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Abstract. We present results and analysis of models for contact-induced 
turning responses and alignment in populations of interacting individuals. 
Such models describe distributions of orientation, and how these evolve under 
different assumptions about the turning behaviour of individuals. One of these 
models was first used to describe interactions between mammalian cells called 
fibroblasts in Edelstein-Keshet and Ermentrout (1990) J. Math. Biol. 29: 
33-58 (henceforth abbreviated EKE 1990). Here the original model is general- 
ized to encompass motion in both 2 and 3 dimensions. Two modifications of 
this model are introduced: in one, the turning is described by a gradual 
direction shift (rather than abrupt transition). In another variant, the interac- 
tions between individuals changes as the density of the population increases to 
include the effects of crowding. Using linear stability analysis and synergetics 
analysis of interacting modes we describe the nature and stability properties of 
the steady state solutions. We investigate how nonhomogeneous pattern 
evolves close to the bifurcation point. We find that individuals tend to cluster 
together in one direction of alignment. 
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1. Introduction 

In this paper we consider pattern formation phenomena in which patterns of 
angular (rather than spatial) distributions form. One can think of many 
biological examples in which alignment to a common direction or a set of 
common directions occurs: In a flock of flying birds or a school of fish, 
individuals moving together as a group orient to the same direction of motion 
(Grunbaum, 1994; Katz, et al., 1981; O'Brien, 1989). Alignment phenomena 
occur also in microscopic and in nonbiological systems: In liquid crystals, 
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rod-like molecules form various associations, including nematics, smectics, 
and cholesterics (de Gennes, 1974; Chandrasekhar et al., 1970; Greco and 
Marrucci, 1992; Luckhurst and Gray, 1979; Sheng, 1973). The type most 
closely related to the kind of order investigated in this paper are the nematic 
liquid crystals in which the molecules all have a common axis of alignment, 
but no long-range spatial order such as one commonly finds in the regular 
crystal structure. In a separate paper, (Mogilner and Edelstein-Keshet, 1994b) 
where both spatial and angular order are investigated, we find analogies with 
smectic-like order, where both long-ranged spatial order and alignment occur. 
We are interested in exploring how this spontaneous orientational order 
arises, what types of interactions promote this kind of pattern formation, and 
under what conditions. 

This paper is a sequel to Edelstein-Keshet and Ermentrout (1990) which 
will be abbreviated EKE (1990). We further analyse a model for contact- 
alignment phenomena in a population of cells, Model I, first described there. 
However, we broaden the discussion to a more general exposition of the 
problem of orientational order and its mathematical analysis. 

Aside from Model I, we consider also two related models. In Model II 
individuals gradually "drift" (rather than "jump") towards new directions of 
alignment. This is a more accurate description if interactions involve actual 
forces exerted by one unit on another. An example is actin-myosin interac- 
tions in the cytoskeleton of the cell. The third model (Model III), includes 
density-dependent turning rates. This could account for interactions in large 
populations in which the freedom of movement is restricted due to crowding. 

Model I was first applied in EKE (1990) to populations of fibroblasts, 
mammalian cells that move by crawling. The cells are polar, having a "front" 
and a "rear". In the living body, cells navigate through a complex three- 
dimensional matrix. In artificial culture, the cells adhere to and move along 
the surfaces of their culture flask (on a 2D surface). The cells interact with one 
another as follows: If direct contact occurs between a cell and its neighbor, the 
contacting cell will either retract, or turn. This turning response forms the 
main phenomenon of interest here. The response depends on the relative 
orientations of the participating cells. The phenomenon at the population level 
is that cells initially randomly oriented can form patches of alignment called 
parallel arrays (Elsdale, 1972; Elsdale and Wasoff, 1976). 

Model I consists of a pair of integro-partial differential equations which 
describe angular distributions of cells. The spatial distribution of the cells is 
not considered explicitly in this paper, but it is discussed in a companion 
paper by Mogilner and Edelstein-Keshet (1994c). Here we will make the 
assumption that the cells are distributed uniformly with respect to position. 

Formation of preferred directions of alignment in a 2D region can be 
described as formation of pattern on a one-dimensional domain (the angular 
space 0) with periodic boundary conditions, - n = n or more simply, pattern 
formation on a unit circle. One goal in this paper is to generalize the analysis in 
EKE (1990) to angular distributions in 3D space, and this is analogous to 
a problem of pattern formation on the unit sphere. We also investigate the 
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influence of the drift term and the density-dependent term by comparing the 
first model with Models II and III. These models are suitable not only for 
cellular phenomena, but for some gross characterization of molecular phe- 
nomena. In a separate paper (Civelekoglu and Edelstein-Keshet, 1994) we 
describe structures formed by actin fibers crosslinked by actin-binding pro- 
teins. This problem also fits into the general scope of formation of orienta- 
tional order. Some details about the associated phenomena in this case are 
given as examples in this paper. In a sequel to this paper (Mogilner et al., 
1994b) we consider a limiting situation of a slow rotational diffusion leading 
to almost complete alignment. Here, in the first part, we concentrate on 
a parameter region close to the bifurcation value, so that the amplitude of the 
patterns are small. 

The paper is organized as follows: Section 2 describes the models. 
Section 3 contains a summary of results of Model I based on EKE(1990). In 
Sects. 4, 5 and 6 we generalize these results to three dimensional rotations and 
introduce all necessary mathematical tools. The linear stability analysis is 
performed in Sect. 7. This is followed by nonlinear bifurcation analysis in 
Sects. 8 (2D) and 9 (3D). The Discussion lists a few related problems. 

2. Description of the models 

2a. Model I: Instantaneous alignment 

As in EKE (1990), we restrict attention to cells distributed uniformly over 
space. We consider two groups of cells: those that are associated in groups 
("bound cells") share a common axis of orientation and are restricted to 
motion along a single direction; those that are isolated ("free cells") can 
continually undergo random reorientation. Under the assumption that the 
medium is isotropic, and there is no preferred direction in the environment, it 
is reasonable to assume that the probability of alignment of two cells depends 
only on the relative angles between the cells. In Model I it is assumed that 
changes in orientation take place "instantaneously" when two cells align. 

Definitions 
t = time, 
0 = angle of orientation relative to some arbitrary direction (e.g. the x axis), 
C(O, t) = density of free cells oriented with angle 0 at time t, 
P(O, t) = density of bound cells oriented with angle 0 at time t, 
K(O, 0') = K(O - 0') = probability of contact-induced turning from O' to O, 
]? = rate of alignment due to contact, 
7 = rate of exchange between bound and free cells, 
# -- rate of random turning by free cells. 

In the original model it is understood that angles are taken in the range 
- r~ _ 0 __- rc and that functions of 0 are periodic with period 2m 
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Model I 
As in EKE (1990) we consider the set of equations 

--~ (0, t) = fl~CK * C + ~2PK * C - ,/P, 

Oc 02c (2.1) 
--~(O,t) I x - ~ - t ~ I C K . C - i ~ 2 C K . P  + vP, 

where we have used the usual notation for convolution, 

K ,  c ( o )  = K ( o  - o') c (o ' ,  (2.2) 
d -  

In equations (2.1)/.t represents the rate of random turning of free cells, and y is 
the rate of shedding of cells from the bound fraction. The convolution term 
(2.2) captures the following elementary process of alignment: two free cells 
meet with initial directions 0, 0'. With some probability, say ~, the cells 
continue moving with no interaction, and directions unchanged. With equal 
probability (1 - ~)/2 per unit time, the cells align to either direction 0 or 0'. 
(The factor (1 - ~)/2 is absorbed into the constant fl, .) After aligning, the cells 
stick. (They become part of the class of bound cells.) The term /~ICK* C 
(which stands for fl, C(K • C)) gives the rate at which free cells are converted 
to cells bound at angle 0 through contact with other free cells. (The dimen- 
sions of this term are density increment per unit time). 

If the interaction takes place between one free and one bound cell, it is 
always the free cell that re-orients. The term ~2PK * C is the rate at which free 
cells accumulate at angle 0 due to contact with bound cells at that angle. By 
comparison, the term - f l a C K  * P is the rate of loss of free cells from angle 
0 due to attraction to bound cells at any other angle (Note that these terms are 
NOT symmetric). The term K • C can be viewed as a dimensionless expression 
which depends on the entire distribution C('),  but which acts at a given 
angle 0. We will refer to this expression as the influence of the free cell 
distribution on the direction 0. Similarly, we will refer to K * P as the influence 
of the bound cell distribution on the direction 0. 

As seen from the above equations, the approach is based on integro- 
differential equations. This imposes a non-local character to the model. Since 
there is little available information about the details of the alignment process, 
we do not consider in detail the time-rate of change of the cell direction. The 
latter approach is more appropriate when the nature of the forces causing 
rotation are known from basic physical principles, or from experimental 
evidence. Model II is appropriate for such cases. 

2b Model II." objects subject to alignment force 

In Model II we describe turning as a gradual rotation, rather than a spontan- 
eous jump to a new orientation. This might be true if alignment was mediated 
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by some applied "force" (e.g. elastic tension). We describe the turning motion 
of the object as a rotation about its center of mass with some angular velocity. 
The angular velocity will stem from a force acting on the individual. In 
physics, many forces (such as those in electrostatics, but in particular any 
conservative force) can be expressed in terms of some underlying scalar 
potential function. It turns out that in Model II the kernels of the convolu- 
tions that describe interactions are most naturally interpreted as such poten- 
tials, as we illustrate below. 

We define the angular velocity of an individual to be co = dO/dt. (Since we 
are here describing the model in 2D, co = dO/dt is a scalar. Later the model will 
be generalized to 3D and then co = dI2/dt is a vector, f2 would then be the 
angle between two points f21, f22 on the sphere, and the direction of the vector 
I~ is tangent to the arc joining f2a, 02. We leave this generalization to a later 
section but here merely note that our definition of the angular velocity in 3D is 
different from the one common in mechanics.) 

We will assume that the angular velocity is proportional to the corres- 
ponding force: 

co ~ Fo,  (2.3) 

The assumption of the proportionality of the velocity to the driving force 
comes from many biological applications. In the usual situation, in molecular 
and cell biology, very small objects move in highly viscous media, with 
relatively small speeds. Thus motion is characterized by low Reynolds num- 
bers, for which inertial forces can be neglected. 

We assume that the force F is conservative. Then F can be represented as 
a gradient of some corresponding potential field if,: 

F = - V0ff, • (2.4) 

In the simple 2D case, 

In the 3D case, 

V0ff, - ~-0 if, " 

if, 1 Off" 
V0ff, - ~ -~  + sin---0 60 " 

The potential at a given angle 0 is created by the sum total of interaction 
with individuals at all other angles. We assume linear superposition of forces. 
Then the potential if, can be written in the form: 

if, = W *  C =- f w (o - 0') C(O', t) dO'. (2.5) 

Since each angle is associated with an angular velocity, objects tend to 
"drift" collectively. This drift can be described by a convection term in 
a canonical way. We assume simply that the flux associated with this drift is 
a product of the density and the velocity, i.e.: 

Jo = Cco (2.6) 
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Including the term eAoC for angular diffusion, leads to a balance equation for 
the angular distribution as follows: 

8C 
~---~ = elAoC Vo'Jo • (2.7) 

The drift term in equation (2.7) has the form 

V'Jo = ~ ( C ( W '  *C)) 

in 2D. This type of term appears in the models by [Grunbaum, 1994; Alt and 
Giegant, 1994] for chemotaxis and for actin-myosin interactions, respectively. 
In 3D this term would have the form 

1 ~ 1 a 
Vo'Jo = sin-----~ t~--0 (C(W' .  C)) + sin----~ t3--~ (sin ~b C(W'* C)). 

Putting together equations (2.3-2.7) we arrive at 

Model II 
dC 
6-7 = ~ a o c  - v o . ( c v ( w  • c ) ) .  (2.8) 

This equation describes the convectional drift of the objects in angular 
space towards the points of highest concentration, causing alignment. 
This tendency towards order competes with the dispersal influence of the 
diffusion. 

2c Model 111." Interactions at discrete angles 

The third model can be viewed as a rough simplification of the second model, 
if we again drop the local nature of the interactions and introduce instan- 
taneous jumps from an initial orientation to one resulting from an interaction. 
We use the same notation, C for density, and omit the distinction between free 
and bound objects, as in the second model. In this model, however, we cannot 
restrict ourselves to quadratic non-linearities, as in the case of the first two 
models. Careful check reveals that if the only nonlinearities are quadratic, and 
no distinction between different types of objects is present, then the following 
situation can occur: If there are two dusters of fully aligned objects of different 
sizes, then quadratic nonlinearities will not redistribute the objects, but 
diffusion will dissipate the peaks, so that pattern will not persist. This is not 
true of higher order nonlinearities. In a separate investigation (Mogilner and 
Ladizhansky, 1994) a version of cluster-interaction model which contains 
quadratic nonlinearities, but allows for a more general case of incomplete 
cluster alignment is described, revealing the possibility of angular order. 
(Incomplete alignment is mandatory, if the quadratic nonlinearities are to 
provide the drive for self-ordering.) 
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With the above considerations, we obtain the following equation: 

Model III 

0C 
- -  = c ( a ( c )  • C)  + ~ A o C .  (2.9) & 

Here the integral term is defined as: 

Q(C) • C = fsdO ' L(C(O) - C(O')) G(O - 0') C(O', t ) .  (2.10) 

The kernel is now a product of two functions. The density dependent 
function L(C(O) - C(O')) reflects the tendency for a bigger cluster to grow at 
the expense of the smaller cluster. The function G describes the angle depend- 
ence and has the same meaning and form as K in Model I. This is a rough 
approximation of the process of fast rotation of a small cluster of objects 
towards a more slowly moving big cluster, and their final merging. We assume 
that the function L is odd L( - C) = - L(C), monotonous and bounded and 
L'(0) > 0. That L is odd means that the nonlinear term in equation (2.9) 
describes either growth or decay of the cluster at 0, depending on relative size 
of other clusters. Further, symmetry of the function L provides conservation 
of the total mass of the system. 

2d Comments 

Models I-III  share several limitations: 

A These models do not describe extremely low densities, for which we cannot 
successfully approximate stochastic processes of cell movement by con- 
tinuous. PDE's. 

B The models are inappropriate for extremely high densities, either, as then 
topological packing constraints dominate all other effects (see Elsdale and 
Wasoff 1976; Onsager 1949). 

C The binding rates of two free versus free and bound individuals are 
probably different, but we have neglected this distinction, taking fll = f12 
and using the same kernel to describe both events. 

D One of the approximations we make is that we do not distinguish between 
cell clusters of different sizes. To have a detailed account of these, one 
would have to introduce the functions P2(O, t), Pa, P~ . . . .  to denote clus- 
ters composed of two, three, four . . . .  and n cells. The result would be 
a system of infinitely many equations for C, P2, P3 . . . .  which would lead 
to a complicated mathematical problem. Instead of doing so, we define the 
simplified variable P = y.,~ 2 nP.. 

The detailed behaviour of the models depends in an interesting way on the 
nature of the kernels K, W, G. These kernels would have distinct properties in 
each model problem considered, as they are based on details of the biology 
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Fig. la--c. The kernels K used to represent the contact alignment phenomena are shown 
here as functions of the angle between cells. (In 2D the angle is 0, and in 3D it is ~,.) a Single 
humped kernel, representing alignment in which both cells are oriented head-to-head. 
b Double humped kernel which permits cells to align also in a head-to-tail configuration. 
e An orthogonal interaction kernel that is not relevant for cellular interactions but that 
plays a role in the model for actin alignment. Some discussion of the properties of this kernel 
is given in Appendix IV. The figures illustrate kernels whose basic functional form is as for 
K ,  in equation (A3.5) 

that are either observed through experiments or conjectured from some 
knowledge of the system. In the case of fibroblasts, interactions causing 
alignment are known to be weakest if the cells meet at 90 °. (see Fig. la,b). In 
the case of Actin fibers, crosslinking proteins of various sorts allow fibers to 
interact and bind at different configurations, including parallel and ortho- 
gonal structures (Civelekoglu and EK, 1994). The kernel is different in that 
case (see Fig. lc). In parallel interactions, we must still consider a further 
distinction, namely whether alignment occurs only "head-to-head" or also 
"head-to-tail". The first case leads to a kernel with a single hump in the domain 
- r e  < 0 < n (see Fig. la). The second case results in a kernel with a double- 

hump (see Fig. lb). In this paper, we will focus attention mainly on the case of 
the single-humped kernel discussed in EKE (1990), i.e. on the case that cells 
align only head-to head, and not head-to tail. However, as we shall discuss, the 
case of the double humped kernel is a simple generalization of this situation 
which is obtained in 2D if angular space is changed from [ - ~ ,  re] to [ - { ,  {], 
and in 3D by an analogous change of angular space, Q. 

Both of the above types of kernels lead to parallel alignment of cells. In the 
case of Actin, where interactions can occur between orthogonal fibers, two 
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mutually orthogonal axes of orientation can be formed. The total mass of cells 
is equally distributed between these two axes. This case can be treated within 
the framework of a model essentially identical to Model I, provided the form 
of the kernel is suitably adjusted, as described later. (See, for example Fig. lc 
or Civelekoglu and EK, 1994.) 

In the original model, random turning is described by a second partial 
derivative, a diffusion-like term. The differential operator is the Laplacian 
operator in 1 (angular) variable, the continuum representation of a random 
walk. The equations are equivalent to a 1-space dimension PDE, but with the 
interpretation of the independent dimension as an angle, rather than a phys- 
ical position. For this reason, the boundaries of the domain at [ -  n, n] are 
periodic. When we ask whether the distributions of densities can become 
non-uniform, we are studying a problem of pattern formation on a circle. This 
observation is helpful when a generalization to 3D is made. 

3. Summary of the behaviour of Model I 

We first concentrate on the first model and briefly review results obtained in 
a previous publication (EKE 1990; Civelekoglu and EKE, 1994). (See also 
Appendix I.) We make several observations about the equations of Model I: 

1. The total density of bound and free cells at all orientations, M, is a con- 
stant. This can be seen by integrating both sides of equations (2.1) and 
adding the two equations. Thus the equations admit a conserved quantity. 

2. The equations have a homogeneous 0-independent steady state, P, C in 
which 

P/C = f lM/7 .  (3.1) 

3. The equations can be linearized about this steady state, yielding 

f i / 
- - ~ ( O , t ) = f l I C K . C  + f l 2 P K . C  + ~ C - ( 7 - B 2  P ,  

(3.2) 
?C 3zc  
--~ (0, t) = p ~ - f l i C K * C -  fl2CK * P - eC + '/P . 

for suitably defined constants ct (see Appendix I). 
4. These linearized equations contain two linear operators, (a) the Laplacian 

in 1D with periodic boundaries, and (b) the convolution on the same 
region. The set of eigenfunctions of the Laplacian in 1D, are simply the 
functions 

~n(O)=e in° n = 0 , 1  . . . .  (3.3) 

or equivalently, sines and cosines of (nO). The integer n is called the mode 
number (or the harmonic number). (It was also called the wavenumber, k in 
EKE (1990).) As discussed further in Appendix I, ( - n  2) is the eigenvalue 
corresponding to the eigenfunction 0n = ein°. 
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5. A fundamental fact in this model is that the eigenfunctions of the Laplacian 
are also eigenfunctions of the linearized integral operator, with the prop- 
erty that 

K . ~ , = K , ~ k , ,  n = 0 , 1  . . . .  (3.4) 

where k is the Fourier transform of the function K(O), (see equation A1.4). 
We establish this important fact in Appendix I. We shall see below that the 
fact that the Laplacian and the integral operator share a set of eigen- 
functions is essential in the analysis of the problem. 

6. The linear analysis of this problem was explained in EKE (1990). Briefly, it 
was found that the homogeneous steady state could be destabilized by any 
perturbation of the form (AI.1) for modes n that satisfied the dispersion 
relation 

An < R.(1 - R . ) ,  (3.5) 
where 

# ( 7  ~2 (3.6) 
/ • 

In the case of a single-humped kernel, it is found that the wavenumber 
n = 1 is the first destabilizing mode, whereas if the kernel has two humps, 
the first unstable mode is n = 2. 

7. In Appendix I we show that the results for the double-humped kernel can 
be obtained from the single-humped case by suitably restricting the domain 
and defining the distributions Pa(0), Ca(O) in terms of the familiar solutions 
to the problem for the single-humped kernel case. 

8. The case of the actin alignment kernel (Fig. lc) is discussed in the Appendix 
IV. It is found that the wavenumber n = 4 is the first destabilizing mode, 
both in the 2D and the 3D cases. The mathematical treatment of this case is 
completely analogous to the single and double humped kernels, and there- 
fore we omit detailed development. 

4. Generalization of Model I to three-dimensional rotations 

When rotational motion takes place in three dimensions, we must describe the 
set of possible directions by two angular variables, for example by the angles 
~b and 0 used in spherical coordinates. A direction in 3D can be represented by 
a unit vector. Further, this vector can be identified with a point on the unit 
sphere. Thus if we were interested in the distribution of directions in a discrete 
population (composed of, say, M individuals), we could represent this by 
a distribution of M points on a unit sphere. However, as our models are 
concerned with continuous angular distributions in 3D, we shall deal with 
functions on the unit sphere. Thus, alignment of the cells is equivalent to 
formation of pattern on the unit sphere. (See, for example, Hunding, 1982.) We 
will interchangeably refer to "cells distributed at various orientations" and 
"cells distributed on the unit sphere". We shall use the angular coordinates 
/2 = (~b, 0) to denote position on a unit sphere (see Fig. 2a). These coordinates 
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are defined with respect to a cartesian coordinate system by the usual spheri- 
cal coordinate transformation 

(x, y, z) = (cos 0 sin q~, sin 0 sin tk, cos ~b). (4.1) 

The previous problem can be generalized to 3D geometry by converting the 
operators to a fully 3D form. As in the 3D case, rotational diffusion can be 
represented as a random walk in the angular space, i.e., on the surface of a unit 
sphere. (See remarks in the Introduction.) Thus, this process can be described 
by the (angular part of the) Laplacian operator (Priestly et al., 1975). From 
here on, when discussing "the Laplacian" we shall refer only to the surface 
spherical part of the operator. We shall deal with the convolutions, which are 
simple generalizations in later remarks. We find that the equations can be 
written in the form 

3P 
(0,  t) = f l , C K  * C + f l2PK * C - ~P, 

3C 
--<7(0, t) = l a A C - -  f l~CK . C -  f l2CK * P + ~P . 
tY[ 

(4.2) 

where now P(f2, t) and C(f2, t) are functions defined on a unit sphere. The 
Laplacian operator A in surface spherical coordinates is shown in 
Appendix II. 

The convolutions are now done in 3D spherical geometry, so that 

K • C =- fK(•, ~,) c ( o , )  dO'. (4.3) 

(See Appendix II for the full ~b, 0 form.) This expression can be interpreted as 
a clearcut analogue to the convolution in 2D. That is, we can think of K * C as 
the influence of  the free cell distribution on the direction f2 = (q~, 0). A similar 
interpretation can be made for K * P. It is necessary to generalize the defini- 
tion of the kernel K to 3 dimensions in such a way that it is a function of the 
angle formed by the two directions (q~, 0) and (qS', 0') in space. We leave this 
detail to a later section. 

For the sake of simplicity, we shall assume as in EKE (1990) that fll = f12, 
i.e. that affinities of cells to other free or bound cells are identical. We feel that 
this assumption does not change the qualitative results of the model. The 
equations can then be brought into the following dimensionless form: 

OP 
-ff[ (f2, t) = C K  * C + P K * C  - aP, 

(4.4) 
OC 

(0,  t) = eAC - C K  * C -  C K , P  + aP . 

where a = y/fl, ~ = #/ft. In this dimensionless formulation, we shall continue to 
refer to the convolutions as the influence of the cell distributions on the 
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particular direction f2. We shall discuss the form and properties of the 
convolutions in a later section. 

A similar generalization can be made in the case of each of Models II 
and III. The equations of these models are easily rewritten in terms of the 
spherical angle f2. 

5 Properties of the Laplacian in spherical coordinates 

Linear stability analysis of the model (4.4) leads to a linear integro-partial 
differential equation problem, which together with the boundary conditions 
and geometry forms an eigenvalue problem. We consider separately the 
eigenfunctions and eigenvalues of the two operators that appear in the 
equations. 

The Laplacian operator in this surface spherical geometry has as its 
eigenfunctions the surface spherical harmonics (SSH) Y, (~b, 0) of degree n with 

A Y,  = - n(n + 1) Y, (5.1) 

i.e. the corresponding eigenvalues are 2, = - n(n + 1), n = 0, 1, 2 . . . .  The 
form of Y, is given in Appendix II (equation A2.4) and involves a linear 
combinations of pO, Legendre polynomials of degree n, and P,~, associated 
Legendre functions of degree n and order m (Macrobert, 1967; Kraut, 1979). 

Due to symmetries of the sphere, the nth eigenvalue of the Laplacian has 
a (2n + 1)-fold degeneracy. (There are (2n + 1) arbitrary constants in expres- 
sion A2.4.) This fact plays a very important role in the bifurcation analysis of 
the 3D case. Note that due to this degeneracy of the spherical eigenfunctions, 
the eigenvalues depend only on n and not on m (see Macrobert, 1967). The first 
few Legendre polynomials for the case m = 0, namely, pO, (usually written 
simply as P,) are given in Appendix II. 

6 Properties of the convolutions and their kernels in 3D 

As in the 2D case, if we assume that the environment is isotropic, the 
interactions between two cells depend only on the relative angle of contact of 
these cells. In 2D this angle was simply 0 - 0', but in 3D it is a somewhat more 
complicated expression of the angles t2 = (q~, 0) and O' = (~b', 0'). In 3D, the 
convolution K*  C takes the form 

K ,  C =- fs  K((2 - O')C(O') dO', (6.1) 

where the integral is taken over the surface of the unit sphere S. We can write 
this convolution in terms of the angle between the two interacting individuals, 
y, (see Fig. 2b) but it is more convenient to express it in terms of the cosine of 
this angle, cos ~,. Defining q = cos y, and rewriting the kernel as a function of 
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Fig. 2. a The angles 4~ and 0 in spherical 
coordinates, b The angle ,~, between two 
directions in 3D 

this a rgument  (but with slight abuse of nota t ion using the same symbol K for 
this new function), we have 

K * C =- K(r/) C(qY, O')d(cos qS') dO'. 
- 1  

(6.2) 

We observe that  a vector  dot  product  of the two vectors representing the 
interacting individuals produces  a formula for cos 7: Representing the direc- 
tions of the cells by the two unit vectors 

n = (cos 0 sin ~b, sin 0 sin 4~, cos 4~), 

n' = (cos 0' sin qY, sin 0' sin qY, cos qY). 
(6.3) 

Forming  the dot  product ,  and rearranging algebraically leads to the result 

cos ~, = n .  n'  = cos ~b cos 4; + sin q~ sin ~b' cos (0 - 0 ' ) .  (6.4) 

See Fig. 2b. 
F o r  stability analysis the crucial fact that we will later use is that the SSH 

are also eigenfunctions of the convolut ion  opera tor  K with the integral 
kernel K(f2 - f2'). This result is analogous to the 2D case. (See discussion 
following equat ion  (A1.3).) The appropr ia te  eigenfunctions are now the set 
of functions P°(t/), n = 0, 1 . . . . .  This set is a complete o r thonormal  set of 
functions and we can thus write an expansion of the function K(t/) in terms 
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of these functions, i.e.: 

where 

K(q) = ~ K~P~(q), (6.5) 
n = O  

2 n +  lj'* 
K: = - - 2  -1 K(q)P°(q)dq " (6.6) 

in Appendix II (equations A2.6-2.8) we show that the inner products of the 
surface spherical harmonics (SSH) with the Legendre polynomials are also 
SSH. In 3D, we will use the notation 

~:, - K(n) = 2~ °(r/)dr/. (6.7) 

(This is convenient when interactions of modes are considered in a later 
section.) It is evident that Y,(¢, 0) are the eigenfunctions of the integral 
operator K and R:, are the corresponding eigenvalues. It is worth pointing out 
the similarity between these K,  for a given integer mode number n, in the 3D 
case and the Fourier transform K(n) for a given integer mode number n in the 
2D case. Again we stress the similarity to the 2D case where eigenfunctions of 
both the Laplacian 02/002 and of the integral operator are the same. 

We also comment that as in the 2D case, the expressions for transforms of 
the kernels//(n) are positive for n = 1 in the single hump case and for n = 2 in 
the double humped case, i.e. 0 < Ks(l), ~:d(2) < 1. (This follows from the fact 
that liP°( x)[] < 1 which permits integral estimates of the transforms to be 
made, and from the normalization of the kernels.) 

7. Linear stability results in 3D 

Equations (4.4) have a homogenous steady state solution in which the distri- 
butions C, P are constant for all directions in 3D. It is of interest to determine 
the stability of this steady state. In a way analogous to the 2D case, we 
consider a perturbation whose form is that of the eigenfunctions outlined in 
our discussion above, i.e. 

IP(O,  t) ' ' .  

Details of the stability calculation are shown in Appendix III, and follow 
closely those in the 2D case. We find that in 3D, instability of the homogene- 
ous distribution occurs at any harmonic n for which the following inequality is 
satisfied: 

A. ( , ,  + 1) < g . ( a  - g . ) ,  A = ( 't , / \ t i M /  (7.2) 

Note that this equation is analogous to equation (3.5) for the 2D case. The 
coefficient A is identical, but the dependence on the degree of the harmonic n is 
slightly different. 
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Below we list conclusions which can be reached from the inequality (7.2) : 

1. To get some feeling for this inequality we chose several representative 
functional forms for the kernel K(?). In each of these cases, the kernel 
represents alignment only when objects meet at "small enough" contact 
angles (angle ? for which cos 7 > 3/4). Further, the kernels are all single 
humped, which means that anti-parallel interactions do not cause align- 
ment. We have numerically plotted the functions on both sides of the 
inequality (7.2) for two values of the constant, A = 0.1 and A = 0.03 (see 
Figs. 3-5,) and for kernels of the form 

~f(7), c o s 7 > 3 / 4  ; 
K = ~ 0, cos 7 < 3/4 , (7.3) 

with various functions f (see Appendix III equation A3.5) Each of these 
forms has finite support on a subinterval for which I~tl < ~/2, but the 
kernels Kb Kn, K m  have different types of discontinuities and shapes. It 
was shown in EKE (1990) that the exact functional form of K(O) in 2D was 
not important, given its symmetry and type of support. Figs. 3(a,b,c) show 
the plot of the expression/(,(1 - K,) as a function of n for three kernels of 
the form (7.3) respectively. Figs. 4 and 5 show the parabolas on the right 
hand side of the inequality and the way that they intersect the curves of 
Fig. 3. 

2. From these figures it is clear that as we decrease A symmetry breaks first as 
a result of the growth of the first harmonic. If A is much smaller, the second 
harmonic becomes unstable, then the third, fourth, etc in succession. 
However, it is not necessarily true that the mode n = 1 is the one that 
always breaks stability. In particular, if a kernel contains no components of 
the eigenfunction corresponding to this mode, one of the higher modes will 
cause instability. 

3. A double-humped kernel occurs if interactions occur at angles both close to 
zero and close to 180 ° . The correspondence between the single-humped 
and the double-humped kernel Ka, is as follows: 

0, n odd 
I(d(n) = K~(n), n even .  

(7.4) 

This holds provided the shape of Kd is identical to that of Ks but the 
periodicity is doubled. The result is that odd harmonics can never cause 
instability in the case of Kd, so that the break of symmetry is caused by the 
second harmonic. 

4. Since A is positive, instability is most likely for low values of the integer n, 
for example for n = 1. Further, as we show in Appendix III, high harmonics 
cannot destroy stability. 

5. In comparing the conditions for instability in 2D and 3D (i.e., the inequali- 
ties (3.7) and (6.10) we observe that in 2D the minimum value of the LHS of 
the instability criterion (3.5) when n = 1 is min,,= 1An 2 = A, whereas in 3D 
the minimum value of the LHS of (7.2) would be min,= 1An(n + 1) = 2A. 
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Fig. 3. a The expression K,(1 - k~) which appears in the condition for instability given in 
the inequality (7.2) is shown plotted as a function of the mode n for the kernel Kt. Note that 
though the curves are shown as if they were continuous we are only interested in behaviour 
at integer values of n. The figure is generated using Mathematica to calculate the Legendre 
coefficients of the kernel. Note that only modes n = 1, 2, 3 can cause instability (this is the 
main region for which the graph is positive), b The same expression, but for the kernel K2t, 
e for KHx. In cases b and e the expression was calculated using the integral (6.7) for K,. 
b and c reveal a broader possible range of unstable mode numbers 
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Fig. 5a-e. The same as in Figs. 3 and 4 but showing the region 0 < n < 4 in more detail. The 
critical value of A, i.e. the one causing the onset of instability is A¢, g 0.08 in a, Ac, ~ 0.06 in 
b, and Ac, ~, 0.04 in e 
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The right hand sides of both inequalities are the same, and in both cases the 
expression attains a maximum value of max(K,(1-  K,))= ¼. Thus, if 
A > I/4 in 2D or A > I/8 in 3D, the homogeneous state is stable. This 
shows that the homogeneous state tends to be more stable in 3D. This 
makes physical sense also because of the larger number of diffusional 
degrees of freedom in 3D that can destroy order. 

6. We can construct a particular form of the kernel, which would be most 
likely to guarantee existence of a non-homogeneous solution by using the 
above properties. See Appendix III for details. 

7. We can think of two possible extreme cases. If the function K is a constant, 
then the function K is fi-like. This corresponds to the situation in which 
cells can interact equally with all cells at every other angle. Conversely if 
K is a 6-like function then k is a constant. This corresponds to the case that 
cells interact only with other cells at nearly the same orientation. In either 
one of these extremes, if we perform all calculations as above, it is found 
that the homogeneous state is stable. (Details are omitted.) 

Let us now consider the stability for Models II and III. Both these models 
contain a single equation, so the analysis is quite simple. In both models the 
homogeneous solution in which the distribution C is constant for all direc- 
tions is stationary. We substitute the pattern 

C(f~, t) = C + Coz , (O)  e ~'' (7.5) 
into the equations (2.8, 2.9) and keep terms linear in Co. Then instability to 
growth of the nth mode would occur whenever ). > 0. 

Model II 
The instability criterion has the form (both in 2 and 3D): 

e < Cl~v'. (7.6) 

This can be seen readily from equation (2.7): In Fig. 6 this inequality is 
illustrated graphically for the following step kernels: In 2D: 

W ( 0 ) = { O '  otherwise-a<0<a (7.7a) 

and in 3D: 
~'A2, cosy > 

w(a)=(o, cosy< (7.7b) 

Model III 
Using the fact that at small C we have L(C) =rlC + 0(C2), we obtain the 
following instability criterion: 

in 2D (7.8) qC2(1 

The inequality is illustrated in Fig. 7 for the same kernels as the ones used for 
Model II. 
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Fig. 6. a The expression CI~', which appears in the condition for instability for Model I1 
given in the inequality (7.6) is shown plotted as a function of the mode n for the kernel (7.7a) 
in 2D. b The same expression as in a, but shown together with superimposed lines 
representing two possible values of e (left hand side of the inequality 7.6), namely t = 1.0, 0.7. 
It can be seen that the inequality (7.6) is satisfied in the latter case and instability to the mode 
n = 1 occurs, e As in a but for the kernel (7.7b) in 3D. d Same as b but in 3D. The values 

= 0.3, 0.2 are shown• Instability to n = 1 occurs for t = 0.2 

The statements 1 -4  for the case of  Model  I hold also for Models II  and III.  
In particular, as e is decreasing, stability is broken first by the first harmonic  
(n = 1) for single humped  kernel and by the second harmonic  for the double 
humped  one. 

8. Bifurcation analysis of Model I in 2D 

In order  to unders tand the pat tern  that  arises after stability of  the homogene-  
ous distr ibution is lost, we apply an analysis based on the synergeties ap- 
proach,  as outl ined by Haken  (1977), Friedrich and Haken (1989). The basic 
idea of  this approach  is that  close to bifurcation, the fastest growing mode 
essentially controls  the amplitudes of  other  modes which are just becoming 
unstable. This is the so-called adiabatic or  "slaving" principle of synergetics. 
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Fig. 6 (continued) 

The reason that this assumption can be made is as follows: When the 
amplitudes of all harmonics are very small, the unstable mode grows exponen- 
tially. Further, the relaxation time of the stable modes is small relative to the 
time scale of variation of the unstable mode. This means that the stable modes 
will quickly reach meta-stable states and thereafter slowly follow the dynamics 
of the unstable mode. These facts lead to an increase in the amplitude of the 
first mode at the expense of the other modes. 

We begin with the 2D case having 0(2) rotational symmetry. (We shall see 
that results are dependent on this symmetry.) We will assume that the first 
harmonic is responsible for the stability break, that is, that the growth rates of 
other modes are all negative, ()~, < 0, n = 2, 3 . . . .  ) and the first mode is just 
beginning to grow (21 > 0, J~l ~ 0). Then this unstable harmonic will be the 
leading mode, but its magnitude is small compared to the magnitudes of 
the decay rates of the other modes close to the onset of instability 
([).11 '~ I,~.~1, i = 2, 3 . . . .  ). 

Details of the calculations, which rely heavily on the above assumptions 
are given in Appendix V. As a first step we express the state in terms of 
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Fig. 7. a The expression ~/C2(I - G.) which appears in the instability condition (inequality 
7.8) for Model  III is shown plotted as a function of the mode n for the kernel (7.7a) in 2D. 
b The same expression as in a, with a superimposed graph of the expression en 2 (right hand 
side of inequality (7.8) for two possible values of E, namely s = 0.2, 0.15. The smaller s value 
causes instability to n = 1. e The same as b, but showing the region 0 < n < 2 in greater 
detail, d As in a, but for the kernel (7.7b) in 3D. e The expression in d. We also show the 
expression en(n + 1), the right hand side of inequality (7.8) for two possible values of s, 
namely s = 0.2, 0.4. f The same as e but showing the region 0 < n < 3 in greater detail 
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a superposition of the steady state, the growing first harmonic, and the other 
harmonics. 

~ )  \ ,h (O) " '(°) + . (8.1) 
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In this expansion, the values (¢i(t), qi(t)) are time-dependent amplitudes of the 
given harmonics, and these are assumed to depend on the amplitude of the 
first mode. This assumption is valid close to criticality where the behaviour of 
the system is entirely determined by the single unstable mode. The amplitudes 
of all the other modes are small, so it is possible to form a valid asymptotic 
expansion for 4i(t) and th(t ) in powers of the unstable mode amplitudes 41, 
and th, as shown in equation A5.3 of Appendix 5. 

This approach allows us to eliminate the amplitudes of the stable modes 
and leads to a closed set of ordinary differential equations for the unstable 
amplitudes, the so called generalized Ginsburg-Landau equations: 

where P is a non-linear functional. 
If we were to analyze the steady state solutions of this set of ordinary 

differential equations we would get a detailed description of pattern created 
close to bifurcation. We will here explore a simplified version of this approach, 
looking only for the time-independent solutions, and not for the full time 
behaviour for which the calculations are forbidding. That is we set 

OP OC 
~-7 = a t  = o .  (8.3) 

This leads to the following pair of equations: 

C ( K  , C) + P ( K  * C) - aP = O, 
(8.4) 

eAC - C ( K  , C) - C ( K  , P) + aP = O, 

(where now, in the 2D case, A - 02/002). From equations 8.4 we deduce that 

C ( K  * C) 
p = . : ( 8 . 5 )  

a - ( K  • C )  

Inserting (8.5) into (8.4b) we obtain 

eAC + V(C).C = 0 ,  (8.6) 
where 

(K, c) 2 , ( c(K_, ) ¢87) 
V ( C ) = a _ ( K , C )  K \ a - ( K , C ) }  

We now look for a solution of equations (8.6-8.7) in which the deviation away 
from the homogenous state is expressed as a superposition of the harmonics, 
as discussed above, in equation (8.1). That is we let 

C(O) -- C + ¢(0), 14(0)l ~ C (8.8) 

where 4(0) is explicitly expressed as a mode superposition (See Appendix 
equation A5.4). The strong inequality in (8.8) holds close to criticality. 
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Suppose we were to restrict attention to the linear approximation, i.e. 
retain only terms that were linear in 4. (We show that this is not informative as 
follows:) The linear approximation is 

~-d-~+a - [ ( K * 4 ) - K * ( K * ~ ) ] = O  (8.9) 

Substituting in the full mode expansion for 4(0) into this equation and 
equating coefficients of each harmonic on both sides of the resulting equation, 
leads to a set of equations, one for each mode amplitude ~,. These equations 
are of the form: 

; . , 4 , = 0 ,  n = 1 , 2  . . . .  (8.10) 

where the coefficient 2, coincides with an eigenvalue of the stability matrix, as 
shown in Appendix V). 

These equations have only trivial solutions, which indicates that the linear 
approximation is not sufficiently informative. Thus, it is apparent that the 
nonlinear terms, which will lead to the interactions between harmonics are 
essential. According to the synergetics approach, the terms of up to third order 
of smallness are needed in the expansion. That means that terms of the form 
(K * ~)2, (K * {)(K * (K * {)), K * ((K * ~)a), {2(K.  4) and so forth must be re- 
tained in the equation for ~. As this equation is rather cumbersome, we leave 
its details to Appendix V (equation A5.7). 

The next step, as before, is to substitute the mode expansion of {(0) into 
the nonlinear equation and keep terms up to third power in the leading mode, 
41 and up to second power in all other modes {i, i = 1, 2 , . . . .  We justify this 
since by the "Slaving Principle" the magnitudes of all modes are much smaller 
than that of the leading mode. After some simplification we equate coefficients 
of each harmonic on both sides of the equation as before. This calculation 
leads to a system of equations (one equation for each mode). The system has 
a particular hierarchical structure which makes it straightforward to solve: 

• 3-141 ÷ B141~2 ÷ F~I a + G~0~l = 0 , 

1)~3[~3 + B34142 + B~41{4 = 0 , (8.11) 

I;,.14. + B . ~ d . - 1  + B24x4.+~ - 0 .  

Note that the first equation involves only ~o, 41, ~2, the second equation only 
41, ~2, 43, etc., so that they can be solved one at a time. The coefficients 
B~, B~, F, G are given explicitly in equation (A5.8) of the appendix, and are of 
order 1. Further, using the fact that the total mass, M = C + P is constant 
leads to the estimate 

~o - - A I {  2 , ( 8 . 1 2 )  

where AI is given in equation (A5.8). The fact that the amplitude of the leading 
mode dominates strongly over all other modes means that the terms whose 
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coefficients are B, 1 in equation (8.11) above can be neglected compared to the 
other terms in each equation, further simplifying the task of solving the set of 
equations. We thus estimate the amplitudes of the stable modes as follows: 

~, "-~ B"- ~1~,_i .  (8.13) 
An 

We observe that this implies that the modes are strictly ranked in size, i.e. that 
I~.1 '~ I~ . -  x I- Plugging (8.12) and (8.13) for n = 2 into the first equation of the 
system (8.11) we obtain a self-contained equation for ex whose form is: 

) ~  - D ~  = 0 ,  (8.14) 

(see Appendix for details). Careful estimates reveal that the coefficient D in this 
equation is positive unless the total mass M is very small (M ~ a; but then C is 
very small and of the same order of magnitude as 4, so that the above method 
then cannot be applied). Thus, the solution of (8.14) has the form: 

+5 ~1 = . (8.15) 

We now consider a and M as constants and introduce the idea of a governing 
parameter, ~, (which may be some combination of original parameters of the 
model). We assume that as this parameter crosses a critical value, ec, stability 
breaks. Very close to this critical value, i.e. when (e - ~c) ~ ec we can write 
(8.15) in the more revealing form 

~ = _ k v / ~ -  e~l. (8.16) 

Further, using the estimate (8.13) gives us the additional result 

I~,l = k,18 - ecJ "/2, n = 2 . . . .  (8.17) 

where k, k, are some coefficients of finite order. We have thus explicitly recast 
the amplitudes of all modes in terms of the governing parameter, s, and more 
specifically, in terms of its "distance" from the critical value at which bifurca- 
tion occurs. 

The bifurcation diagram based on these results appears in Fig. 8. It can be 
seen that the bifurcation is supercritical, implying a non-equilibrium phase 
transition of second order. [See Friedrich and Haken, 1989.] This means that 
as the parameter ~ increases past the critical value, the amplitude of the 
nonhomogeneity increases gradually from zero. This resembles the dynamics 
of growth of the order parameter in physical systems such as liquid crystals. 

So far we have assumed a single humped kernel. In the case of a double 
humped kernel, we have an expansion over the even harmonics only; the 
second harmonic is then responsible for the stability break in general. In this 
case the reasoning and the mathematical derivations are entirely analogous to 
the case we have discussed in detail. The expansion is shown in detail in 
Appendix V (equation A5.10) and the character of the bifurcations is the same. 
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X 1 ~ stab/e 

X l .................................................. [ unaab/e 

Fig. 8. a Supercritical bifurcations found in the analysis of the 2D case, and 3D cases. 
b Transcritical bifurcation predicted by equation (9.5) in the 3D double-humped kernel case 

These results are in full agreement with the general scheme for symmetry 
break in systems with 0(2) symmetry (see Friedrich and Haken, 1989; Busse 
1987). Biologically, the results of the bifurcation analysis gives us the following 
pictures in the two dimensional case: In the case of the single-humped kernel, 
the steady state bifurcates into a distribution similar to cos (0), whereas in the 
double-humped case, it leads to a distribution similar to cos2 (0). This 
behaviour is illustrated in Fig. 9a,b. 

9. Bifurcation analysis of Model I in 3D 

The qualitative picture of the development of patterns in the 3D case follow- 
ing bifurcation is similar to the 2D case with one important exception. In the 
3D case, the rotational symmetry group is 0(3) which leads to rotational and 
pattern degeneracy, i.e. several eigenfunctions correspond to the same 
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Fig. 9a-e. Types of patterns seen in the cell distribution in the 2D case after bifurcation. 
a A distribution similar to cos 0 which occurs in the case of a single-humped kernel. 
b A distribution similar to cos 20 occurs when the kernel is double-humped, e A distribution 
similar to cos 40 occurs in the case of orthogonal alignment kernels 

eigenvalue. If  the kernel is single-humped, then the first harmonic Y~ respon- 
sible for the stability break is doubly rotationally degenerate. There is no 
pattern degeneracy in this case. These statements are true if we ignore the 
two-fold degeneracy over the associated Legendre polynomials, PI,  Pi  -1 
which differ in dependency over the angle 0, i.e., 

~cos 0 
Y ~ = PI  (cos @) [s in  0 '  (9.1) 

where Y~ = P~(cos ~b) cos(m0). These can be neglected since different linear 
superpositions o f P ~  1 just represent rotation about the axis of symmetry, thus 
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leaving the essential character of the solution unchanged. Furthermore, 
this degeneracy does not represent two different patterns. From group 
theoretic methods (Busse, 1987) it is known that the two harmonics yO 
and Y1 represent essentially the same state, just viewed from two different 
directions. 

As before (in Sect. 8) we consider an expansion of C in terms of eigenfun- 
ctions, but now these are the Legendre polynomials, rather than simple 
trigonometric functions (see Appendix VI equation A6.1). We are now 
concerned with the amplitudes of two unstable harmonics, namely 
P°(cos ~b), P1 (cos q~)cos (0) and we call these amplitudes zl, z2 respectively. We 
further use the notation y,(t),  n = 2 , . . .  to denote amplitudes of the stable 
harmonics. In the steady state, zl, z2, y, are constants. We expect that the 
amplitudes of the stable modes again depend on the leading amplitudes, i.e. 
y,(t)  = y,(z l( t ) ,  z2(t)). Close to criticality (when the governing parameter ap- 
proaches its critical value) the stable mode amplitudes will be strongly domin- 
ated by the leading mode, so that we have one of the inequalities, ly.I ~ Izll or 
ly,  I ~ Izzl or both: lY, I ~ [zil i = 1, 2 . . . .  

To find out what actually takes place in a given situation, we must find the 
first terms in the expansion for y,(zi) and substitute them into the analogue of 
equation (8.6). (The form of this equation is the same but the leading partial 
derivative is replaced by the surface spherical Laplacian, (given by equation 
(A2.1).)) 

This will lead to a pair of ordinary differential equations for the amplitudes 
z~, z2 from which we can find the stable stationary solutions. 

As in the 2D case, we keep terms up to third order, and arrive at an 
equation analogous to (A5.7). Thus, the method is in all respects analogous to 
the one described in Sect. 8. Because of the greater complexity in the 3D case, 
the analysis is formidable, and we do not here include details. Fortunately, we 
can use the results of [Busse, 1987 and references therein] where the general 
system with 0(3) symmetry with quadratic nonlinearities was considered. Our 
equations are a particular case of this general system. We describe these 
general results below. 

Let us chose q5 = 0 as the direction of the axis of symmetry of the pattern 
evolved. This means that the leading mode P°(cos ~b) = cos ~b takes over. In 
this case, in the stable stationary state z2 = 0 and we have the estimate 
z0, Yz ~ z~. The relative sizes of stable modes are given by ly, I '~ [yzl, Iz01 for 
all n > 3. The amplitude of the leading mode za obeys the equation 

)~zx -- dz~ = 0 ,  (9.2) 

where 2 is the growth rate of unstable modes in the linear approximation, d is 
a coefficient of finite order depending on C, a, M, KI, Ka. Both 2 and d are 
positive. We observe the similarity of this result to that of equation (8.14). The 
important fact is that the damping nonlinearity which stops the growth of the 
unstable mode, and causes its saturation is a cubic one. 



648 A. Mogilner, L. Edelstein-Keshet 

(a) 

(b) 

(c) 

Fig. 10a--e. Three surface spherical harmonics 
that are significant in growing patterns in the 
3D models, a po, b po, e y,3: arises in the 
actin binding model where orthogonal 
interactions occur. The shaded regions on the 
sphere represent locations of increased density 

The  above  equa t ion  has a s ta t ionary  solution 

zl = + . (9.3) 

The  bifurcat ion is again  supercritical,  as shown in Fig. 10a. 
F r o m  our  choice of  axis of  symmetry ,  we have already noted that  the 

leading m o d e  P°(cos  q~) = cos ~b takes over. The pat tern  which starts to grow 
would therefore have  the fo rm shown in Fig, 10a. This type of pat tern  has the 
following proper ty :  the n u m b e r  of  cells whose or ientat ion is ~b = n/2 (i.e. the 
angula r  d is t r ibut ion at the equa to r  of the spherical state-space) is unchanged,  
the n u m b e r  ofceUs at  angles ~b < n/2 is increased, and most  greatly at the pole 
~b = 0. Conversely,  the density of  cells at  ~b > n/2 diminishes, and part icular ly 
so at the pole ~b = zc. 
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The case of the double humped kernel, is given in Appendix VI. There is 
a difference in that the leading mode possesses both orientational and pattern 
degeneracy. We consider the amplitudes x l ,  x2, x3 of the modes containing 
terms of the form pO, p~, p2 in the mode expansion of C(4~, 0, t) (see 
Appendix VI equation A6.1). It can be shown that as a result of intermode 
interaction, the pattern degeneracy is removed: all non-axisymmetric har- 
monics die out. 

Suppose we chose again ~b = 0 as the direction of the axis of symmetry of 
the pattern evolved. Then in the stable stationary state, the amplitudes 
x2 = x3 = 0 and IXot ~ x 2. We can arrive at the following equation for the 
leading mode amplitude: 

2 x l  + p l x  2 - p2x~ = 0 ,  (9.4) 

where Pl and P2 ~ P~ are positive constants given in equation (A6.7) The 
stationary amplitude is then 

{ ~ -  - ; . I r a  

Xl  = ~-- Pl /P2 
(9.5) 

The important feature of this solution is that, as in the case of a single- 
humped kernel, pattern degeneracy disappears. The harmonics y X and Y~ die 
out and the only leading harmonic with amplitude significantly larger than all 
other harmonics is 

P°(cos ~b) = ½ (3 cos 2 0 - 1). (9.6) 

The pattern evolved is axisymmetric. The expression (9.5) suggests that in this 
case, contrary to the 2D case (both single and double hump), and to the 3D 
single-humped case, we have a transcritical bifurcation as shown in Fig. 11. 
Examples in physical systems include liquid-solid or liquid-gas transitions. 

In physical language, this means that we have a nonequilibrium phase 
transition of the first rather than second order. This leads to a number of 
important qualitative conclusions. One of these conclusions is that even 
before the bifurcation (~ < ~c), there are values of the parameters (~; ~ e < ~c), 
such that the stable inhomogeneous pattern can co-exist with the stable 
homogeneous distribution. (Quantitative conclusions cannot be made 
from the diagram and formula (9.5) as the analysis is valid only at small 
amplitudes.) 

This solution is characterized by the value xl > 0, so that the concentra- 
tion of the cells around the equator decreases from the value q~ ~ 55 ° to 
~b ~ 125 °, and the concentration of cells in the vicinity of the poles increases. 
See Fig. 10b. Then the amplitude of this pattern is not small, and it does not 
grow smoothly, as predicted in the 2D case in Sect. 8. Rather, the amplitude of 
the pattern jumps from zero to the values higher than 2~ quite suddenly. The 
process is analogous to nucleation, which is well-known in physics. That is, 
a small perturbation can lead to massive recruitment and thus grows in size 
abruptly, as parameters leading to bifurcation change a little. (Our phenom- 
enon, however, operates in angular rather than physical space.) If (e'c < ~ < ec), 
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then, as a result of fluctuations which are larger as e approaches ec, too many 
cells gather around the poles, leaving the equator, and the system relaxes to 
the nonhomogeneous pattern. After the bifurcation another stable pattern 
evolves at which the amplitude x l  ~ - 2 / p l  is small and negative, so that the 
concentration of the cells decreases around the poles and increases around the 
equator. 

The results of our nonlinear analysis are in qualitative agreement with the 
general mathematical results of pattern formation in systems with 0(2) and 
0(3) symmetries [Friedrich and Haken, 1987; Busse, 1987] and well-known 
physical results on the character of phase transitions in ferro-electrics and 
liquid crystals [de Gennes, 1974; Chandrasekhar, 1977]. 

These results of nonlinear analysis apply to Modets II and III. 

Discussion 

According to our linear stability analysis and bifurcation analysis, all three 
models in this paper lead to qualitatively similar results. This signifies some 
robustness in the modelling approaches. Not only are the results independent 
of the detailed assumptions about turning rate kernels, but also the types of 
forces or effects leading to turning do not significantly influence the behaviour. 

We briefly comment on other applications of integro-partial differential 
equations in biological modelling. A review of integral equations in biology is 
given in Levin and Segel (1985). 

One body of theory that has always relied heavily on the formulation and 
analysis of integral equations is the theory of activity and evolution of 
networks of biological neurons. An early example of this type of modelling is 
to be found in papers by Swindale (1980, 1982, 1991, etc) who describes 
development of patterns of ocular dominance or orientational response in 
cells of the visual cortex of mammals. Similarly, models that concern neural 
interactions and thus contain convolutions appear in Ermentrout and Cowan 
(1979), Ermentrout et al. (1986). In such models, the activation of a neuron at 
site x is in general dependent on inputs and stimuli arriving from neurons at 
remote sites, whose axons impinge on and synapse with the given local nerve 
cell. The type of effect of one neuron on another may typically depend on the 
mutual distance of the pair, and it is customary to assume that nearby neurons 
activate one another, whereas more distant ones have mutually inhibitory 
influences. For this reason, equations containing integral terms (which sum up 
the contributions o f  all neurons) with convolutions (that describe how the 
signal depends on the mutual distance) are convenient representations of these 
phenomena. Such equations do not come from balance arguments, and indeed 
the quantity of interest (which may be the intensity of activity) is not generally 
a conserved quantity. Many organisms do not move in a smooth continuous 
way, but rather execute a series of small bursts or discrete jumps that can have 
a variety of possible sizes. This type of motion has been modelled in the 
traditional equations of mass balance by inclusion of integral terms with 
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kernels that represent the jump size distribution. Examples of this approach 
include Alt (1988), Othmer et al (1988). 

Integral equations have also appeared recently in the literature on 
coupled oscillators. An evolution equation for the density of oscilla- 
tors at phase 0 and frequency co, analogous to a model by Kuramoto 
(1975) was derived and analyzed by Strogatz and Mirollo (1991). A review 
of the model is also presented in Strogatz (1993). Finally. an application 
of integral equaions to density of branches in a network of filaments 
that interact by cross-linking was investigated by Edelstein-Keshet and 
Ermentrout (1989). 

We have remarked on the similarity of cell alignment to the alignment 
phenomena that is described in the physics literature: that of liquid crystals 
(see de Gennes, 1974). The particular case of nematic liquid crystals, in which 
the centers of mass of the molecules have no particular order, but in which 
there is some order in the directions of orientation of molecules is an apt 
analogy to the dense cultures of fibroblasts that exhibit patch alignment 
(Elsdale, 1972). Molecules in such structures can undergo random motion and 
tumbling, and they interact by electrostatic attraction or repulsion. 

In cultures of fibroblasts, the random turning rates of the cells are analog- 
ous to the tumbling of molecules, resulting in a kind of angular diffusion. The 
cells however, are living units, with essentially "infinite resources of energy" on 
which to draw. Their interactions cannot be easily summarized with simple 
physics. The alignment of populations of cells is not an outcome of the shapes 
of the cells, but of the complex membrane and cellular cytoskeleton, and the 
dynamic response to contact with another cell. 

Other papers in the physics literature which describe problems of pattern 
formation that are related to, but distinct from those we have outlined in this 
paper include Gross and Hohenberg (1993), Penrose (1978), San Miguel and 
Sagues (1990). 

Appendix L Linear stability, Model I 

Equations (2.1) can be linearized about the homogenous steady state, (C, P) 
yielding 

I ~t (0, t) = fliCK* C + fi2PK * C + (fl,C)C - (~ - fl2C)P 
~ t  c ~2 c (A1.0) 

0, t) = #-~--~ - flxCg * C - /?2CK * P - (fllC + fi2/5)C + 7P • 

We investigate the stability of the homogeneous steady state by consider- 
ing perturbations of the form 

I P(O, t) 
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Eigenfunetions 
The set of eigenfunctions of the Laplacian in 1D, are 

~,(0) = e '"° n = 0, 1 . . . .  (A1.2) 

That is, these functions have the property that 

~2einO 
= = - n2e ~"°. (A1.3) 

Thus the value ( - n  2) is the eigenvalue corresponding to the eigenfunction 
~ln = e in°. 

To show that these functions are also eigenfunctions of the linearized 
integral operator we note that by definition k is the Fourier transform of the 
function K(O), so that 

K. = (O)e-i"°dO . (A1.4) 

This is equivalent to the identity 

f~ ~K(-O') e~"°" d' = ~ . e  ~.o " 

Thus inner product of the kernel with the eigenfunctions e ~"° of the Laplacian 
gives rise to a multiple of the same functions, i.e. 

K ,  ~. = ~:,~O., n = O, 1 . . . .  (A1.5) 

establishing that they are also eigenfunctions of K * .  

Single and double humped kernels 
The results for the double-humped kernel can be obtained from the single- 
humped case by restricting the domain to [ - 3, ~]. Then the distributions 
P,(0), C~(0) and Pal(O), Cd(O) (indexed by s for single-humped and d for double- 
humped kernel) are related by: 

[ P~(~)I F P~(O)] FPa(~-~)I F Pd(°)~ (AI.6) 
= L C , ( O ) j '  = 

Appendix II. Operators and eigenfunctions in 3D 

The Laplacian operator in surface spherical coordinates has the form: 

__1 ~ (.OC)+__ISeC 
AC(O, ~b, t) = sm q ~  (A2.1) 

sine 8¢ sin 2¢ 802 " 

The convolutions expressed in terms of the angles ¢ and 0 are 

f~ f2'~K(¢,O,¢',O') C(¢',O')sin¢'dO'd¢' (A2.2) K*C = 
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The Laplacian operator in surface spherical geometry has the eigenfunctions 
Y.(q~, 0) of degree n with 

A Y .  = - n(n + 1)Y., (A2,3) 

Y. can be expressed in the form: 

Y.((p, 0) = AoP°(cos~b) + ~ (A,.cosm + B. , s inm)P~. (cos (a ) ,  (A2.4) 
m=l 

where A,.'s and B,.'s are arbitrary constants, pO are Legendre polynomials of 
degree n, P." are associated Legendre functions of degree n and order m. 
(Macrobert, 1967; Kraut, 1979.) 

The first few Legendre polynomials for the case m = 0, pO, (usually written 
simply P. with the superscript omitted) written in terms of the argument cos q5 
are: 

Po(COS qS) - 1, 

PI(cos 4) = cos q~ , (A2.5) 

P2(cos 4~) = ~} (cos q~)2 _ ½ . 

The inner products of the SSH with the Legendre polynomials are also SSH as 
follows: 

;7 P.(t/) Yt(~b', 0')d(cos (o')dO' = - - r . ( ~ b ,  0)6 . , ,  (A2.6) 
_~ 2 n + l  ' 

where 
1, n = l  ; 

~ " ' l =  O, n # l .  

(See Macrobert (1967) or any classical text on spherical harmonics.) This 
means that 

f s K ( O  - 0 ' )  Y.((o', O')d(2' = f£. 0 ) ,  Y . (  dp, (A2.7) 

where 

f l  K ,  - [~(n) = 2~ K(~)P°(q)dq  . (A2.8) 
-1 

This establishes that the SSH are eigenfunctions of both the Laplacian and the 
operator K ,  in 3D. 

Appendix III. Stability of the homogeneous steady state in 3D 

In 3D, stability analysis of equations (4.4) to perturbations of the form (7.1) 
leads to a Jacobian matrix, 

J = (A3.1) 
t/ - 6  ' 
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where the constants stand for the following 

=7 - / ~ C ,  
_ ^  

= #C(1 + g.) + ~ P R . ,  

6 = a n ( n +  1)+r iCO + K . ) + f l J g .  

Thus, we find that in 3D 

de t J  = f ly-ff  n(n + 1)-- K,(1 - K,) , 

Thus, in 3D, instability occurs whenever 

An(n + 1) < ~2.(1 -- K.),  

Example kernels, Figs. 3 and 5 

(A3,2) 

(A3.3) 

[[P,(x) [I < N/-~-n (1 -- x2) - 1/2 (A3.6) 

(see Abramowitz and Stegun, 1964; Macrobert 1967). Then it follows that 

C' C 
~2. < - -  k,(1 - K,) < (A3.7) , / ; '  , / ; '  

where C is some positive constant of order 1. So, ifn > no, nc ~ A -1 /2  then the 
nth harmonic would not destabilize the homogeneous distribution. 

The exact functional forms of the kernels used to produce Figs. 3-5 were: 

= ~'Al(cos7 - 3/4) -1/2 cos 7 > 3/4 ; 

K! (0, cos 7 < 3/4 . 

'A2, c o s 7 > 3 / 4  ; 
K n  = (0, cos 7 < 3/4 . (A3.5) 

{Aacos [~7] ,  cosy > 3/4; 
K m =  0, cos7 < 3/4. 

High harmonics are stable 
Since A in equation (7.2) is positive, instability is most likely for low values of 
the integer n, e.g. n = 1 and high harmonics cannot destroy stability. This can 
be shown from the following estimate on the magnitudes of the RHS of the 
inequality for instability. We use the fact that 

= - . (A3.4) 
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Kernel favoring instability and nonhomogeneous pattern 
A particular form of the kernel, which would be most favorable to the 
existence of a non-homogeneous solution is: 

=I13nCOSqS+KA(gP)' qS=0 in 2D , 

/~(qS) L~c°s~b+Ks(qS) '  ~b=y in 3D , 

(A3.8) 

where KA,B a r e  orthogonal to cos ~b and their exact form is not important. 
(When KI(1 - K1) = 1/4 then symmetry breaks at A > 1/4 in 2D and A > 1/8 
in 3D.) 

Appendix IV. Results for the actin-binding kernel 

In this appendix we will briefly describe the results on orthogonal align- 
ment that occurs in the actin model. It is natural to assume, based 
on our experience with the single and double humped kernels, that an 
even, nonnegative double humped kernel having humps at -re/2 and zt/2 
leads to orthogonal alignment. (Alignment occurs along angles where the 
kernel has maxima.) An example of this type of kernel is shown in Fig. lc. 
Because of the periodicity of the kernel (period is ~), only the coefficients 
K, with n even are nonzero in the Fourier expansion for the kernel in the 2D 
case, and expansion over spherical harmonics in the 3D case. It is important 
that both in 2D and in 3D, Kz < 0, K2(1 - Kz) < 0 and 0 < b;4 < 1. This 
means that the second harmonic is stable and in general it will be the fourth 
harmonic that breaks stability and becomes the leading mode. (See also 
Civelekoglu and EK, 1993). This result holds for all three models considered 
in the present paper. 

In the 2D case, the bifurcational analysis close to criticality is ana- 
logous to the one we have carried out in Sect. 6. The bifurcation is supercriti- 
cal, and 

c(o)  ~ C + kv/Ff  - ~ Icos(40). 

See Fig. 9c. 
In the 3D case, where again, the fourth harmonics Y4 is unstable, the 

leading mode is highly degenerate, both rotationally and patternwise. The 
mode competition leads to the removal of the pattern degeneracy, however, so 
the axisymmetric solution loses its preferential status. (It dies out as a result of 
competition.) The pattern evolved has the form of six mutually perpendicular 
smooth bumps in the distribution of Actin fibers on the surface of the sphere 
(see Fig. 9c). The bifurcation as in the 3D, double humped case is of trans- 
critical character. 
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Append i x  V. Synergetic analysis of Model I in 2D 

Under the assumptions given in Sect. 8, we can perform the calculations 
shown below. First, we form the expansion 

\ th(t))  vi(O) . (A5.1) \P(O, t) ] = \ th( t )]  vl(0) + + 

(Note that vi(0), i=  2 . . . .  are either cos(i) or sin(i) for integer i, and 
(~i(t), ~h(t)) are their amplitudes as functions of time, assumed to depend on 
the amplitude of the first mode) : 

th(t)J \ n * [ ~ l ( t ) ,  n , ( t ) ]  " "  

Close to criticality, the expression (A5.2) is valid. 
We can form a valid asymptotic expansion for (~(t), th(t)) i = 2, 3 . . . .  in 

powers of (~l, th): 

~,(t)= ~ C j i , j 2 ~ l ( t ) J i r l l ( t )  J* . (A5.3) 
JI,J2~0 

A similar expression holds for t/i(t). 
We look for a solution of equations (8.6, 8.7) in the form 

C(O) = C + ¢(0), ~(0) = ~,, ~,v,(0), [~(0)1 '~ C' (A5.4) 
i=O 

derived from the expansion (A5.1) that is, in which the deviation away from 
the homogenous state is expressed as a superposition of the harmonics, as 
indicated above. If we restrict attention to the linear approximation, we get 
equation (8.9), Substituting in the Fourier series expansion for ~(0) given in 
equation (A5.4), using the fact that K*  v, = K.v, for every n = 1, 2 . . . .  and 
equating coefficients of each harmonic on both sides of the resulting equation, 
we obtain the following system of equations: 

( aC2 k . (1  k , ) ) ~ , = 0  n = 1 , 2 , 3  (A5.5) - n2~ + (a---  ~ ) 2  - . . .  

The expression multiplying ~, in equation (A5.5) coincides with the one for the 
determinant of the stability matrix, so we can rewrite the above equation in 
the form: 

2,~, = 0, n = 1, 2 . . . .  (A5.6) 

These equations have only trivial solutions, which indicates that the linear 
approximation is not sufficiently informative. Keeping terms up to third order 
in ~ leads to the nonlinear equation. In this approximation equation (8.9) has 
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the form: 

[-a2C 
aCZ [ ( K * ¢  - K * ( K * 0 ]  + LT(K,¢)2 

+ - f r  

aC aC2 ((K, ~)2)--a~2 K*(¢(K 3))] f2aC {(K*(K*¢ll+-f- f{(K*~l--- f~ -K* - * 

a12 a 2 
F a 2 ( 7 ( K , 0 3  _ aC 2 K , ( ( K , ¢ ) a )  ~-TK*(¢(K*{)  2) + f s { ( K * ¢ )  2 

+ l _ f '  -fr- - 

aC a { K , ( { ( K , ~ ) ) I  = 0 ,  ~K* ((K* ~)2)-~---~ (A5.7) 

where f =  a - C. We substitute the expansion (A5.4) into (A5.7) and keep 
terms up to third power in ~1 and up to second power in ~i, i = I, 2 , . . .  We 
use trigonometric identities to simplify expressions involving products of the 
harmonics, (i.e. identities for products of sines and cosines) and equate coeffi- 
cients of each harmonics on both sides of the equation as before. We get the 
hierarchical system of equations (8.11). 

The expressions for constants appearing in equations (8.11) and (8.12) are 
as follows: 

aC^ 
A1 = 2-~ KI(1 - / ( 1 )  

I ; o 2 1  = 

aC 2 
(a - g)2 (4R1(1 - / ( 1 )  - R2(1 - K2)) 

2a2C 
G = f--r-g~(1 - g~) (A5.8) 

aC [ a + C 2c 1 

a C R 2 R i ( 1 - R 1 ) ( I  + ~ ^ ) F = ~  --fK, 

B1B2 D = GA1 - F + 
I;.21 
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where 

Double humped kernel 

A. Mogilner, L. Edelstein-Keshet 

aM 
C = ~ (A5.9) 

a + M  

In the case of a double humped kernel we have an expansion over the even 
harmonics only. The expansion has the form: 

C(O) = C + ~v2(0) + ~, ~ .v2, (0) ,  (A5.10) 
n = 2  

~ = _+ k ' ~ / l ~  - ~o'l, I ~ , . I  = k l . r ~  - ~'cf "~2, n = 2,  3 . . . .  ( A 5 , 1 1 )  

where k', k~,, e'c have the same meanings as before. The character of the 
bifurcations is the same. 

Appendix VI. Bifurcation analysis of Model I in 3D 

We consider an expansion of C in terms of the eigenfunctions (Legendre 
polynomials). 

C(¢, O, t) = C + Zo + z1(t) P°(cos ¢) + z2(t) Pl(cos ¢) cos(0) 

+ ~ y,(t)Y,(¢, 0), (A6.1) 
n = 2  

where we define the norm 

I Y.I = max I YTI, (A6.2) 
in 

and where zx, z2 are amplitudes of the two unstable harmonics, and 
y.(t), n = 2 . . . .  are amplitudes of the stable harmonics. 

Double humped kernel In the case of the double humped kernel, the 
leading mode possesses both orientational and pattern degeneracy. 

Y2 = xl P° + x2P~ + xaP~ , (A6.3) 

we have the decomposition 

C(¢, 0, t) = C + Xo(t) + xl(t)P°(¢) + x2(t)P~(¢) cos 0 + x3(t)P~(¢) cos 20 

+ ~ pz.(t)Y2.(¢,O), (A6.4) 
2 n , n = 2  

p . y .  = {pr~y,~} m = 0 , . . . ,  n, Ip l  = max Ip~l. (A6.5) 
m 

As a result of intermode interaction, the pattern degeneracy is removed: all 
non-axisymmetric harmonics die out and if we chose again ¢ = 0 as the 
direction of the axis of symmetry of the pattern evolved, then in the stable 
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stationary state, x2 = x3 = 0, IP41, IXo[ ~ x~, IP,[ ~ x~, n > 4, and the leading 
mode amplitude obeys the equation 

where 
)oxl + plx~ - p2x~ = O, 

4 a2C 
pl = 49 (a _-~)3 g~(1 - K2) > 0, 

(A6.6) 

P2 '~Pl  > 0 (A6.7) 
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