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Abstract 

We consider a class of models for the dynamic behaviour of ensembles of objects whose interactions depend on 
angular orientations as well as spatial positions. The "objects" could be particles, molecules, cells or organisms. We 
show how processes such as mutual alignment, pattern formation, and aggregation are describable by sets of partial 
differential equations containing convolution terms. Kernels of these convolutions are functions that describe the 
intensity of interaction of the objects at various relative angles and distances to one another. Such models appear to 
contain a rich diversity of possible behaviour and dynamics, depending on details of the kernels involved. They are 
also of great generality, with applications in the natural sciences, including physics and biology. In the latter, the 
examples that fall into such class include molecular, cellular, as well as social phenomena. Analysis of the 
equations, and predictions in several test cases are presented. This paper is related to Mogilner and Edelstein- 
Keshet (1995) in which the spatially-homogeneous version of these models was investigated. 

1. Introduction 

The  mathemat ica l  models  dealt  with in this 
pape r  describe a wide class of aggregation and 
al ignment  phenomena ,  mot ivated mainly by bio- 
logical applications. We consider populat ions of 
interacting cells, organisms, or molecules in 
which individuals tend to aggregate and self- 
align. Such phenomena  are also well-known in 
physics (notably fer romagnets  and liquid crystals) 
and hence We use the generic t e rm objects in this 
pape r  when referring to the interacting particles, 
organisms,  or cells. Our  interest here is in the 
combined  spatial and angular aspects of the 
order  that  emerges  under  different regimes when 
such objects interact. In all cases, we are inter- 
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ested in self-organization of these populations.  
The  order  is not imposed by external  bias or 
forces, but arises as a natural  consequence of the 
interactions, starting f rom a chaotic or r andom 
state. 

In the past,  models  for populat ion distribu- 
tions have tended to dwell exclusively on spatial 
distribution and tempora l  dynamics.  However ,  
there are instances in which the relative orienta- 
tions of  individuals have impor tant  influence on 
their dynamics and interactions. Typical exam- 
ples are herds,  fish schools, and other  highly 
structured animal aggregates,  where many  mem-  
bers of the social group align with each other  and 
move  in a common  direction (O 'Br ien ,  1989; 
Katz et al., 1981). This type of behaviour  allows 

reserved 
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the group to stay together, and it is often 
adopted as a defense against threats such as 
predation. (See, for example, Edmunds (1974) 
pp. 281, 282 for polarization in herds of wil- 
debeest and zebras threatened by hyaenas.) 
Another example is the mutual contact and self- 
alignment in mammalian cells such as fibroblasts, 
which align with one another on a surface 
(Elsdale, 1972; see Fig. 1). The cells form dense 
patches within which they are more-or-less 

a 

I /I \,lt  . , t , ,  
~ , .  . , , . % .  ~ - - , , % ,  

\ " - .  ,.." 
: - , - / ,  _ ,, 

Fig. 1. Mammalian cells, known as fibroblasts demonstrate 
an alignment phenomenon similar to the one discussed in this 
paper. A population of cells that is initially oriented at 
random forms patches in which cells are lined up in parallel 
arrangements. (Note that this happens as the density of the 
cells increases.) The bar scales shown under the right hand 
corner of each box represent 1000 and 100/~, respectively. 
(Sketched from a plate in Elsdale, 1973). 

aligned in a sea of rarefied (low density) ran- 
domly oriented cells. Because the type of inter- 
action depends on relative orientations of con- 
tacting cells, we consider spatio-angular distribu- 
tions of the cells. Empirical observations, or 
information about the phenomenon can be used 
to deduce the probability that a given contact 
will lead to a particular type of alignment 
event. 

Models which describe interactions of indi- 
viduals at various angles have been explored in a 
number of previous papers. Such modelling 
appeared in the context of branch interactions 
in a network of filaments in Edelstein-Keshet 
and Ermentrout (1989) and in fibroblast cul- 
tures in Edelstein-Keshet and Ermentrout (1990) 
(henceforth denoted EKE(90)). A detailed 
analysis of the spatially homogeneous case was 
also given in Mogilner and Edelstein-Keshet 
(1995a). 

The connection between interacting cells and 
models containing integral equations becomes 
apparent when one considers that a given cell 
can meet and interact with a neighboring cell of 
any other relative orientation. Each such event is 
associated with some probability that one of the 
two cells will turn and take on a new orientation. 
To account for all possible occurrences, one 
needs to sum up the probability of encounter, 
weighted by the likelihood of turning over all 
possible angles of contact. This reasoning leads 
to the formulation of integral equation models. 
Similar considerations apply in the binding of 
macromolecules which must take on the appro- 
priate relative conformations to expose active 
sites to one another. The orientations of actin 
filaments which are bound and assembled into a 
scaffolding structure inside the cell by actin-bind- 
ing proteins is one such example. This problem 
has been treated in detail in Civelekoglu and 
Edelstein-Keshet (1994). 

The presence of an environmental gradient, or 
of some polarized background is not a require- 
ment for the types of self-alignment discussed 
above, but if it is present, it biases the selection 
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of a direction with which to align. A discussion 
of self-alignment as a mechanism for enhancing 
chemotactic ability of social organisms such as 
schooling fish towards weak, noisy gradients is 
given in Grunbaum (1994). Locust swarms orient 
strongly to the direction of the wind. Flocks of 
migrating birds may use the earth's magnetic 
field as a directional cue. On the microscopic 
scale, motile mammalian cells (such as fibro- 
blasts) tend to align strongly with grooves on an 
artificial substrate. All these cases are not direct- 
ly addressed in this paper. We rather investigate 
the innate patterns of organization formed by a 
group of self-aligning individuals. 

As will be discussed in a concluding section, 
models in this paper are also related to the 
physical kinetics of liquid crystals studied exten- 
sively for decades. (Greco and Marrucci, 1992; 
Lifshitz and Pitaevskii, 1981; Chandrasekhar et 
al., 1970; de Gennes 1974). Our approach does 
not, however, use the free energy functional, or 
the Lyapunov functional approach. We will dis- 
cuss the two approaches at the conclusion of this 
paper. We rather use phenomenological model 
equations for the densities of objects which, in 
the physics literature, are often called rods, rod- 
like objects, rod-like molecules. The chief proper- 
ty of these objects is that they are elongated and 
have a natural axis of orientation: In the bio- 
logical examples mentioned above one can dis- 
tinguish an axis, as well as a front and a rear 
(e.g. "head" and "tail"). We will assume that the 
objects are axially symmetric (despite the fact 
that this is rarely the case in biological organisms 
which have clearly distinguishable dorsal, ventral 
characteristics.) 

This paper is organized as follows: We intro- 
duce and describe the models in Section 2. In 
Section 3 we list some necessary mathematical 
facts. We perform linear stability analysis in 
Section 4. In Section 5 we speculate about 
conclusions of the analysis. After a brief discus- 
sion of cellular automata models in Section 6, we 
finish with a comparison of this approach with 
other physical and biological theories. 

2. Description of the models 

We represent populations of objects using a 
continuum description. Models we consider in 
the present paper share the following limitations: 
(1) At very low densities the stochastic processes 
of cell movement cannot be approximated by 
continuous PDEs. (2) At very high densities, 
topological packing constraints dominate and the 
models are no longer valid. (See Elsdale and 
Wasoff 1976, Onsager 1949). (3) The models do 
not distinguish between clusters of different 
sizes. This could be done by introducing the 
functions P2(O, t), P3(O, t), P4(O, t) . . . .  to denote 
the density of clusters composed of two, three, 
f o u r , . . . ,  and n objects at orientation 0 but this 
would result in a system of infinitely many 
equations, a complication that we wish to avoid. 

Density distributions that represent the popu- 
lation(s) of objects are functions of the space 
coordinate r E D ,  orientational angle /2 E S of 
the object's axis, and time t. The spatial domain, 
D is either two dimensional (e.g. flat surface to 
which cells adhere in artificial in vitro growth 
conditions) or three dimensional (e.g. cells in 
vivo). In the two dimensional case, the angle 
describing the direction of an object is ~ E 
[ - ~ ,  ~] and we reserve the letter 0 for it. In the 
three dimensional case, we have an angle in 
spherical coordinates, ~ --- (~b, 0 )  where ~b E 
[0, o] is the colatitudinal angle, and 0 E [0, 2"rr] is 
the longitudinal angle. Since there is a one-to- 
one correspondence between such directions and 
points on the unit sphere, the angular part of the 
distributions can be considered as functions on 
the unit sphere. We denote the angular space as 
S in both two and three dimensions. 

Throughout this paper we consider only the 
cases in which the range of effective interaction 
between the objects is at least a few orders of 
magnitude smaller than the size of the domain. 
This is a natural consequence of our assumption 
about the contact-like character of interaction 
between the objects. But note that by contact- 
like, we do not mean g-like interaction, as they 
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are commonly called in physics, since in that 
case, integral terms disappear from the models. 
Rather  we mean that the effective radius of 
interaction is of the same order as the length of 
the objects (usually much smaller than the size of 
the ensemble). This allows us to consider the 
spatial domain as infinite, and for the purposes 
of the linear stability analysis, to ignore bound- 
ary effects. The latter, however, cannot be 
ignored in the analysis of pattern formation, as 
will be briefly discussed later. 

Three separate models are studied. In the first 
(Model I), we distinguish between two types of 
groupings characterized by densities of free ver- 
sus bound objects. We can think of this subdivi- 
sion as a phase separation: there is one dense 
phase, in which objects are "bound"  and are 
consequently constrained in their motion, and a 
second, lower density phase in which the objects 
move independently. We use the notation 
C(r, g2, t), P(r, a2, t) respectively for these density 
distributions. This model is related to the spatial- 
ly homogeneous model described in EKE(90),  
Mogilner and Edelstein-Keshet (1995a). 

In Model H and Model 111 we do not consider 
two separate phases, and in that case, we investi- 
gate a single density function, C(r, g2, 0. In 
Model II we consider the alignment process as a 
dynamic event which results from forces causing 
rotation of the interacting objects, rather than 
instantaneous " jumps"  from one direction to 
another. Model III is a description of interac- 
tions of clusters of objects, in which the size of a 
cluster, as well as its position and orientation 
determines how it interacts w i th  other oriented 
clusters. 

2.1. Model I: Instantaneous alignment 

The first model studied in this paper is an 
extension of the angular alignment model consid- 
ered in the papers (EKE (1990), Mogilner and 
E K  (1995a,b)). The variables in the model are: 

Definitions: 
t = time, 
r = position, 
O -= (~b,0) = direction of orientation relative to 

some fixed coordinate axes, 
C(r, g2, t ) =  density of free objects at r oriented 

with angle O at time t, 
P(r, O, t ) =  density of bound objects at r ori- 

ented with angle g2 at time t, 
K(r - r', O, O ' )  = functional form of the rate 

that an object at r', O '  turns to O and moves 
to r due to influence of object at r, O, 

13 = magnitude of the rate of alignment, 
3' = rate of exchange between bound and free 

ceils, 
/*1 = rate of random turning by free cells, 
/.t 2 = rate of random walk (diffusion) of free cells. 

The dynamic behaviour of the densities C and 
P is governed by the equations 

Model I 

I ~ t  (r, I2, t )=/3CK*C + B P K * C - T P ,  

~l OC • 
] --~-(r, O t ) = I x l A o C + # 2 A r C - / 3 C K  C 

[. - tiCK* P + TP. 
(2.1) 

In these equations, A n is the Laplacian in the 
angular variables, namely 

Aa 

t:i 2, - -  in 2D 

o(o5) [.sin 4~ 04~ sin ~ + sin2 ~ O02 , in 3D. 

(2.2) 

The operator A r is the Laplacian in spatial 
variables, i.e., 

f 0 2 0 2 
j ax---g + ay-- 2 , in 2D 

A r = ] 02 02 02 (2.3) 

l ~ x Z + - - ~ Y  2 + ~ z 2 '  i n 3 D .  
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K* is a linear operator that depends on the 
orientation 12, 12' and on the distance r - - r '  
between the interacting objects. 

(K*f ) ( r ,  12, t ) -  f d12' f dr' g ( r - r ' , 1 2 ,  O')  
S D 

x f(r', 12', t ) .  (2.4) 

Details about the kernel, K(r - r', 12, D')  will be 
given below. The expression (2.4) is the in- 
fluence of the distribution of material f(r', 12', t) 
on the angle 12 at position r. Thus a term of the 
form K* C represents the influence of the free 
object distribution at angle 12 and position r, and 
/3 CK * C is the rate at which this influence results 
in free cells realigning and sticking to other cells 
at 12, r. (They then become bound cells.) A 
detailed derivation and description of this model 
with no space dependence appears in the previ- 
ously cited papers. 

The nonlinear terms in Eq. (2.1) are respon- 
sible for alignment of the objects. We showed in 
a previous publication (Mogilner and Edelstein- 
Keshet, 1995a,b) that the following situation 
occurs in the spatially homogeneous case ( ~  = 
0): if /z 1 is smaller than a critical value, the 
stability of the homogeneous state is broken, and 
pattern evolves in angular space. The alignment 
starts as a smooth bump in the distribution of the 
objects. As the governing parameter /xl de- 
creases, this bump turns into a narrow peak (or a 
number of peaks) so that the objects become 
fully aligned, and share a common axis (or 
common axes) of orientation. 

We use the spatial Laplacian operator to 
capture a random motion of the object which 
does not include persistence in the direction of 
alignment, but rather pure random walk of the 
object's center of mass. In each experimental 
situation, there would be a specific type of 
stochastic process governing the motion of in- 
dividual objects. Some stochastic processes 
would lead to Brownian motion, while others 
result in a persistent motion in random direction. 

Further, random turning in general is described 
by more general operators, for example integral 
operators or their equivalents (see Murray, 1989, 
Section 9.5). Here we focus on the simplest 
situation, namely that of simple diffusion cap- 
tured by the Laplacian operator. It will be seen 
below that there is a strong mathematical reason 
for choosing the Laplacian, namely that its 
eigenfunctions are identical to those of the 
integral operator of the model. 

The form of the kernel K(r - r', 12, 12') in our 
model is of crucial importance and deserves 
special explanation. The dependence on the 
radius vector, r - r' between the centers of mass 
of the objects, follows from the fact that the 
spatial region is assumed to be homogeneous 
with respect to its influence on the objects. If this 
homogeneity is broken (due to environmental 
bias or external force), then more general depen- 
dence K(r, r', 12, 12') arises. 

The convolution term describes an elementary 
process of alignment: two objects meet with 
initial directions 12, D' and corresponding posi- 
tions r, r'. With probability a, the objects con- 
tinue moving with no interaction, and their 
directions are not changed. With equal probabili- 
ty ( 1 -  a)/2,  the objects are attracted to either 
direction 12 and position r, or to direction 12' 
and position r'. (The factor (1 - a ) /2  is absorbed 
into the constant/3.) 

Let us consider the situation when the distance 
between the objects is L/2  (where L is the 
length of the object), and the objects are parallel 
to each other. Then we distinguish between two 
possibilities: (1) the directions of the objects are 
normal to the radius vector between their 
centers-of-mass, or (2) they are parallel to the 
radius vector (see Fig. 2). The value of K 
represents the probability amplitude of align- 
ment. Experimental observations suggest that 
the greater the contact area between the objects, 
thegreater is the probability of alignment. In the 
second situation, evidently this contact area is 
larger. For this reason, we can deduce that the 
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(a) 

( b )  , ° .  - o o I v 

Fig. 2. While these pairs of objects have the same distance 
separating their centers of mass, there would likely be 
different interactions in these two geometrically distinct 
cases. Note that when the objects are almost parallel to the 
radius vector connecting them, the degree of overlap is much 
higher. 

value of K should be  greater ,  though both values 
( r -  r ' )  and ( / 2 -  12') are the same in the two 
cases. Thus it is reasonable  to assume that the 
interaction depends on the radius vector,  and 
two angles of  the objects '  axes relative to the 
radius vector  connecting them. 

For  the sake of simplicity in this first inves- 
tigation of the prob lem we will restrict attention 
to a somewhat  less general form of the separable 
kernel ,  

K(r  - r', 12, 12') = K l ( r  - r')K2(12 - 12 ' ) .  (2.5) 

(The  fully general  situation will be discussed 
separately.)  The  strength of the interactions 
decreases as the distance between the objects 
grows. We assume that  the effective range of 
interact ion is of  order  L,  where L is the length 
of the object.  For  the spatial part ,  it is natural  to 
assume the form 

K2(r ) = e x p ( - r 2 / 2 ) ,  (2.6) 

where  r is measured  in units of  L. For  the 
angular  par t  of  the kernel  we use assumptions 
similar to (EKE90,  Mogilner and Edelstein- 
Keshet  1995a). The  behaviour  of the models  
depends  on the kernel  KI ,  which would be 
specific to the exper imental  situation. In the case 
of  metazoan  cell such as fibroblasts, al ignment 
rates are lowest if the cells mee t  at 90 ° (see Figs. 

3a,b). In the case of actin fibers, crosslinking 
proteins allow fibers to interact  and bind at 
different configurations, including parallel (bun- 
dling) and orthogonal  (networking) structures. 
(Civelekoglu and EK,  1994). The kernel  is 
different in that case (see Fig. 3c). 

In parallel interactions, we must  still consider 
a further  distinction, namely whether  al ignment 
occurs only "head- to -head"  or also "head- to-  
tail". The  first case leads to a single h u m p e d  

kernel  in the domain - w  < 0  < ~ (see Fig. 3a). 
The second case results in a double  h u m p e d  

kernel  (see Fig. 3b). These kinds of kernels lead 
to parallel al ignment of  cells. In the case of  
Actin, where interactions can occur between 
orthogonal  fibers, two mutual ly or thogonal  axes 
of  orientat ion can be formed.  The  total mass of  
cells is equally distributed between these two 
axes. This case can be t reated in the same way 

( a )  

-~  -~/2 0 ~/2 

-r= -~12 0 ~/2 n 

-~ -~12 0 ~/2 

Fig. 3. The kernels K used to represent the contact align- 
ment phenomena are shown here as functions of the angle 
between cells. (In 2D the angle is 0, and in 3D it is g2.) (a) 
Single humped kernel, representing alignment in which both 
cells are oriented head-to-head. (b) Double humped kernel 
which permits cells to align also in a head-to-tail configura- 
tion. (c) An orthogonal interaction kernel that plays a role in 
the model for actin alignment. 
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(as shown in Civelekoglu and EK, 1994), by 
adjusting the kernel (see, for example Fig. 3c). 

Let  us introduce the mass of objects (at all 
angles) at location r: 

M(r, t) = f (C(r, 12, t) + P(r, 12, t)) d O ,  (2.7) 
s 

and the total mass of the whole ensemble, 

M = f M(r, t) dr .  (2.8) 
D 

It is easy to check that the total mass is con- 
served in the model. In the usual biological 
situation, the objects proliferate (e.g. cells un- 
dergo cell-division) so that the total mass in- 
creases. (This mass growth slows down and stops 
when the density of objects reaches some critical 
level.) As the objects proliferate slowly, we 
assume that M is the adiabatically varying vari- 
able. (I.e. for the analysis we take M to be 
constant. Later, we consider what happens if M 
is a slowly changing variable.) 

For the purposes of analysis, it is convenient 
to recast the equations in a dimensionless form: 

{-~tt (r, 12, t) = CK * C + PK * C - aP, 

OC 
] - - ~ - ( r ,  a2, = + - C K . C  (2.9) t) EIAI2C %A,C 

- C K * P  + aP.  

where a = y//3, E i = Ix i//3. 
Our description of the object ensemble implies 

that Model I has a non-local character. Indeed, 
the integral operator K* defines the alignment as 
an instantaneous process rather than a local 
continuous one, having time dynamics. To put 
the elementary alignment process into the form 
of a dynamical and gradual change, we introduce 
a second model, below. At the same time, we no 
longer distinguish between free and bound ob- 
jects, and consider only the density C(r, 12, O) of 
one type of object. The definition and properties 
of the mass M(r, t) are the same, but the terms 
with P are omitted. 

2.2. Model H: Objects subject to alignment 
force 

This model is more physically realistic, since it 
takes into consideration real forces causing real 
velocities. We assume that the motion of the 
object consists of the following two parts: (a) 
rotation about the center of mass with "angular 
velocity" oJ = dg]/dt;  (b) drift of the center of 
mass with linear velocity v = dr/dt. (Here r, g] 
are the spatial coordinate and direction of the 
object, respectively. In 2D, w = dO/dt is a scalar, 
and in 3D we define w = dg]/dt as a tangent 
vector to the surface of the unit sphere, such that 
/2 is the angle between two points g21, 122 on the 
sphere. Then the direction of the vector J] is 
tangent to the arc joining g21, 02. Note that our 
definition of the angular velocity in 3D is differ- 
ent from the one common in mechanics). 

As in Mogilner and Edelstein-Keshet (1995a), 
we will assume that velocities are proportional to 
corresponding forces: 

co - - F a ,  v - - F , .  (2.10) 

The proportionality of the velocities to the 
driving forces stems from a number of biological 
cases such as molecular and cellular biology. 
Here very small objects move in highly viscous 
media, i.e. the motion is characterized by low 
Reynolds numbers and inertial forces can be 
neglected. 

The forces Fa, F r are assumed to be conserva- 
tive. In that case, they derive from some under- 
lying potential functions (as is true, for example 
for electrostatic forces). Thus we represent the 
forces as the gradients of these potentials (whose 
nature is not here characterised.) 

F a = VareV, F, =Vrl7.  (2.11) 

Here,  the angular gradient is given by 

V a = /  ~ 0 1 ~ 0 (2.12) 
{ ~ b - ~ + s i ~ - ~ 0 ~ ,  i n 3 D .  
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It is reasonable to assume that a given object 
at the angle ~ ,  is subject to the effect of a 
potential that represents its cumulative inter- 
action with the other objects. We assume linear 
superposition of forces holds. Then the poten- 
tials W, V can be written in the form: 

I~ = W* C ,  1? = V* C ,  (2.13) 

where W*, V* are the linear integral operators 
with the kernels Wl(O)Wz(r ) ,  VI(O)Vz(r) ,  re- 
spectively, where 

Vz(r ) = Wz(r ) = exp( - r2 /2 ) .  (2.14) 

and Wl(g2), Vl(12 ) are the same as KI(J2 ). These 
kernels represent the potentials created by a 
single object at (r', g2') acting on a single object 
at (r, ~ ) .  The interaction between the objects is 
effective at distances of order L between them 
and decreases quickly at large distances. 

The motion induced by these forces sets up a 
drift of the objects both in physical space and in 
orientation space. Since the objects at a given 
position and angle all drift with the same mean 
rate, we can define fluxes (again in both angle, Ja 
and physical space, Jr) to describe the population 
drift. 

J~ = Co), Jr = Cv . (2.15) 

If we include both the divergence of the above 
convective fluxes and random motion, repre- 
sented by the terms elAaC and ezArC for the 
spatial and angular diffusion, in a balance equa- 
tion for the distribution, C02, r, t) we obtain the 
equation: 

OC 
Ot - e lAnC + e2ArC - V a  "Ja - V r  "Jr" (2.16) 

Using the equations (2.10), (2.11), (2.13), (2.15) 
in the above leads, finally to 

Model  H 

OC 
Ot - elAoC + e2A'C - V o -  (CVn(W* C)) 

- Vr" (CVr(V* C) ) .  (2.17) 

This equation describes the convectional drift of 

the objects in physical and angular space towards 
the points of the highest concentration, causing 
alignment and aggregation. 

In the simplest 2D case, we can introduce W' 
and V' as follows: 

0 a 
W' = - - ~ W ,  V' =-~r V . (2.18) 

Then these represent the forces corresponding to 
the above potentials. (Note that W'  and V'  are 
odd functions.) Then the nonlinear terms would 
have the forms 

0 
% "Jo = ~ ( c ( w '  • c ) ) ,  

0 (2.19) 

vr ' L =-fir ( c ( v '  * c ) )  . 

The first term in (2.19) with a specific choice of 
kernel (independent of r), appeared in the 
models by (Grunbaum, 1994; Alt and Geigant, 
1994) for chemotaxis and for Actin-myosin 
interactions, respectively. 

2.3. Model  I l l :  Interactions at discrete angles 

The third model is a simplification of the 
second model, in which objects jump instanta- 
neously from their initial positions and orienta- 
tions to ones acquired through the result of an 
interaction. We consider the interactions of clus- 
ters of objects, and assume that the size of the 
cluster influences its ability to attract objects. 
(Bigger clusters grow at the expense of smaller 
ones.) We use the same symbol, C for density 
and consider only one type of object. The model 
again consists of a single equation. It turns out 
that if the nonlinearities are quadratic, and if no 
distinction is made between different types of 
objects, no pattern can form for the following 
reason: Suppose there are two clusters of fully 
aligned objects of different sizes. Because no 
turns to intermediate angles are allowed, the 
quadratic nonlinearities will not redistribute the 
objects, but diffusion will dissipate the peaks, so 
that pattern will not persist. By comparison, in 
models of (Geigant, Mogilner and Ladizhansky, 
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1995) where turns to other angles are allowed, 
quadratic nonlinearities suffice to produce pat- 
tern. Here we consider another approach based 
on nonlinearities of higher order. 

With the above considerations, we obtain the 
following equation: 

Model I I I  

OC 
Ot - elAaC + ezArC + C(Q(C)  * C) . (2.20) 

Here the integral term is defined as: 

Q(C)  * C = f ~ L(C(r,  22) - C(r', a ' ) )  
S D 

x G(r - r', g2 - g2') 

× C(r', g2', t) dO' dr .  (2.21) 

The kernel is now the product of two func- 
tions, one of which is responsible for the inter- 
action dependence on the spatial and angular 
coordinates and has the same meaning and form 
as for the kernel K above: 

G(~Q, r) = G,(~Q) e -r2/2 . (2 .22)  

The function, L(C(r,  ~ ) -  C(r', g2')) reflects the 
tendency for the bigger cluster to grow at the 
expense of the smaller duster. 

This is a rough approximation of the process 
of fast motion of the small cluster of objects 
towards the more slowly moving big cluster, and 
their final merging. For this purpose, the func- 
tion L should be an odd one: L ( - C ) =  - L ( C ) .  
At the same time, the symmetry of the function 
L provides conservation of the total mass of the 
system. For the purposes of this paper, all we 
need to assume about the function L aside from 
the fact that it is odd, monotonously increasing, 
and bounded. We do not need further specifica- 
tion of the function L. 

In all three models, the nonlinear terms are 
favorable for the aggregation and alignment of 
the objects, while the diffusion terms cause 
dispersion of the objects, destroying order. We 
expect, then, that at large governing parameter 

values, el, e2, the angularly and spatially 
homogeneous state is the only stable one. We 
will find that as the total mass in the system 
grows adiabatically, bifurcation occurs, the 
stability of the homogeneous state is broken, and 
a pattern emerges. In Section 4 we undertake 
linear perturbation analysis to investigate this 
phenomenon. Before doing so, however, we 
establish a number of results about the linearized 
problem that will be necessary for our analysis. 

3. Eigenfunctions of the operators 

We are considering an infinite spatial domain, 
so that the wavenumber q is a continuous vari- 
able. Let us introduce the complete set of 
orthonormal functions: 

(Uq(r)Zn($"~)}  , q E R e, n = 0, 1, 2 , . . .  , (3.1) 

where 

Uq(r) ~ exp{i(q • r)}, 

and 

= ~e in° in 2D,  
z. [Y.(~b, 0) in 3D,  n = 0 , 1 , 2 , . . . .  

(3.2) 

(3.3) 

Yn are surface spherical harmonics (SSH), [Mac- 
robert, 1967; Abramowitz and Stegun, 1964]. 
Our analysis is based on the following proposi- 
tions: 

Proposition 1. The set (3.1) is the set of eigen- 
functions of the operator A r with corresponding 
eigenvalues: 

~q = __q2. (3.4) 

Proposition 2. The set (3.1) is the set of eigen- 
functions of the operator A a with the corre- 
sponding eigenvalues: 

- n  in 2D,  
% = - n ( n +  l )  i n 3 D ,  n = 0 , 1 , 2 , . . . .  

(3.5) 
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Rigorous proof of the above two propositions 
can be found in any classical book on mathemati- 
cal physics. 

Proposition 3. The set (3.1) is the set of eigen- 
functions of the operators K*, IV*, V*, G*, with 
the corresponding eigenvalues: K(n, q), W(n, q), 

12(n, q), G(n, q) respectively. These eigenvalues 
are given by the following formula (in the case of 
K, for example): 

/((n, q) =/~n e - q 2 / 2  • (3.6) 

Similar formulae hold for if', 12, ~.  The 
separability of the function R is a direct conse- 
quence of the separable nature of the kernel 
K(g2, r). Here R n is either the Fourier coefficient 
in the expansion of the kernel KI(O ) over 
cosines or sines or the coefficient in the Legen- 
dre expansion over the SSH (See Mogilner and 
Edelstein Keshet 1995a for details.) Eq. (3.6) 
follows from the fact that exp(-q2/2)  is the 
Fourier transform of exp(-r2/2) .  

4. Linear stability analysis 

In this section we consider only the 2D case. 
The 3D case is a clear generalization of our 
results. It is easy to see in all three models that 
the homogeneous solution (in both angle and 
space) is stationary. We are interested in the 
situation that pattern can arise. Our first step is 
to perform linear stability analysis to determine 
when the homogeneous solution becomes un- 
stable. 

Model  I. We consider the weakly perturbed 
homogeneous pattern: 

C(F, ~-~, t) = -]- C0 /./q(r) Zn(~-~ ) e ~' , 

(4.1) 

where P, C obey the relations: 

M = P + C ,  

aM 2= 
a + M  ' 

M 2 
/5 = _ _  (4.2) 

a + M "  

By substituting this into the system (2.9) and 
keeping terms linear in P0, Co we obtain a 
condition under which A has a positive real part 
(implying growing perturbation, and thus in- 
stability). We introduce the function A~=An(q) 
which we call the Linear Growth Rate (L G R) .  
This function is obtained from the secular alge- 
braic equation linking the values of A, n and q, 
and represents the rate of growth of pattern 
close to the homogeneous steady state. Note that 
conservation of mass in all three models implies 
that the homogeneous solution is neutrally stable 
to perturbation by the mode n = 0, q = 0 (that is, 
ao(O) = o) .  

The analysis is analogous to that in [EKE 
(1990)], and we get the instability criterion: 

e2q z < --•1 n2 -}- & e-q2/2(1 - / ( ~  e-q2/2). (4.3) 

Model  II. Substituting the pattern 

C(r, O, t) = C + Couq(r ) G(12) e at , (4.4) 

into Eq. (2.17) and keeping the terms linear in 
C o we obtain the instability criterion: 

e2q2 < _eln2 q_ ~(q2pn + 2 ~ e - q 2 / 2  . n W,) (4.5) 

Model  I lL  Substituting the pattern (4.4) into Eq. 
(2.20), using the fact that at small C we have: 

L(C)  = ~C + O(C2),  (4.6) 

and keeping the terms linear in C O , we get the 
instability criterion in the form: 

e2q 2 < --eln 2 + -qC2(1 - 0 n e-q2/2) . (4.7) 

The criteria for all three models lead quali- 
tatively to the same conclusions. The most con- 
venient way to investigate the conclusions of 
these inequalities is by graphical methods. We 
introduce the complete bifurcation diagram (see 
Fig. 4). 
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Fig. 4. A complete  bifurcation diagram. A and B are the 
lines of primary bifurcations. Line A corresponds to the 
growing mode n ¢0, q = 0. Line B corresponds to n =0, 
q ~ 0. The shaded region is the region of stability of the 
homogeneous state. The unshaded region corresponds to 
some non-homogeneous pattern. The dashed lines are sec- 
ondary bifurcations. The vertical dashed lines correspond to 
n ¢ 0, q ¢ 0. The curved portion of the dashed fines corre- 
sponds to n ~ 0, q ~ 0. 

This diagram represents  the state of the system 
with all parameters  fixed except two governing 
parameters ,  e 1 and %. The  shaded area in the 
p a r a m e t e r  space is the region of stability of the 
homogeneous  solution. The border  of this region 
is the set of pr imary bifurcation points. The 
unshaded region is the region of instability. The 
dashed lines are the set of secondary bifurcation 
points. As the total mass of the system slowly 
grows, and El, e 2 are decreasing, we cross either 
the line labelled (A) or the line labelled (B). 

If  we cross line A first then the mode  corre- 
sponding to n ¢ 0 ,  q = 0  b reaks  the stability. 
Then  the angular pat tern  evolves while the 
spatial distribution remains homogeneous .  I.e. 
the objects orient but  they do not aggregate (see 
Fig. 5a). The  nonlinear analysis of this situation 
is described in Mogilner and Edelstein-Keshet  
(1995a). We call this scenario A ,  If, o n t h e  other 
hand,  we cross line B, then the modes n = 0 ,  
q ~ 0  (see Appendix)  are responsible for the 
instabilities, then the angularly disordered pat- 
tern  with the spatial inhomogeneit ies  evolves. 
This means  that  the objects aggregate but they 
do not  align. One  would then see evolution of 

I¢¢ ¢ ¢¢1¢¢ 

", 111111111111 
~ \ X \ \ \ \ \ \ \ \  

t t t t t t t t t t t t  

(A) 

(B) 

(c) 

Fig. 5. Depending on the growth protocol,  any one of three  
possible bifurcation scenarios can take place. Starting from 
an initially disordered state (left),  bifurcation may lead to 
(A) formation of angular order  in a distribution that  is 
spatially homogeneous,  (B) aggregation and formation of 
spatial inhomogeneit ies  without  angular order taking place, 
(C) formation of patches of aligned objects. 

patches of objects within which the objects  are 
not directionally ordered  (see Fig. 5b). We call 
this scenario B. The detailed calculations leading 
to these conclusions are given in the Appendix.  

We now briefly describe a more  general situa- 
tion. Let  us consider the kernel  K(g2, r) such that 
its Fourier  or Legendre  coefficients have the 
form 

/<n 1 2 2 . e x p ( -  g r ,  q ) (4.8) 

Here  r ,  is the effective range of interaction (in 
units of L )  within the angularly ordered phase. 
This means that spatio-angular dependence  is 
more  general and realistic than before.  It  can be 
shown that  the kernel  can be represented in the 
following form: 

Ki(I2 ) exp 2 K - - ~ )  ' (4.9) 

where the effective radius of interaction, K 
depends in a nontrivial way on the angle. Thus 
we control not only the strength of the inter- 
action, but also its effective range as a function 
of angle. We note that  not all such kernels with 
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the Fourier or Legendre coefficients given above 
by Eq. (4.8) are positive. Since kernels in our 
model are transition probabilities we must im- 
pose restrictions on acceptable values o f / £ ,  and 
r , .  It can be shown (we omit details of the 
calculations) that the complete bifurcation dia- 
gram has qualitatively the same form as the one 
in Fig. 4 but with displaced lines A and B. In 
particular, the bigger is r , ,  the larger the dis- 
placement from the origin of these lines. How- 
ever, depending on /£,, r , ,  the diagram may 
change qualitatively in the vicinity of the inter- 
section of lines A and B (see Fig. 6). The new 
primary bifurcation (line C) appears corre- 
sponding to the mode n # 0, q ~ q(~) ~ 0. This 
line in general corresponds to the largest value of 
r n • 

If it happens that line C corresponds to the 
primary bifurcation or one of the secondary 
bifurcations, then the mode exp inO exp iqr in 2D 
and Y~ (J2) exp iqr in 3D is the leading one. Then 
spatio-angular order grows simultaneously, In 
this case, contrary to scenario B, the spatial 
density of the homogeneous state is not altered, 
but there exists long-range correlation between 
the axes of preferred orientation of the objects. 
In fact, the angle of preferred orientation 
changes periodically in space, with a characteris- 
tic period of order L, creating stripes (rolls) or 
spots (squares or hexagons). Schematically, the 

E 2 

I 
I 

1 
Fig. 6. The same as Fig. 4, but with an additional line for 
primary bifurcation (C). This line corresponds to the growing 
mode n¢0,  q¢0. 

case of stripes is shown in Fig. 5c. This is 
strikingly similar to the experimental results of 
Tabony and Job (1990) in artificial polymeri- 
zation of Tubulin. We call this scenario C. 

Note that we do not consider structurally 
unstable situations when bifurcation is caused 
simultaneously by two different modes. This may 
happen, for example, if we cross at the point of 
intersection of lines A and B. We also have to 
remember that linear stability analysis does not 
predict which pattern evolves in reality. It just 
gives us a strong hint about the form of the 
growing structure (see discussion for more de- 
tails). 

5. Implications of the linear stability analysis 

Mathematical results obtained in Section 4 
have the following qualitative interpretation: we 
have two diffusion coefficients, the rotational 
one /x  1 with dimension T -1 and the translational 
one, ~2 with dimension 12/T. (l is the unit of 
length and T is the unit of time.) We can then 
introduce an "intensity of interaction" of order 
/3M (which is the same for both spatial and 
angular interaction and has the dimension T -1) 
and an "effective range of interaction" L. Three 
parameters with the dimension T -1 define time 
dynamics in this system: /xl, tz2/L 2, ([3M). 
(There will be an additional parameter,  y in 
Model I. Then three parameters /~ly, ix2Y/L 2, 
and (/3M) 2 determine the dynamics of the sys- 
tem. If p~/L2> ~M, over the effective range of 
the interaction translational diffusion destroys 
spatial order faster than the interaction between 
objects restores it. If simultaneously ~1 < ~ M ,  

the angular par t  of the interaction prevails over 
the rotational diffusion. In this situation scenario 
A is realized, and the objects align first, be fore  
any spatial order is evident. Otherwise, if ~.z 1 
[3M rotational diffusion destroys angular order, 
and i~z/L2< ~M (spatial order is created), then 
we have scenario B, i.e. spatial aggregation is 
evident before any kind of angular order is seen. 
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For example, the usual situation for molecules 
is /.hL2--~2 (see Landau and Lifshitz, (1956)). 
In this case the detailed structure of the kernel 
determines the bifurcation scenario. However, if 
for one reason or another in a biological system 
the parameters, i ~ i / L  2 and t-~ are very different, 
then clear predictions can be made without 
knowing the detailed form of the kernel. The 
specific Gaussian form of the kernels K, W, V, G 
is not crucial for the results of this paper. The 
only important thing is the symmetry of the 
angular dependence, and the fact that the spatial 
dependence is a decreasing function of distance 
which falls to zero on a length scale of the order 
of L, the size of the object. 

In a separate paper, we will investigate the 
character of the spatial bifurcation, and the 
spatial patterns evolved. We expect that this 
bifurcation will be a first order nonequilibrium 
phase transition. The smallness of the wavenum- 
bets responsible for the bifurcation, implies a 
long length scale (relative to L) of the spatial 
pattern near criticality. This means that the 
length scale of the pattern may be comparable to 
the size of the spatial domain, and the effect of 
the boundaries could be significant. One of the 
implications is that irregular "droplets" contain- 
ing large numbers of objects start to grow, and 
that a multitude of topological singularities can 
arise in the spatio-angular pattern (Cross and 
Hohenberg, 1993; Elsdale and Wasoff, 1976). 
This is similar to patterns formed in fibroblast 
cultures. 

Characteristic sizes of patches of ordered ob- 
jects that evolve and the time dynamics of this 
evolution are currently under investigation. It 
appears that the role of fluctuations is important 
near the nonequilibrium phase transition. It is 
also of interest to consider more realistic forms 
of the kernels K ( r  - r ' ,  g2, J2 ' ) .  Throughout the 
present paper, we considered an isotropic do- 
main. If there is anisotropy, the O(n) symmetry 
is broken, and this must be reflected in the 
choice of kernel. We expect, further that nonloc- 
al effects in the random motion of the objects 

will lead to nonlinear terms in the diffusion 
operators, which will cause important changes in 
the linear stability analysis and nonlinear bifurca- 
tion analysis. (See, for example Murray, 1989.) 

In some systems in which there is substantial 
interest (for example aggregations of animals 
such as fish schools, bird flocks, or herds of 
mammals) free motion of the "objects" is not 
limited to diffusion, but contains an ordered 
component of persistent motion, with some 
intrinsic velocity. (See Alt and Pfistner, 1989). 
The cellular automata described below are an 
example of such systems. Including this motion 
in the models would lead to hydrodynamic-like 
equations and would reveal a number of new 
phenomena. 

In all three models, we have at least two 
governing parameters proportional to the spatial 
and angular diffusion coefficients respectively. 
Due to the additional adiabatic growth of the 
total mass, the synchronous changes in these 
parameters causes one or another "growth 
protocol" (see Cross and Hohenberg, 1993) also 
called a "developmental pathway" (Segel, 1984) 
namely, a sequence of the spatio-angular bifurca- 
tions. The first bifurcation is one of three pos- 
sible types described above. The final pattern, 
however, may be formed by secondary bifurca- 
tions. (Moreover, the linear instability at q ~ 0 
may not lead to any stability break. In this case, 
the mode responsible for one of the secondary 
bifurcations will be responsible for the patterns 
evolved.) One of the possibilities is that if spatial 
patches of objects are formed in an angularly 
disordered state, then the conditions for align- 
ment are most favorable within the patches, and 
the axes of orientation of objects in the different 
patches are not correlated. If, on the other hand, 
patches start to grow in a partially aligned 
ensemble of objects, then patches themselves 
have elongated forms and the axes of orientation 
of the objects within the patches are correlated 
between neighboring patches. (See Figs. 5c, 7.) 
This phenomenon is seen in cellular automata 
simulations. The full investigation of the final 
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Fig. 7. Cellular automata simulations of interacting objects reveal some of the bifurcation phenomena described in this paper. (a) 
Formation of several distinct patches of similarly aligned objects. (Note that each patch ha s its own orientation). (b) Formation of 
a single alignment region. In this case, the patch is elongated in the direction of its alignment. See EKE (90) and Ermentrout and 
EK (1991) for details about the cellular automata. 

patterns requires scrupulous nonlinear analysis 
of the competing unstable modes, and will be 
undertaken later. 

6. C o m p a r i s o n  with  cel lular a u t o m a t a  mode l s  

Cellular automata modelling of a similar sys- 
tem was described in EKE (90), Ermentrout  and 

Edelstein-Keshet (1991). In these models, persis- 
tent motion of the objects at random directions, 
rather than spatial Brownian motion was consid- 
ered. Furthermore,  hard-core repulsion between 
the objects was introduced. Despite these differ- 
ences, the qualitative picture of the patterns 
evolved (see Figs. 7a,b) bear similarities with the 
qualitative predictions we make in this paper. 
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The range of interaction is virtually greatest in 
the aligned state, so that scenario B is not 
realized. In some cases, it was clearly seen that 
patches start to form in the aligned phase, 
resembling scenario A. The form of the patches 
is elongated in the same direction as the axis of 
orientation of the objects within the patches. In 
other cases (when the density of the objects was 
higher), patches are formed from aligned ob- 
jects, but different patches have different 
orientations. This suggests that scenario C can be 
realized. Weemphasize that cellular automata 
modelling produces pictures of well-developed 
patterns, while our paper here deals with the 
initial phase of this process. No direct corre- 
spondence can be made for this reason. 

7. Comparison with physical and biological 
theories 

There is a close analogy between these models 
and alignment phenomena described in the 
physics literature: that of liquid crystals. A good 
general review of the properties of liquid crystals 
is found in the book by De Gennes (1974). 
Liquid crystals are formed by rod-like molecules 
which undergo random motion and tumbling, 
and interact by electrostatic attraction or repul- 
sion. Such molecules tend to align with one 
another, to attract each other at intermediate 
distance, and repulse at short distances. 

In biological examples, (e.g. mammalian cells 
such as fibroblasts) objects are living units, with 
essentially "infinite resources of energy" on 
which to draw. Their interactions cannot be 
easily summarized with simple physics. The 
alignment of populations of cells is not an 
outcome of the shapes of the cells, but of the 
complex membrane and cellular cytoskeleton, 
and the dynamic response to contact with 
another cell. 

In work dating back to Onsager (1949) and 
Zwanzig (1963) the case of hard rod-like mole- 
cules which do not overlap was studied using 

thermodynamic principles. It was shown that 
thermodynamic considerations of entropy alone, 
without forces of attraction between molecules 
could account for the long-range orientational 
order in these liquid crystals. 

Several rigorous models in the physics litera- 
ture predict orientational phase transitions of the 
second order for nematics, and these are analo- 
gous to the ones we observed in our models. A 
key difference in the methods of approach and 
the tools used for analysis of these physical 
phenomena must be emphasized. Models in 
physics are traditionally based on minimization 
of a free energy functional, which mandates that 
the system studied is being investigated close to 
thermodynamic equilibrium. However, in our 
approach the interest is on the dynamic process 
itself, far away from such equilibrium. 

The reason that we abandon the traditional 
physics approach when dealing with these bio- 
logical systems is that a meaningful definition of 
free energy cannot be derived from first princi- 
ples in highly non-equilibrium open systems such 
as living cells. It would be possible to formally 
define a free-energy functional, perhaps, as has 
been done for some open non-equilibrium sys- 
tems, but this approach may be artificial. This 
alternate energy approach is explored in Murray 
(1989, Section 9.6). 

It is interesting to note that there are two 
groups whose work on liquid crystals is vaguely 
in the flavour of our approach. The first due to 
Villard Baron (1969) and Chandrasekhar et al. 
(1970), is a Monte Carlo simulation of the finite 
system of elongated molecules represented by 
objects (ellipses) which undergo thermal transi- 
tions restricted by excluded volumes (the ellipses 
are not allowed to overlap). It is found that a 
sequence of two transitions-positional and 
orientational- is observed as the density of the 
objects increases. For less elongated ellipses, 
when the homogeneous steady state is disturbed, 
first the positional transition occurs (patches of 
spatially ordered ellipses formed) and only then 
the rotational transition. For more elongated 
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ellipses, the order of the transitions is reversed. 
In these simulations, direct interactions between 
molecules is absent. However, due to the effect 
of excluded volumes it is most entropically 
favorable for them to take on some degree of 
spatio-angular order. There is clear analogy of 
these results on the sequence of phase transitions 
with our scenarios A and C. 

An example of an approach that resembles our 
model in the field of liquid crystals is the paper 
by Greco and Marrucci (1992). They also pos- 
tulate a dynamic system of nonlinear PDE's to 
describe the interactions of rod-like molecules, 
and their distribution over space and angle. The 
details of the equations, and the techniques and 
results of the analysis is, however, quite different 
from our own. 

There are many other applications of integral 
equations in the biological literature. We draw 
the reader's attention to applications concerned 
with biological movement (/kit, 1988, Othmer et 
al., 1988), and with neuronal interactions Er- 
mentrout and Cowan, 1979; Ermentrout et al. 
(1986); Swindale, (1980), (1982), (199l), (1992). 
Integral equations have also appeared recently in 
the literature on coupled oscillators. An evolu- 
tion equation for the density of oscillators at 
phase 0 and frequency o9, analogous to a model 
by Kuramoto (1975) was derived and analyzed 
by Strogatz and Mirollo (1991). The oscillators 
interact with one another with intensity that 

depends on their relative phases, and this causes 
changes in the frequency and phase. An equa- 
tion described by Strogatz (and reviewed also in 
Strogatz, 1993) is: 

op O(pv) 
+ - -  - 0 ,  Ot O0 

where 

v(O, t, ~o) = . ,  

f sin(th - O) O(Ch, t, v) g(v) dv dqb. 

This equation bears similarity to Model II dis- 
cussed in this paper. It is likely that methods 
outlined in this paper may prove suitable to 
further investigation of such models. 
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Appendix 

We consider Models I-III.  Results are given below and summarized in Table 1. 

Model  I 

We consider separately three cases, I: n = 0, II: n ~ 0,/~n > 1/2, III: n ~ 0,/£n < 1/2. We will denote 
as gn(q) the right hand side of the inequality (4.3). 
Case I. The function 

go(q) = e-q2/2( 1 - e-q2/2) 

has the asymptotes: 
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Table 1 
Summary of the results of linear stability analysis 

Case I Case II Case III 

n = 0  n ¢ 0  n # 0  
I: /~,  > 1/2 I: /~, < 1/2 
II: I~. > n21~¢./2 II: I). < RHS 
III: G. > 0 III: (~. < 0 
q(~) = 0 q(~) # 0 q(~) = 0 
, ,  < ~°~ ~ < ~  < ~'~ ,~ < ~i °) 

"2 > e(z ~) e2 < e(2 ~ any 
A C A 
5a 4c 4a 
8b 8b 8c 
9a 9b 9c 
10b 10b 10c 

Angular mode 
Model 

Critical wavenumber q(C) = 0 
e~ any 
E2 ~2 ~ ~c) 
Scenario B 
Figure 5b 
Growth rate diagram (Fig.) 8 
Linear growth rate (Fig.) 9 
Stability diagram (Fig.) 10a 

1 2 3 4 
~ c /  - - ~ q  + O ( q 6 ) ,  q ~ l ,  (A,1) 

go(q)  ~ [e_q2/2 ,  q >> 1 ,  

and the maximum value, go(q) = 1/4  at q = qo = (2 In(2)) 1/2. If ~2 > 1if(2 c) ~-" 1/2  then the L G R  Ao(q) < 0 .  
If E 2 < ~(2 c) then Ao(q) < 0 whenever q > q(~) and Ao(q) > 0 whenever 0 < q < q(¢) where 

q(C) ~ (A.2) 

We show the left and right sides of the inequality (4.3) on the L G R  diagram (see Fig. 8a). The L G R  is 
maximal 

~rnax "~" , ( A . 3 )  

at q = qmax "~ q(~)/2 (see Fig. 9a). Finally, we sketch the stability diagram in the governing parameter 
space (Fig. 10a). Here the shaded region is the region of stability, (the other region corresponds to 
instability to the mode n = 0.) 
Case H. In this case, the L G R  diagram is as shown in Fig. 8b. The function gn(q) has the asymptotes 

I I~n--2 ~ l~n(4I(n--1)q4 gn(q) ~ gn(O) +/~n(2 1) 8 + O ( q 6 ) '  q ~ 1, ( A . 4 )  

L - -e l  n2 + / ( n  e - q  , q >> 1,  

gn(O) = --~1 n2 "1-/(.(1 -/£.) 
and max g . ( q )  = gn(O) + 1 /4  at 

qo = (2 ln(2/~,)) 1/2 . 

If e I < e ~c) where e ~c) is defined as 

(c)-2 +/£n(1 --/£.)  0 --E 1 I t  = , 

then An(q) < 0 if q > q(C) where 

(A.5) 

(A.6) 

(A.7) 
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r q 
(©) 

q 

(cO 

(b) 

~2 large ~2 man  
I 

e l  large RttS 

(c) 
! 

I 

Fig. 8. The  l inear growth rate diagrams. The  dashed lines 
show the  left-hand sides of the instability criteria of tile three  
models.  Solid lines are the right hand sides of these criteria. 
Instabili ty occurs whenever  the dashed line is below the solid 
line. (a) Case I: the unstable mode  is n = 0, q = q(C) = 0. (b) 
Case II: depending on the  values of el, %, two possibilities 
occur. If  E 2 is large, and E1 is small, we have a situation 
similar to (a) above. If  ~z is small and E 1 is large, the mode 
n ~ 0, q = q(~) ~ 0 is the leading one. (c) Case III: the mode 
n ~ 0, q = 0 is unstable.  

~ q  

Co) 

~.n(q) 

(q) 

~ q  

(c) 

q p.- 

Fig. 9. The  linear growth rate of an unstable mode as a 
function of q. (a) mad (c) correspond to Figs. 8a,c respective- 
ly. (b)  corresponds to Fig. 8a if E 2 is large, and to Fig. 8b if E 2 
is small. 

q ( C ) ~ n ( f l -  IE ~c)) 1/2 
ea / ( A . 8 )  

a t  a n y  e 2. O t h e r w i s e ,  A , ( q )  > 0.  I f  e I > e~ C) t h e n  A n ( q )  < 0 a t  a n y  q ,  w h e n e v e r  e2 > e ; ( e l )  a n d  A , ( q )  > 0 

a t  q ~ q0 ¢ 0 w h e n e v e r  e2 < E ; ( E1 ) ,  w h e r e  

1 1 - 4 e ~ n  2 e ; ( e ~ )  < ½ R . ( 2 R .  - 1)  < 1  ffl < - -  ( A . 9 )  
E ;(IE1) = 4 q 2  ' , 4 n  2 "  

T h e  L G R  is  m a x i m a l  a t  q = 0 a t  E 1 < ~ {c) ( s e e  F i g .  9 a ) .  I t  i s  m a x i m a l  i f  q ~ q0 ~ 0 i f  
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(a) 

E 2 

+? 

E r 1 

(b) 

E 2 

,+? 

.... ~+~ ;~+ .++ ~ii" N 

'+? 

E 2 

(c) ~+~ 

(e) 
E l  

Fig. 10. The stability diagram in the governing parameter space. The shaded region is the stability region and the unshaded 
region corresponds to a non-homogeneous pattern. (a) Case I: Independently of e 1, when e z decreases below e(z "), the 
orientationally disordered patches start to grow (scenario B). (b) Case II: the vertical border of the shaded region corresponds to 
the growing mode n ¢ 0, q = 0 (scenario A). The curved border corresponds to the growing mode n ¢ 0, q ¢ 0 (scenario C). (c) 
Case III: Independently of E2, as el decreases below ~c), the mode n ¢0 ,  q = 0 breaks the stability (scenario A). 

1 ~) < ~ < +~ < +;({1) (A.IO) 4 n  2 , 

( S e e  F i g .  9b) .  T h e  s tab i l i ty  d i a g r a m  t h e n  has  t h e  f o r m  s h o w n  in  Fig.  10b.  

Case I I I .  I n  this  case ,  t h e  L G R  d i a g r a m  looks  l ike  Fig.  8c. h , ( q ) >  0 at  q < q(C) w h e n e v e r  ea < E~ c) a n d  

a n y  %. An(q) is t he  s a m e  as t h e  o n e  s h o w n  in  Fig.  9c. T h e  s tab i l i ty  d i a g r a m  is s h o w n  in  Fig.  10c. 
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To determine the primary bifurcation in the case that q and e 2 decrease monotonously,  we must find 
the intersection of a countable number  of subsets of N2 corresponding to the shaded stability regions 
discussed above (for all n = 0, 1, 2 . . . .  ). Then the border  of this intersection is the line of the primary 
bifurcation. The borders of the stability areas which do not belong to this line together form lines of 
secondary bifurcations. The cumulative set of bifurcation lines is shown in Fig. 4. We call this picture 
the Complete Bifurcation Diagram. 

Model H 
It is easy to see that the right hand side of the inequality 

( n2 ) 
2 - 1 - - 2 ^  q_ - ~ ( - - e l n  Cn Wn) C V n - - ~  Vl'rn q2 ~_ O(q4) 

gn L - - ~ l n  + CVnq  e , 
2 - ~ 2 -q2/2 

Furthermore,  the function g~(q) has a maximum at q = 0 if 
We consider separately three cases: I, n = 0; II, n ~ 0, fe, 

Case I. When n = 0 the L G R  diagram is as shown in Fig. 8a. 
q's if e 2 > Cfen" There is instability at small q's if e 2 < t2fe,. 
diagram are shown in Figs. 9a and 10a respectively. 
Case H. When n # 0, fe, > n21~,/2, the L G R  diagram is given 

4 = e feo 2 : '  

(4.5) has the following asymptotes: 

q ~ 1,  (A.11) 

q > l .  

fe~ <nZl~/2 and at q ~ 0  if fe~ >nZI~12. 
>n217¢~/2; III, n ¢ 0 ,  fe, <n2I~ , /2 ;  
Independently of e~ there is stability at all 
The linear growth rate and the stability 

in Fig. 8b. If e2 > e ~) and e l > e ~), where 

(A.12) 

there is stability at all q's. If e 2 > e(z c), e 1 < E~ c) there is instability at small q's. At  e 2 < e (c) e~ c) < e 1 < ' 2 ' IE1 

there is stability at all q's ff e 2 > e;(el)  and instability at q = q(C)¢ 0 if e 2 < e;(E1). Here  e~ and E;(~a) 
depend parametrically on fe,, 17¢n, and C and can be found from certain transcendental equations, q(C) is 
defined by the expression: 

( 1'2 
q(C)= 2 ~ ] (A.13) 

The linear growth rate and the stability diagram are given in Figs. 9a, 9b, and 10b. 
Case III. The L G R  diagram in the case n¢O, fe n <n:12V~/2 is given in Fig. 8c. Independently of  %, 
there is stability at all q's, if e~ > e~ ¢) and there is instability at small q's if e I < e~ ~) where 

_e~ c) + ~r¢~ =_ 0 (A.14) 

(if 1~¢, < 0 there is no instability at all.) The linear growth rate and the stability diagram are shown in 
Figs. 9c, 10c respectively. 

Because e(z~)< 12fe,, the complete bifurcation diagram has the same form as the one in Fig. 4. 

Model III 
The right hand side of the inequality (4.7) has the asymptotes: 

~ ( - ~ l n 2  +~qC2(1-Gn))-k ~C2Gnq2-k O(q4), q ~ l ,  

gn(q) [. (_eln2 + r/d2) _ ~?(~a~, e-q2/2, q >> 1,  
(A.15) 
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gn(q) is m o n o t o n o u s l y  decreas ing  if Gn < 0 and m o n o t o n o u s l y  increasing if G ,  > 0. H e r e  we  have  to 
dist inguish th ree  cases: I ,  n = 0; I I ,  n ¢ 0, G ,  > 0; I I I ,  n # 0, G ,  < 0. 
Case I. T h e  L G R  d iag ram for  the  case n = 0 is shown in Fig. 8a. I n d e p e n d e n t l y  of  e~ the re  is stabil i ty at 
all q ' s  if e 2 > ~7C/2 and  the re  is instabil i ty at small  q ' s  if e 2 < ~7C2/2. T h e  l inear  g rowth  ra te  and  stabil i ty 
d i a g r a m  are  given in the  Figs. 9a, 10a respect ively .  
Case II. I f  n ~ 0, G ,  > 0, the  L G R  d iag ram is similar  to tha t  shown in Fig. 8b. T h e  only d i f ference  is 
tha t  the  h u m p e d  curves  are  monoton ica l ly  increasing in this case,  a f ea tu re  which  does  not  a l ter  the  
results .  I f  E 2 > ~ (2 c) and  E 1 > E ~), whe re  

~ c 2 a  n (1 
e(2 c) _ el(c ) = ~ / ~ z  - 2 ~ , )  (A.16)  

2 ' n ' 

t h e r e  is stabil i ty at  all q 's .  A t  ~2 > ~(2 c) and E 1 < ~ c )  the re  is instabil i ty at small  q ' s .  A t  E 2 < ~ c )  
E~ c ) <  61 < ' q  ~ 2 / n z  the re  is stabili ty at all q 's .  I f  e z > e~(el)  the re  is instabil i ty at  s o m e  q .~q(C)~0 if 

e z < E ~ ( e l ) .  H e r e  e~(e~) depends  pa ramet r i ca l ly  on  77, C, G , ,  and  can be  found  f r o m  cer ta in  
t r anscenden ta l  equa t ion  s. T h e  dist inctive fea tu re  of  this m o d e l  is tha t  q(C) can vary  f r o m  zero  to infinity: 

~/~z (A.17)  q(C)__~ if E2---~ 0, 61-'--~ z 
n 

T h e  l inear  g rowth  ra te  and stabil i ty d i ag ram are  shown in Figs. 9a, 9b, 10b. 

Case III. I f  n ~ 0, Gn < 0, the  L G R  d iag ram is shown in Fig. 8c. I n d e p e n d e n t l y  of  ez, t he re  is stabil i ty at 
all q ' s  if E 1 > e~ c) and  instabil i ty at  small  q ' s  if e 1 < e~ c) whe re  E~ c) is given in (A.16) .  T h e  l inear  g rowth  
ra t e  and  stabil i ty d i ag ram are  shown in Figs. 9c and 10c, respect ively .  Because  

E(z c) = f l~2  fen < ~ z  (A.18) 
2 2 ' 

t he  c o m p l e t e  b i furca t ion  d i ag ram has the  s ame  f o r m  as the  one  in Fig. 4. 
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