µm: we found that the chemoattractant and
chemorepellent spread over hundreds of microns before decay.

To estimate typical rates of production of cytokines IL-1β, IL-6, TNF-α, etc,
we used experimental in vitro data for secretion of these factors (Lee et al., 1993;
Fiala et al., 1998). Table 5 summarizes concentration of cytokines produced by
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Table 7. Calculated decay rates of cytokines based on receptor binding as the rate limiting
step in removal of the given chemical.

Cytokine Absorbed by Value (min−1)

IL-1β Macrophage 0.003–0.03
IL-6 Macrophage 0.001

TNF-α Macrophage 0.003–0.03

Table 8. Parameters characterizing movement of human neutrophils (Moghe et al., 1995).
These were used as estimates for microglia motion parameters.

Parameter Description Value

χ Chemotaxis towards IL-8 6–780 µm2

nM·min

µ Random motility 33 µm2

min

a known number of microglia or astrocytes during a known fixed experimental
time interval in the presence of a stimulating factor. Using these concentration
values, we can derive approximate production rates and calculate the parameters
ai (Table 6 and the appendix).

The average densities of microglia vary by two orders of magnitude between
healthy individuals and AD patients, as observed in postmortem brain sections
(Itagaki et al., 1989; Mackenzie et al., 1995). Using the observed numbers of
cells per known area or volume cited in these references, we estimated the average
distance between the cells, and then computed an order of magnitude for the
average cell density (Table 9). Knowing the rates of production and decay and
the average cell density, we can estimate that the scale of chemical concentration
varies in a range 0.01–1 µMs.

Chemotactic motion of microglia has been studied experimentally (Davis et al.,
1992; Nolte et al., 1996), but the data is unsuitable for estimating the chemotactic
coefficients. We use values estimated for other immune cells such as neutrophils
and macrophages (Rivero et al., 1989; Farrell et al., 1990; Moghe et al., 1995).
The random motility coefficient µ was also corrected for tortuosity of the neuronal
extracellular space through which these cells crawl. Knowing the value of µ, and
previously estimated spatial ranges of the chemicals, we find that the time scale in
the system, τ = L2

2/µ, is close to 2 days. This estimate is quite sensitive to values
of the parameters: should the spatial range be a few times smaller, the time scale
would be on the order of a few hours.

Table 9 summarizes dimensional parameter values that appear in the chemo-
attraction-repulsion equations (2) and (3). We select IL-1β as putative attractant
and TNF-α as putative repellent for microglia, i.e., we identify c1 = concentration
of IL-1β and c2 = concentration of TNF-α.
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Table 9. Dimension-carrying parameter values used in the model.

Parameter Description Value Comments

µ Microglia random motility 33 µm2 min−1 Known value from
Moghe et al. (1995)

χ1 Chemoattraction 6–780 µm2

nM·min
Known value from
Moghe et al. (1995)

χ2 Chemorepulsion ? Not available

D1 IL-1β diffusion 900 µm2 min−1 Calculated using

Goodhill (1997)
D2 TNF-α diffusion 900 µm2 min−1 Calculated using

Goodhill (1997)
a1 IL-1β production rate 6.25 × 10−6 pg min−1 Calculated using

(per microglia cell) Lee et al. (1993)
a2 TNF-α production rate 8.33 × 10−6 pg min−1 Calculated using

(per microglia cell) Lee et al. (1993)
b1 IL-1β decay rate 0.003 − 0.03 min−1 Calculated in

this paper
b2 TNF-α decay rate 0.002–0.03 min−1 Calculated in

this paper
m̄ Average cell density 10−6 − 10−4cells µm−3 Mackenzie et al. (1995),

Itagaki et al. (1989)

Table 10. Dimensionless parameter values used in the numerical simulations.

Parameter Set 1 Set 2 Set 3

A1 37.50 150 37.14
A2 100 400 27
ε1 0.0367 0.0367 0.0367
ε2 0.0367 0.0367 0.0367
a 2 2 1.1
A 1.5 1.5 1.7

Domain length 5 5 10

We calculated the dimensionless parameters A, a, Ai , εi , i = 1, 2 based on
the above estimates for the model parameters, and found that ε1,2  1, i.e., the
chemicals diffuse much faster than the cells. Numerical experiments show that
results are not very sensitive to these parameters. Since we have D1 = D2, it
follows that a > 1 if b1 > b2, i.e., if IL-1β has a higher decay rate than TNF-α.
Our estimates of the decay rates allow a wide range of values for the parameter a.
In the numerical simulations, we chose values of a between 0.4 and 2.

It is hard to narrow down estimates for the parameters A1, A2 and A, since the
chemoattraction parameter and cell density range over two orders of magnitude,
while the chemorepulsion parameter χ2 is not available at all. Using lower
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estimates for the chemoattraction parameter and cell density, we obtain the value
A1 ∼ 0.1. On the other hand, with upper estimates of the model parameters,
A1 ∼ 100 is four orders of magnitude greater.

The linear stability analysis and shapes of the bifurcation function at various
values of parameters A1, A2 and a lead to the observation that when parameters A1

and A2 are much smaller than 1 (low cell densities and weak chemoattraction), then
the homogeneous steady state is stable. However, when the cell density increases,
as is known to occur in AD, and/or cells are more sensitive to secreted chemicals,
A1 can reach values of tens or hundreds, and then pattern formation is possible: see
Fig. 4. The analysis of the previous section predicts that if repulsion is weak (the
value of A2 is too small), then unstructured aggregation takes place. On the other
hand, if A2 is too large, then there is no pattern formation at all. Thus, our theory
predicts that stringent constraints on the strength of the chemorepulsion have to be
satisfied in order for the evolution of discrete aggregates similar to observed senile
plaques to evolve.

9. NUMERICAL SIMULATIONS

The numerical integration of chemotaxis equations is challenging because sharp
peaks in the cell distribution tend to evolve. Previous researchers addressed
these challenges in various ways. Finite element approximation using a Galerkin
formulation was employed by Maini et al. (1991). Sherratt et al. (1992) used a
semi-implicit finite difference scheme. In another case, the spatial derivatives of
the PDEs were discretized using a uniform grid and centered differences so that
the resulting ODEs were integrated with a stiff integrator package (Othmer and
Stevens, 1997). (The authors noted, and we concur, that, in order to conserve
particles, it is important to discretize the divergence form of the PDEs, rather than
expand the derivative and then discretize the resulting equations.) When peaks
began to grow, the time step was manually adapted to avoid numerical instability
(Angela Stevens, personal communication).

We explored some simple fixed mesh techniques for solving our model equations
numerically and found them unsuitable. Instead, we use an adaptive mesh
technique (Huang et al., 1994a,b). The main reason for using an adaptive mesh
is to handle the sharp spikes that occur as aggregation sets in. Without spatial
adaptivity, the narrowest structure that can be resolved is of the order of the fixed
mesh separation. In the simulation, we have no a priori knowledge of when and
where the aggregates form, excluding the usefulness of a fixed irregular grid. A
fixed regular mesh would mean a prohibitive number of mesh points to resolve fine
structures over the entire domain.

Adaptive mesh generation circumvents this problem by positioning mesh points
in regions with high gradients. A monitor function is used to track some property of
the solution, for example, arclength of the solution curve, to be distributed evenly
between neighboring mesh points. Since our model involves several variables, we
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used the sum of the arclengths of the dependent variables as the monitor function.
The mesh points are distributed by solving an auxiliary moving mesh PDE (Huang
et al., 1994a,b). This PDE is solved simultaneously with the model equations
using a standard collocation technique for the spatial variable with variable time-
stepping. For a review of the method see Huang et al. (1994a,b) and references
therein.

We validated the code by comparing it with a fixed mesh and fixed time step
method with several thousands of mesh points and a small time step. The
latter had clear disadvantages compared to the moving mesh scheme, including
incorrect predictions for locations and times of aggregate formation. For fixed
mesh simulations, insufficient resolution also led to other spurious results such as
overshoot, leading to negative cell and chemical concentrations close to edges of
sharp peaks.

10. RESULTS OF THE NUMERICAL SIMULATIONS

We solved the model equations (7)–(9) numerically with the adaptive mesh
method described above. In all numerical experiments, we used homogeneous
initial distributions of the cells and chemicals with small superimposed random
initial perturbations in the cell density and chemical concentrations. For values
of A and a in Region 1 of the parameter space Aa (A < 1, a > 1, Fig.
1), the magnitudes of the initial perturbations decayed and asymptotically stable
homogeneous cell and chemical densities evolved, in agreement with predictions
of linear stability analysis.

Simulations in Region 2 of the parameter space Aa (Set 3 in Table 10) with a
domain 10 spatial units wide, illustrate that long-ranged repulsion is not strong
enough to keep the local cell aggregates separated (Fig. 5). Small initial random
perturbations increase in amplitude and decrease in spatial frequency, so that a few
mild cell peaks evolve, with shapes and locations determined by the random initial
inhomogeneities. The small local aggregates of cells merge due to strong effective
attraction, and after approximately 1 time unit, a few sharp peaks of density evolve.
These local aggregates continue to drift toward each other and merge on a slower
time scale. After a few time units, one very narrow and dense aggregate dominates
the center of the spatial domain, while two others form at the boundaries. In
some runs, all the peaks drifted toward the edges, and none remained inside
the domain. Singular perturbation analysis (not reported in detail here) suggests
that, after an exponentially large time, a single peak, whose location depends on
initial conditions would remain. Clearly, this pattern formation scenario does not
resemble the biological observations for Alzheimer’s senile plaques.

Simulations from Region 3 of the parameter space Aa (given by the Sets 1 and 2
in Table 10) and a domain 5 spatial units wide are shown in Figs 6 and 7. The steady
state nonhomogeneous densities evolved over roughly 1 time unit (corresponding
to a few hours of real time). As in the previous case, a few mild peaks in the
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Figure 5. Numerical simulation for the evolution of spatial distributions of cells and
chemicals using Set 3 parameter values (Table 10). Random initial conditions were used:
m(x, 0) = 1 + εxran, ci (x, 0) = 1 + εxran, ε = 0.002, where xran is a uniform random
variable, |xran| < 1. The vertical scale is logarithmic in parts (d), (e), (f), (g), (h). Three
sharp peaks of the cell density evolve.
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(a)  t = 0. (b)  t = 0.02.

(c)  t = 0.04. (d)  t = 0.14.

(e)  t = 1. (f)  t = 2.

Figure 6. Same as Fig. 5 but for parameter Set 1 (Table 10). The vertical scale is
logarithmic in parts (e), (f). Three roughly equally spaced peaks of cell density evolve.

cell density evolve first. Due to strong long-ranged repulsion, these do not merge,
but, rather, evolve into roughly equally spaced sharp peaks, in agreement with the
stability analysis. For smaller values of A1 and A2 (weaker interactions or smaller
cell density), three peaks evolved (see Fig. 6). For stronger interactions and/or
greater density, six peaks evolved (see Fig. 7), also confirming the prediction of
the stability analysis. The spatial period of the pattern that evolves is of order 1, in
further agreement with the analysis.

11. OTHER PATTERN FORMATION SCENARIOS

As the chemoattraction–repulsion system has broader applicability to systems
other than microglia and cytokines, we briefly comment on the theoretical case of
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Figure 7. As in the previous two figures, but for the parameter Set 2 (Table 10). The
vertical scale is logarithmic in parts (d), (e), (f). Six roughly equally spaced peaks of cell
density evolve.

pattern formation that leads to periodicity in both space and time. This has been
denoted ‘scenario (2)’ in our linear stability analysis, and is discussed in greater
detail in the appendix.

We investigated the model numerically for one set of parameter values that lead
to this scenario, namely, ε1 = 2, ε2 = 10, a = 2, A1 = 2; A2 = 4. Here, diffusion
of the chemorepellent is much slower than that of the cells and the chemoattractant.
The leading unstable mode is then characterized by the wavenumber qc � 1 and
linear growth rate is σ (qc) � 0.07 ± 0.4i , where i = √−1.

We solved the model system of equations with these parameter values. The
results, shown in Fig. 8, confirm the linear stability prediction that standing waves



Chemotactic Signaling, Microglia, and Alzheimer’s Disease 719

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

(a)

(b)

Figure 8. (a) Results of the numerical simulations of the model in the case of a Hopf
bifurcation. A standing wave, periodic in space and time, evolves at the onset of the
bifurcation. The solid, dashed, and dotted lines show profiles of the cell density (vertical
axes) over space (horizontal axes) at t = 15, 23, and 30 time units, respectively. (b)
Eventually, one or two sharp peaks in cell density evolve and the oscillations stop. The
solid and dashed lines show the cell density profiles at t = 25 and 35 time units,
respectively.
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periodic in space and time will grow. However, experiments with many sets of
parameter values (and no-flux boundary conditions) all lead to a similar result:
a single peak of cell density eventually moves toward the closest edge of the
1D domain and stabilizes there. Simulated dynamics of the cells and chemicals
can be viewed at http://www.math.ucdavis.edu/~mogilner/PatForm.mov.
Initially, local aggregates of cells produce the diffusible attractant. This sets
up local gradients promoting further cell aggregation. However, on a longer
time scale, those cell aggregates produce local concentration of repellent. This
eventually ‘pushes’ cells away, into the space between the aggregates, where
repellent concentration and gradients are low. The cycle repeats, due to inherent
delay between production, diffusion, and response to repellent. As a result, the cell
(and attractant) density oscillates synchronously between maxima and minima at
adjacent locations. However, in the end, the tendency to aggregate overcomes the
influence of repulsion.

Though this phenomenon is of theoretical interest, it is unlikely to be relevant
to plaques in AD, since these are not known to move or fluctuate periodically.
A relevant observation in an unrelated system is that the rippling phenomenon
in Myxobacterial colony sometime exhibits a standing wave pattern (Sager and
Kaiser, 1994). Current theories explaining this phenomenon are based on contact
interactions between cells [see Igoshin et al. (2001), and references therein].
However, the alternative mechanism of chemotactic interactions between the cells
is not out of the question (Shi and Zusman, 1994).

12. DISCUSSION

Cells that secrete chemoattractants and chemorepellents will aggregate under
chemotaxis, given appropriate conditions, as shown by our analysis and simula-
tions. Chief among conditions for this to occur, are a sufficiently high cell density
and a sufficiently sensitive chemotactic response. The type of aggregates that form
depends on relative magnitudes and ranges of the attraction and repulsion. If repul-
sion is weak or short-ranged, then cells condense into a small number of large scale,
unstructured aggregates whose locations are random; there is then no inherent spa-
tial scale in the system. The most interesting situation occurs when both attraction
and repulsion are strong: then provided attraction is short-ranged, while repulsion
is long-ranged, periodic patterns will emerge, with dense cell aggregates distributed
equidistantly. Numerical solutions demonstrate that cells are then highly concen-
trated at foci, with density decreasing sharply away from the aggregates. (Simi-
larly, chemical concentrations are maximal at the foci and decay away slowly with
distance from these aggregates.) This is fairly typical of AD plaque morphology
(Itagaki et al., 1989).

Presently, the periodic formations of aggregates in the numerical simulations
cannot be matched quantitatively with biological observations of the evolution of

http://www.math.ucdavis.edu/~mogilner/PatForm.mov
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Alzheimer’s disease senile plaques. We can, however, compare the average spacing
of theoretically predicted periodic structures with the experimental observations of
those plaques. The model predicts that the spacing between clusters of microglia
(i.e., between neighboring plaques) is on the order of the range of the chemore-
pellent, estimated in this paper to be a few hundred microns. This agrees with
reported observations of inter-plaque distances in the range of 100 to several hun-
dred µm (Itagaki et al., 1989). When the average cell density grows, the charac-
teristic spacing between cell aggregates should decrease. This prediction of the
model is also in agreement with the observation of a positive correlation between
the number of reactive microglia in the CNS and the number of plaques formed.
Finally, to estimate the size of a plaque, we calculated the distance over which the
microglia density decays by a factor of 1/e from its peak value [Figs 6(f) and 7(f)].
The simulation suggests plaque diameters in the range of 40–140 µm, close to the
experimentally observed plaque sizes of 10–100 µm (Itagaki et al., 1989).

Though the model described here was motivated by AD, it cannot be interpreted
as evidence that chemotactic signaling of microglia are the single chief determinant
of AD plaques: such (or alternate) conclusions must be based on biological
experiments. At the same time, the model indicates that the parameter ranges
relevant to underlying biological interactions of microglia do not rule out such
a mechanism. The model has an independent scientific value in other biological
systems in which chemoattraction and repulsion occur. Our main reason for
testing its predictions in AD is that a relatively full set of parameters exists for
the cell motions and chemical rates in this setting. However, before the validity
of the model for AD can be accepted or dismissed, the following limitations have
to be overcome. The roles of chemical attractants and repellents are suggested,
but the evidence for their identity is circumstantial. More direct experimental
evidence for the existence of such chemical interactions in the CNS is necessary. If
our hypothesis for the nature of plaque formation is correct, better quantitative
measurements of kinetic and motile parameters are needed. Careful statistical
analysis of inter-plaque distances will have to be done in order to evaluate whether
a dominant wavenumber indicating approximate periodicity exists. Further,
numerical simulations should be expanded to 2D and 3D for comparison with
experimental images [but see also, Edelstein-Keshet and Spiros (2002) for another
approach with 2D simulations].

Even these barriers aside, the model has significant limitations. We neglected
many relevant complex biological phenomena, including effects of developing
plaques on neurons, and the feedbacks that result. The actual inflammatory process
in AD consists of numerous cell types and chemical factors. We have represented
one cell population (microglia), and auto-interaction chemicals that these cells pro-
duce (directly or indirectly), thus ignoring the much more complex actual net-
work of interacting chemical signals. Here we explored only a simple quasi-linear
model, in which all parameters were constant, whereas in reality, cell motility,
secretion rates and decay rates of chemicals may be more complicated
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inter-dependent functions. Further, changes occurring in tissue properties through
the course of the disease would affect these parameters, introducing more com-
plicated temporal behavior. Finally, the significant heterogeneity of brain tissue
is an obstacle to continuous models. Nevertheless, our model could be a useful
theoretical tool complementing experimental research of AD.

It is not currently known precisely what governs the formation and locations of
senile plaques in the brain. Other mechanisms might influence the distribution
and relative spacing of those plaques. Some alternate mechanisms have been
postulated. (1) Abnormally phosphorylated tau protein, which leads to incorrect
microtubule assembly in neurons, results in neurofibrillary tangles, and can lead
to eventual neuronal death (Rapoport et al., 2002). (2) Excitotoxic factors, and/or
oxidative stress can similarly cause neuronal death. Those sites of dead and dying
neurons could be the seeds around which plaques develop. If this were the case,
then the aggregation of microglia at such sites would be a downstream effect,
rather than a proximal cause in the initiation of the senile plaques. In that case,
our chemotaxis-based model would not be appropriate as a description of the
pathology.

Other mechanisms of pattern formation that have been investigated in mathemat-
ical biology so far are unlikely candidates for the development of plaques. First
of all, Turing-like pattern formation (Turing, 1952) has rather specific restrictions
on chemical reaction terms that are unlikely to occur in the brain. Further, pat-
tern formation based on mechanochemical interactions (Murray, 1993) is equally
unrealistic biologically in the adult brain. Nevertheless, at the present level of
knowledge, we cannot rule out other mechanisms of pattern formation that could
be responsible for plaques. Other systems involving one or more types of cells and
various combinations of chemoattractants and/or chemorepellents could be further
explored. For example, two attractants, one of which is secreted homogeneously by
the brain tissue and degraded by the motile cells could be the case. In this paper,
our goal was to investigate one of the simplest situations, which paves the road for
more biologically realistic and mathematically thorough and exhaustive modeling.
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APPENDIX

Linear stability and bifurcation analysis. In connection with equation (16), we
first make the following general observations:

• The cubic equation (16) has real coefficients. The equation thus has three
roots, one of which is always real; two others can be either real or complex
conjugate depending on the model parameters.

• It is well known (and easily verified) that the coefficients are formed by
α = −(σ1 + σ2 + σ3), β = σ1σ2 + σ1σ3 + σ2σ3, and γ = −σ1σ2σ3, where
σ1, σ2, σ3 are the three roots of (16).

• From the above item, it follows directly that if γ > 0 then either one or three
of the roots have negative real parts, and if γ = 0, there is a zero root.

• The special case of one real root equal to zero and two other negative real
roots (σ1 < 0, σ2 < 0, σ3 = 0) implies α = −(σ1 + σ2) > 0, β = σ1σ2 > 0,
γ = 0. We characterize this with the pair of conditions γ = 0, αβ − γ > 0,
and it corresponds to bifurcation scenario (1).

• The special case of one negative real root λ and two pure imaginary roots
±bi is found to satisfy α = λ > 0, β = b2 > 0, γ = αβ = λb2.
We characterize this case, which leads to scenario (2), with the conditions
γ > 0, αβ − γ = 0. Further the roots can be found exactly by factoring the
cubic polynomial, i.e., σ1 = −α, σ2,3 = ±√

βi . (This scenario is the Hopf
bifurcation.)

• From the above, we see that the expression (αβ − γ ) plays an important role
in bifurcation. If all roots have negative real parts it is easy to show that
(αβ − γ ) > 0. Conversely, if γ > 0, and also (αβ − γ ) > 0, then all three
roots have negative real parts, a result that follows from continuity and the
above arguments about bifurcation behavior.

Now, specifically in the case of the coefficients given by the expressions
(17a)–(17c), we also conclude the following:

• If A1 = A2 = 0, the roots are real and negative: σ1 = −q2, σ2 =
−(a2 +q2)/ε1 and σ3 = −(1+q2)/ε2. (This can be verified by substitution,
or by noting the product and sum of the roots in coefficients γ and α.)

• α is always positive, while β and γ are decreasing functions of the
chemoattractant parameter A1.

• In the absence of chemoattraction (A1 = 0), at arbitrary level of chemore-
pulsion, the expressions γ and (αβ − γ ) are positive.

The above assertions imply that when there is no chemoattraction, all three roots
have negative real parts, so that no pattern formation can occur.

We now consider the two distinct bifurcation scenarios:

• (1) At some critical value of A1, γ = 0, while β > 0. If this is the case, a
real root of equation (16) is equal to zero. At greater values of A1, this root
becomes positive.
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• (2) At a critical value of A1, γ > 0 and β > 0, while (αβ − γ ) = 0. If this
is the case, a pair of imaginary conjugate roots of equation (16) exist. At
greater values of A1, these complex conjugate roots will have a positive real
part. (This is a Hopf bifurcation.)

• Depending on the value of the other model parameters, as the parameter A1

increases, either minq(γ ) becomes equal to zero first, before minq(αβ − γ )

is equal to zero (scenario 1), or the other way around (scenerio 2).
• In the limit ε1, ε2  1, when the chemoattractant strength increases, α > 0

and β > 0, and one real root becomes positive as soon as the inequality
γ < 0 is satisfied, i.e., the bifurcation follows the first scenario.

The case of the Hopf bifurcation and spatio-temporal pattern formation. We
consider here pattern formation under scenario (2), when, at a critical chemoat-
tractant strength γ > 0 and β > 0, while the function (αβ − γ ) changes sign
from negative to positive. In that case, the real part of two complex conjugate roots
changes sign from negative to positive.

• This is possible, for example, when the chemorepellent diffusion is much
slower than the diffusion of the cells and chemoattractant, (ε1 ∼ 1, ε2  1).
In that case, (αβ − γ ) ∝ (a2 + q2) − a2 A1, while γ ∝ (1 + q2)[(a2 +
q2) − a2 A1] + (a2 + q2)A2. This implies that the function (αβ − γ ) always
becomes zero earlier than the function γ , as the parameter A1 increases.

• Other cases are possible: for example, when ε1, ε2  1, while A1,
A2 � (1/ε1,2), with certain additional restrictions on these parameters. Such
cases could be biologically realistic. (Values of parameter Set 2 of Table 10,
are close to, but not precisely in that region.) There is no simple analytical
criteria for this type of bifurcation, but equation (16) can be easily solved
numerically for a given parameter set, as discussed in Section 11.

• The leading mode in this case is characterized by a finite value of q. This can
be seen from numerical solutions of equation (16), and from the following
analytical argument: when q → 0, (αβ −γ ) → (a2)(ε1 +a2ε2)/(ε

2
1ε

2
2) > 0.

• Numerical experiments discussed in the text were carried out for parameter
values that lead to this scenario: ε1 = 2, ε2 = 10, a = 2, A1 = 2; A2 = 4.
Then γ > 0 for all values of the wavenumber q, while (αβ − γ ) becomes
negative at values of q � 1. We numerically found roots of equation (16)
using MatlabTM. This also allowed us to determine the leading unstable
wavenumber and linear growth rate.

Details of the Aa parameter plane regimes.

1. Region 1a (A < 1, a > 1): The attraction has a weaker strength and smaller
range than the repulsion. Therefore, the interaction kernel [Fig. 3(a)] is
positive for x > 0 and cells always repel one another. The function F ,
and hence also the bifurcation function f (q), is always negative so the
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homogeneous steady state is stable at all wavenumbers, and there is no
pattern formation.

2. Region 1b (A < 1, A1/4 < a < 1): Attraction has a smaller amplitude,
but larger range than repulsion. The interaction kernel is positive for small
distances x > 0, and negative further away [Fig. 3(b)]. Effectively, there is
a strong short-ranged repulsion and a weak long-ranged attraction between
cells. The bifurcation function is still negative at all values of the wavenum-
ber [Fig. 2(a)]; the homogeneous steady state is stable.

3. Region 1c (A < 1, A1/2 < a < A1/4): The situation is as in the previous
case [Fig. 3(b)]. Here F has a critical point, but it is a minimum, and occurs
for negative F . (This implies that the bifurcation function f (q) is negative
at the corresponding critical wavenumber.) There is no pattern formation.

4. Region 2d (A < 1, a < A1/2): Qualitatively, the interaction kernel is the
same as in the previous two cases. However, the long-ranged attraction is
now strong enough [Fig. 3(c)] that the function F is positive at small values
of x and has maximum F(0) = ((A/a2) − 1) > 0 at x = 0 [Fig. 2(b)]. The
most unstable mode is characterized by the smallest possible wavenumber
q = 0. We therefore expect aggregation to develop on the scale of the whole
spatial domain (Cross and Hohenberg, 1993).

5. Region 2e (A > 1, a < 1): In this region, both strength and range of
attraction are greater than those of the repulsion, and the cells mutually
attract at all distances [Fig. 3(d)]. The function F is positive at all values of
x with a maximum at x = 0. The character of the instability is the same as
in the previous case.

6. Region 2f (A > 1, 1 < a < A1/4): Attraction has a larger magnitude but
smaller range than repulsion; this is the case of short-ranged attraction and
long-ranged repulsion [Fig. 3(e)]. However, the repulsion is so weak that the
bifurcation function and the character of the instability are qualitatively the
same as in the previous case.

7. Region 3g (A < 1, A1/4 < a < A1/2): There is short-ranged attraction and
long-ranged repulsion. The latter is now strong enough that the character of
the function F changes qualitatively: it acquires a maximum, and is positive
at a positive value of x = xc which corresponds to the wavenumber qc =√

(a2 − √
A)/(

√
A − 1). Thus, the most unstable mode is characterized by

this finite wavenumber. We expect a periodic pattern to develop (Cross and
Hohenberg, 1993).

8. Region 3h (A < 1, a > A1/2): The situation is qualitatively the same as in
the previous case [Figs 2(c) and 3(f)].

Effective diffusivity of molecules.

1. The diffusion coefficient of a molecule in cytoplasm scales approximately as
one over the cubic root of its molecular weight (Goodhill, 1997).
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2. A molecule with a molecular weight of Mwt = 0.5 kDa has diffusion
coefficient D ≈ 10−6 cm2 s−1 = 6000 µm2 min−1 (Goodhill, 1997).

3. IL-1β has a molecular weight of Mwt1 = 17 kDa and its diffusion coefficient
is given by:

D1 ≈ D 3
√

Mwt/Mwt1 = D/
3
√

34 ≈ 1800 µm2 min−1 .

4. A correction factor of one half takes into account tissue tortuosity. The
effective diffusion coefficients shown in Table 2 are estimated similarly.

Concentration of cell surface receptors. The receptor concentration, rc (Table 3),
was calculated as follows:

1. We use the value V = 104 µm3 as the volume of a cell.
2. Let r be the number of receptors per cell. Since we would like to find the

receptor concentration in units of nM, we have to convert the number of
receptors per volume to nM

rc = r receptors × 1

V

[
1

µm3

]
× 1

6.02 × 1023 receptors
[mole]

= r

V

[
1

µm3

]
× 1

6.02 × 1023
[M × L] × 1015

[
µm3

L

]
× 109

[
nM

M

]

=
( r

V
× 1.66

)
nM.

3. For example, we find the receptor concentration of IL-1β to be

rc = 5 × 103

104
× 1.66 nM = 0.83 nM.

Production rates of chemicals. We estimate the production rates of chemicals
using the following calculations:

ai = amount
[pg

ml

]
× 1

n cells
[ml] ×

[
1

min

]
per cell.

For example, we find that one microglia cell secretes the following amount of

IL-1β per minute:

300

4 × 60 × 0.2 × 106

[ pg

min

]
= 6.25 × 10−6

[ pg

min

]
.
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The following conversion from the units of pg/µm3 into the units of nM is used in
order to express the production rates in the units of nM × µm3/ min:

1

[
pg

µm3

]
= 1

[
pg

µm3

]
× 1015

[
µm3

L

]
× 10−15

[
kg

pg

]
× (6.02 × 1023)

[
kDa

kg

]

× 1 molecule

Mwt

[
1

kDa

]
× 1

6.02 × 1023molecules
[M × L]

× 109

[
nM

M

]

= 109

Mwt
nM.

Here Mwt is the molecular weight in kDa of either IL-1β or TNF-α.
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