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Abstract

Motile eukaryotic cells polarize in response to external signals. Numerous mechanisms have been
suggested to account for this symmetry breaking and for the ensuing robust polarization. Implicated
in this process are various proteins that are recruited to the plasma membrane and seggregate at an
emergent front or back of the polarizing cell. Among these are PI3K, PTEN, and members of the
Rho family GTPases such as Cdc42, Rac, and Rho. Many such proteins, including the Rho GTPases
cycle between active membrane-bound forms and inactive cytosolic forms. In previous work, we
have shown that this property, together with appropriate crosstalk endows a biochemical “circuit”
(Cdc42, Rac, and Rho) with the property of inherent polarizability. Here we show that this property
is present in an even simpler system comprised of a single active/inactive protein pair with positive
feedback to its own activation. The simplicity of this minimal system also allows us to explain
the mechanism using insights from mathematical analysis. The basic idea resides in a well-known
property of reaction-diffusion (RD) systems with bistable kinetics, namely, propagation of fronts.
However, it crucially depends on exchange between active and inactive forms of the chemicals with
unequal rates of diffusion, and overall conservation to pin the waves into a stable polar distribution.
We refer to these dynamics as wave-pinning and we show that this phenomenon is distinct from
Turing-instability generated pattern formation that occurs in RD systems that appear to be very
similar. We explain the mathematical basis of the phenomenon, relate it to spatial segregation of
Rho GTPases, and show how it can account for spatial amplification, maintainance of polarity, as
well as sensitivity to new stimuli typical in polarization of eukaryotic cells.
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1 Introduction

Polarization and reorganization of the cytoskeleton, a fundamental attribute of eukaryotic cells, is
essential for cell locomotion, morphogenesis, and division. The puzzle of what cellular machinery
endows the cell with an ability to polarize has been a subject of great interest, both theoretically (1–
5), and experimentally (6, 7). In many cell types, biochemical reorganization precedes a cytoskeletal
and morphological response (8–11). Key players in this biochemical redistribution include the Rho
family GTPases (12, 13) and other proteins that cycle between the cell membrane and the cytosol.
In this paper, we explain what properties of such proteins could result in an inherent capacity for
polarization.

We first list features of cell polarization to be explained. When an unpolarized cell is subjected
to a transient stimulus in the form of a shallow chemical gradient or a highly localized signal on
the cell periphery, it responds by reorganizing into two well-defined regions, front and back. We
term this spatial amplification. In most cases, this polarized state is maintained even after the
transient stimulus is removed (maintenance). Another hallmark of cell polarization is its sensitivity

to new incoming signals. If a polarized cell receives a sufficiently strong secondary stimulus, it
adjusts its polarization accordingly (For example, reversal of orientation is seen in neutrophils
when the stimulus gradient is reversed (14)). Theories for cell polarization should account for all
these behaviours. At the same time, our model is not meant to describe all features of chemotactic
cells. Some cell types continually send out pseudopods even in the absence of stimulation (15, 16),
a behaviour represented by other models (2), but not by ours. The fact that chemical polarization
occurs even in actin-poisoned “round” cells (treated with the drug latrunculin) (17) suggests that
the formation of random pseudopods can be decoupled from the polarity-generating mechanism
(7, 18), and here is where our model resides.

We (19, 20) and others (21) have previously used reaction diffusion equations with a few key
characteristics to model Rho GTPase dynamics and spatial redistribution. We showed that the
inherent ability to robustly polarize a cell depends on the cycling between active, membrane-bound
and inactive cytosolic forms of these proteins. In our models, a transient and localized stimulus
to the system was spatially amplified to result in a robust subdivision of the cell into two clearly
defined regions, front and back, where the concentration of the active forms are high and low,
respectively. In our previous work (19, 20), specific crosstalk based on (22) was assumed between
the three Rho GTPases, Cdc42, Rac, and Rho (See also related ideas in (21, 23)). We showed
that the model system exhibits both maintenance and sensitivity. However, as in (21), but with a
notably distinct mechanism, we here show that the essential features of polarity can be studied in
a far simpler system, consisting of a single active-inactive pair of proteins. Studying a simplified
system is important for several reasons. Since it is amenable to full mathematical analysis, we
can understand how the mechanism works in detail. Such a study also helps to uncover essential
features common to disparate GTPase networks found in distinct cell types.1

All the behaviours described above can be explained in the context of a specific property of a
reaction diffusion system that we term wave-pinning (WP), namely, the evolution of a decelerating
front that becomes stationary after transient behaviour. This mechanism differs from those based
on local excitation and global inhibition (LEGI) models, or diffusive instability of the Turing type
(2, 21, 24–27) in ways that will be specified below. We explain how wave-pinning occurs, and
reveal its fundamental properties which are interesting from both a biophysical and a mathematical
perspective.

1We could even speculate that such elementary biochemistry could have endowed polarizability to early “protocells”
before signal transduction pathways had evolved to their current level of complexity.
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1.1 Properties of Rho GTPases

We highlight the wave-pinning mechanism in the context of the known Rho-GTPase biochemistry,
although other proteins could be candidates for similar wave-based phenomena (28, 29).

The Rho GTPase family, whose best studied members are Cdc42, Rac, and Rho, is conserved
from amoeba to mammalian cells. These three members play a central role in cell motility (30, 31),
yeast budding (13), cytokinesis and wound healing (32). Each Rho GTPase cycles between the
plasma membrane (active GTP-bound form) and cytosol (inactive GDP-bound form, Figure 1(a))
with conversions facilitated by GAPs, GEFs, and GDIs (33). Rates of transition (34), relative rates
of diffusion (35), and concentrations typical of rest and polarized states (36) are known.

Spatial zones of Rho GTPase activity are important for cell polarization (32). In yeast, active
Cdc42 localizes to a single zone on the plasma membrane marking the bud assembly site. In echin-
oderms, a zone of active Rho determines the site of cleavage-furrow formation during cytokinesis
(37). In neutrophils and other motile cells, Cdc42 and Rac have been associated with putative
cell front, and Rho with the cell back (but see (38), and note that details likely differ between cell
types). A comparison between neutrophils and Dictyostelium discoideum, for example, reveals that
Cdc42 and Rho are missing in the latter. (RacB could be playing a role similar to Cdc42 (39).)
These differences make it even more significant that in some cell types or conditions, a single Rho
GTPase can act as a basic polarizing unit.

Experimental evidence suggests that Rho GTPase cycling is directly responsible for the polar-
ization response. In yeast, for example, the accumulation of Cdc42 at sites of polarized growth
depends crucially on a gene that codes for a single Cdc42 GEF (13). We and others (19–21) have
hypothesized that exchange between membrane and cytosolic forms plays a practical role in gen-
erating robust cell polarity, and in this paper, we explain how this mechanism could work at the
level of each individual Rho-protein.

1.2 Mathematical Modeling

Mathematical models of cell polarization and gradient sensing date back to work by Meinhardt and
Gierer in the 1970’s (1). Recent models based on known biochemistry include (3, 19–21, 23, 40–
43), and are reviewed in (44–46). Theoretical capability models include (2, 25, 26, 47). Most
models for polarization belong to a class of phenomena based on local self-enhancement and
long range antagonistic reaction (48). Indeed, such a class contains a rich diversity of pattern-
forming systems (mechanochemical (49), neuronal activation-inhibition (50), activator-inhibitor,
and substrate-depletion reaction-diffusion). Mathematicians and physicists recognize distinct sub-
classes with unique, well-defined properties (51). The dynamics, bifurcation structure, and conse-
quently their physical properties (robustness, sensitivity, speed) differ dramatically. Many pattern-
forming reaction-difusion systems belong to the class of Turing. We show that ours does not, and
that this has important biological consequences.

Previous work by our group in which changes in cell shape, crosstalk between Rho proteins and
their effect on the cytoskeleton were considered (19, 20), addressed polarization in a more complex,
and less analytically tractable framework. In the model study to follow, we explain the inherent
ability to polarize in a simpler system.

As in (19, 20) we base our model on the membrane-cytosol cycling of Rho proteins, and further
as in (21), we focus on the case of a single active-inactive pair. Bistability is an essential ingredient
in our model and we first outline how this could be achieved in a biochemically reasonable way.
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1.2.1 The well-mixed system

Consider, first, a well-mixed system consisting of an active form, A, and an inactive form, B, of
the signaling protein with interconversion:

B
kba

�

kab

A, (1)

See Figure 1. The concentrations of these chemicals a, b would satisfy kinetics of the form

da

dt
= Rate of activation − Rate of inactivation,

= kba b − kab a,

≡ f(a, b) (2)

where kba, kab are rate constants (units of 1/t) and where we have defined the function f(a, b) above.
If only this exchange takes place, and no new material is produced or destroyed, then conservation
in the well-mixed system implies that

db

dt
= −da

dt
.

We will refer to kba b as the rate of activation, kab a as the rate of inactivation, and f(a, b) as the
reaction kinetics (or as the reaction terms). Bistability necessitates that either one or both of
kba, kab be nonlinear. Here we have chosen one of the simplest assumptions (among other possible
variants), namely that there is cooperative positive feedback from the activated form onto its own
production (via GEFs), whereas the reverse conversion (mediated by GAPs) takes place at constant
basal rate, δ. Expressions for the rate constants consistent with these assumptions are

kba = k0 +
γa2

K2 + a2
, kab = δ,

where k0 is a basal GEF conversion rate, and positive feedback is represented by a Hill function
with maximal rate γ and saturation parameter K. The Hill coefficient n = 2 is needed to achieve
bistability. The resulting kinetic function

f(a, b) = b

(

k0 +
γa2

K2 + a2

)

− δa, (3)

has the essential properties we need, and similar kinetics have been used in (52, 53), and in a number
of superficially similar models based on Turing pattern formation. (See later detailed comparison
of these distinct mechanisms). However, to a large extent, the details of this choice for the kinetic
function f(a, b) are arbitrary; only the qualitative aspects of the reaction term, and in particular,
its bistability are critical. The well-mixed system has steady states when f(a, b) = 0, i.e., when

b

(

k0 +
γa2

K2 + a2

)

= δa. (4)

For a fixed value of b, the corresponding values of a at these steady states can be visualized as
intersections of a sigmoidal curve (LHS of Eq. 4) with a straight line of slope δ (RHS of Eq. 4). Up
to three such intersections can occur, a−(b), aT(b), and a+(b), the outer two of which are stable.
(We label the steady states in increasing order, so that a− < aT < a+.) The existence of at least
two stable values of the activated form of the protein, a, is strongly suggested by experimental
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observations: these would correspond to the values of a at the front and at the back of polarized
cells. For the wave-pinning mechanism to work, we will require that there is some range of values
of b (bmin < b < bmax) for which the above three steady states exist. More generally, any kinetic
function f(a, b) that admits such steady states in a range of values of b would be suitable for our
mechanism to work.

1.2.2 The spatially distributed system

We now consider a one space dimension (1D) version of a reaction-diffusion system based on the
bistable kinetics described above. We model the diffusion and exchange of the active forms (bound
to the cell membrane), and the inactive forms (e.g., RhoGDP in complex with GDI’s in the cytosol)
along a cell diameter transect, front to back, approximated as a one-dimensional segment (0 ≤ x ≤
L; see Fig. 1(b)). We let a,b be concentrations of the active and inactive forms of the proteins,
respectively, in units of molecules/length. Then

∂a

∂t
= Da

∂2a

∂x2
+ f(a, b), (5a)

∂b

∂t
= Db

∂2b

∂x2
− f(a, b). (5b)

The rate of diffusion of the membrane-bound (active) form is known to be significantly smaller
than its inactive cytosolic counterpart (35), so that Da � Db. We assume no flux at the ends of
the domain, so that

∂a

∂x

∣

∣

∣

∣

x=0,L

= 0,
∂b

∂x

∣

∣

∣

∣

x=0,L

= 0. (6)

In our case, a polar pattern would be a chemical distribution that is highest at one end of the cell,
and decreases to its lowest value at the opposite end of the cell. Note that in some other models for
cell polarization, the domain considered is the membranous perimeter of a cell, for which periodic
boundary conditions are appropriate. In some of those cases, the interior of the cell is considered
to be spatially uniform, and/or the fast-diffusing component is represented by its spatial average.
Together, Eqs. 5 and 6 imply mass conservation in the spatially distributed system, i.e.

∫ L

0
(a + b) dx = C. (7)

The form of Eqs. 5 and the conservation, Eq. 7, make our model superficially similar to one proposed
by (21). The depletion of b in production of a resembles the Gierer-Meinhardt substrate-depletion
mechanism (24), and the saturation terms look much like terms used in more recent Meinhardt
models (52) that we compare further on. However, it is well-known that the behaviour of an RD
system is intimately connected to precise details of the reaction terms. For example, the reaction
kinetics assumed by the authors of (21, 24, 52) do not satisfy the properties required for wave-
pinning (Section 3), and our system does not admit a Turing diffusion-driven instability as does
theirs. To check this, observe that in linearization of Eqs. 5 about the homogeneous stable steady
states a = a−, a+, we obtain coefficients c11 ≡ fa(a, b) < 0, c22 ≡ −fb(a, b) < 0 that fail satisfy a
necessary condition for Turing instabilities, namely c11/Da + c22/Db > 0.

1.2.3 Input stimuli

An external stimulus is known to increase activation of proteins such as Rho GTPases by upreg-
ulating the GEFs that convert inactive forms to active forms. Depending on the nature of the
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stimulus, this increased rate of activation could be space and time dependent. To model the exter-
nal stimulus, we superimpose an additional transient spatial stimulus-dependent activation function
fS (added to Eq. 5a and subtracted from Eq. 5b).

fS(b) = kS(x, t)b. (8)

kS(x, t), the increased rate of conversion of B to A due to an external signal has some spatiotemporal
dependence. The specific forms of kS we used in simulations are listed in the Appendix.

1.2.4 Parameter values

For computations, we set parameter values as follows: We take cell diameter to be L = 10µm, and
diffusion coefficients in the membrane (Da = 0.1µm2s−1) and in cytosol (Db = 10µm2s−1) as in
(35). Similar values have been measured for membrane-bound Cdc42 in yeast (54). The average
membrane lifetime of an activated Rac molecule is 2 s (55), while GAP-stimulated GTP hydrolysis
of Rho has been measured as 1.5 s−1 (34). We thus let the inactivation rate be δ = 1 s−1. GAP
hydrolysis must be matched in magnitude by GEF activation. We thus take γ = 1 s−1. For the
baseline GEF activity we take k0 = 0.067 s−1. The parameter K has units of concentration of A.
We normalize concentrations so that K = 1 (units of length−1).

2 Results

We first discuss numerical results and then explain the basis of the phenomenon.

2.1 Polarization and Wave-pinning

We first demonstrate that the above model reproduces two salient features of cell polarization,
amplification and maintenance, as outlined in the Introduction. In the numerical experiments
described here, we start with the same total amount of material in the domain. We start with an
unpolarized cell in which a is uniformly equal to its lower steady state value a− corresponding to
the spatially uniform value of b. We subject this cell to two types of transient stimuli, localized
(kloc

S ) and graded (kgrad
S ), as detailed in the Appendix. From the computational results (Figure

2(a,b)), we see that both external stimuli kloc
S and kgrad

S result in a local increase in the active form
a near the cell edge at x = 0. This local rise is spatially amplified by a sharp front of the active
form that propagates into the cell. When this propagation eventually halts, a phenomenon we call
wave-pinning, the pinned front represents a clear segregation of the cell into front and back. This
polarized state is maintained indefinitely, even after kS = 0. The final steady state solution is
identical for both kloc

S and kgrad
S .

We next ask whether our model cell exhibits sensitivity to new incoming signals, and whether
it can reverse its polarity. In our 1D simulation, we study this as a response to a sequence of two
stimuli of the form kgrad

S (x, t) one following another, but with reversed polarity. (Fig. 2(c)): we
first give the cell an initial graded stimulus, and then we reverse the gradient of the stimulus. The
model cell at first polarizes in the direction of the initial stimulus. After the second stimulus, the
cell repolarizes in the opposite direction after some hesitation.

In simulations with various stimuli of larger slope or magnitude (not shown), the response of
the cell remains the same. After some transients, the level of the active form of protein, and the
location of the sharp front dividing front from back is the same (as in Fig. 2a-c). This feature
of the model is explained in our analysis and provides one prediction that distinguishes this from
alternative mechanisms for polarity.
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We model spontaneous cell polarization by starting with random initial data and no signal

a(x, 0) = a−(b0) · 2R, b(x, 0) = b0,

where 0 < R < 1 is a uniformly distributed random variable. Depending on the initial data, the
cell can polarize in either direction (Figure 2(d)). In some runs we also observed solutions with
persistent multiple peaks (not shown). Such multiple peaks also occur if the cell simultaneously
receives two localized stimuli at its opposite ends (not shown), as in “two pipette” experiments
(7, 56). In this case, waves enter the domain from opposing directions and appear to set up two
opposing “fronts” at the two ends and a “rear” in the middle of the cell. We believe that such
multiple peak solutions are metastable and eventually coalesce to form a right or left polarized
state. (See Discussion).

2.2 Mathematical Basis of Wave-pinning

Our task, below, is to explain the phenomenon of wave-pinning on which amplification and main-
tenance of cell polarization are based. The informal arguments here are supported by matched
asymptotic analysis, the details of which will be presented elsewhere.

Wave-pinning is made possible by three qualitative features of our model equations. The first
of these features is mass conservation resulting from the interconversion kinetics and no-flux
boundary conditions as given by Eqs. 5 and 7. The total amount of protein, C > 0 is constant
even when an external signal is applied, (kS 6= 0) since such signals simply increase the rate of
conversion from B to A without affecting the combined total amount of A and B in the domain.

The second feature is spatial uniformity of b (to first approximation) that results from the
assumption Da � Db; b quickly diffuses to attain a uniform value within the domain on the time
scale of interest. This amounts to replacing Eq. 5b by the average value of b, a reduction often used
in other models (2). This implies that the inactive form, Rho-GDP acts as a global variable.
The third feature is bistability of the reaction term, i.e. the fact that, for b fixed in some range
(bmin < b < bmax), the equation ∂a/∂t = f(a, b) admits steady states a− < aT < a+ where a−, a+

are stable. We also require that the homogeneous state (a, b) ≡ (a±(b), b) be a stable stationary
state of the reaction diffusion system.

We shall see below that the wave-pinning mechanism is dependent on wave-propagation, and
is thus distinct from a Turing mechanims, which is based on growth of small local perturbations.
One manifestation of the difference of the two models is that wave-pinning can act much faster
to generate a polar pattern than does a related Turing-type mechanism, and this has important
biological implications (see the section A comparison of models for details).

2.2.1 The single variable case (fixed b)

First, to develop the context, consider what happens in a single one-dimensional reaction diffusion
equation for a on 0 < x < L, with the above bistability property, and with b taken as parameter:

∂a

∂t
= Da

∂2a

∂x2
+ f(a, b). (9)

On an infinite domain, Eq. 9 is known to possess a propagating front solution (49, 57). At the
rear (respectively, front) of the wave (x → ±∞) the profile asymptotes to a+ (respectively, a−).
Suppose a, obeying Eq. 9 on 0 < x < L, develops a propagating front that is sufficiently sharp and
far from boundaries; then we can approximate its region of validity by −∞ < x < ∞. Let

af (ξ) = af (x − ct) = a(x, t).
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Then it is known (49, 57) that the speed of the front, c, which need not be constant, satisfies

c(b) =

∫ a+

a
−

f(a, b)da
∫

∞

−∞
(∂af (ξ)/∂ξ)2 dξ

. (10)

c depends on b through its dependence on a−, a+, f(a, b) and af . The denominator of Eq. 10
is positive, so the sign of c(b) depends only on the integral in the numerator, which we denote
hereafter by I(b). For the reaction term in Eq. 3, the quantity I(b) can represented geometrically
by (signed2) areas between the sigmoidal curve for activation (y = bkba) and the straight line for
inactivation (y = akab) considered as functions of a, shown on the right panels in Figure 3. For
example, in the top right panel of Fig. 3, there are two regions between these intersecting curves
(shown in different shades), one clearly having an area of greater magnitude than the other. For
our reaction term, there is one critical value b = bc, (in bmin < bc < bmax) at which the areas
described above are equal and opposite (bottom right panel, Fig. 3). At this value of b, the speed
c(b) changes sign. If b < bc, c is negative and if b > bc, c is positive. The speed is zero when the
following condition is satisfied3:

I(b) ≡
∫ a+

a
−

f(a, b)da = 0. (11)

The two important properties we use below are: (1) there are two stable steady states for bmin <
b < bmax, and (2) the integral I(b) changes sign at b = bc (with I(b) > 0 for b > bc).

2.2.2 Wave-pinning in the full a, b system:

The explanation of wave-pinning now proceeds solely on these premises. Suppose that initially
a is at its basal steady state level and b is sufficiently high (a(x, 0) = a−(b), b(x, 0) ≈ constant
> bc) (Figure 3). A transient stimulus near the edge of the cell at x = 0 triggers a local increase
to the level a ≈ a+, via bistability. According to Eq. 10, and using the fact that b(0) > bc, this
creates a front that starts to propagate in the positive direction, converting a greater fraction of
the domain to a ≈ a+(b). By Eq. 7, as the amount of a increases, b must simultaneously decrease,
eventually reaching the critical value b = bc at which wave-pinning occurs (left panels, Figure 3).
The depletion of b to its critical level bc causes the wave to pin.

2.2.3 Tracking the evolving front:

Using the fact that the wave stalls at b = bc, we can compute the position of the front of the pinned
wave, hereby denoted xp. For a sharp front, a ≈ a+ to the left (respectively a− to the right) of xp.
(The values of a−, a+ are obtained from the steady state equation f(a, bc) = 0.) Conservation of
the total, C from Eq. 7, and spatial uniformity of b, imply that, to first order,

a+(bc)xp + a−(bc)(L − xp) + bcL = C. (12)

The front position, xp, is obtained by solving Eq. 12. Numerical computations give excellent
agreement with this prediction.

Because the position of the front is defined by Eq. 12, only the parameters in the model (rate
constants in Eq. 3) that determine the steady states, domain size L, and total amount of protein C
influence the polar state. This means that transient gradients or localized stimuli lead to the same

2The sign of the area is positive where activation is greater and negative where inactivation is greater.
3In some sources this is called a Maxwell condition (27, 58))

8



level of active protein at the front, and the same position of the front, explaining the similarity of
results in Fig. 2(a-c) and other simulations with a variety of gradient magnitudes.

From the above argument, it is evident that wave-pinning would not occur if there is initially
too little inactive form, e.g., b < bc at t = 0. Even if there is enough, i.e. if b > bc, wave-pinning
would fail if the reduction in b as the front sweeps through the domain is insufficient to reach the
level b = bc inside the given domain. If initially b is too high, or if the cell is too small, wave-pinning
will also fail because Condition 12 cannot be attained. For fixed domain size L, the possibility of
wave-pinning is determined by the total amount, C, of a and b. Our analysis predicts that the size
of the activated region (i.e. portion of the domain for which a is at its high steady state value) will
be an increasing function of C.

To obtain a better understanding of wave-pinning, we consider a caricature of the reaction term
that is simple enough to be fully analytically tractable while encompassing all required qualitative
properties. We let

f cubic(a, b) = −k(a − a−(b))(a − aT(b))(a − a+(b)), (13)

where a− = `b, aT = h, a+ = mb, a− < aT < a+ . (14)

with m < `. Here, the straightforward dependence of steady states on the level of b makes the
analysis go through. Using Eq. 12 and simple algebra, it can be shown that the front will stall
inside the domain (i.e. that 0 < xp < L) provided

2h

` + m
(1 + `)L < C <

2h

` + m
(1 + m)L. (15)

Constant homogeneous solutions also exist provided

C = b(` + 1)L <
h(` + 1)L

`
. (16)

It is straightforward to show that the constant homogeneous solutions with a(x) = a− or a(x) = a+

are stable as solutions of the full RD system, Eqs. 5,13. Furthermore, this system does not admit
a Turing diffusive instability for functions f satisfying the minimal conditions for wave-pinning, in
contrast with the reaction terms assumed by (21). For a given set of values m, `, h it is possible
to find a range of values of C that satisfy both conditions 15 and 16. This implies coexistence of
both unpolarized and polarized states over the same range of parameters. The system would then
asymptotically approach either one or the other configuration depending on initial conditions and
on the applied transient stimulus fS. This behavior is seen in simulations with the biochemically
motivated reaction term in Eq. 3, e.g., in Supplementary Fig. 3.

In general, and specifically for reaction terms of type 3, an explicit form for the propagating
front solution af (ξ) in the denominator of Eq. 10 is not obtainable. However, the simplicity of the
cubic reaction kinetics in Eq. 13 allows us to evaluate the integrals in Eq. 10 explicitly as a function
of b. Using matched asymptotic expansions (details to be presented elsewhere), we obtain a closed
form ordinary differential equation (ODE) for the evolution of the front position xf (t):

dxf

dt
=

√

2kDa

(

C(m + l)

2((1 + `)L + (m − `)xf )
− h

)

. (17)

We can thus reduce a system of two partial differential equation to a single ODE for the propagating
front position. The front becomes stationary when dxf/dt = 0, at

xf =
1

(m − `)

(

C(m + `)

2h
− (1 + `)L

)

. (18)
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In Figure 4, we plot the front position calculated by solving the partial differential equation and
tracking its evolving front, as well as the position obtained by solving the above ODE directly. We
see excellent agreement between the two curves.

3 A comparison of models

In this section, we discuss two competing models from the literature, the local excitation global
inhibition (LEGI) model (18, 59), and the activator substrate-depletion model (ASDM) (1, 24,
60). Detailed comparisons of behaviour of these and our wave-pinning (WP) model are given
in the Supplementary Information. Superficial similarities aside, the models are based on distinct
nonlinear dynamics phenomena, and predict contrasting behaviours in response to a suite of external
stimuli.

3.1 The Local Excitation Global Inhibition (LEGI) Model

The LEGI Model in its basic form (18, 59) is specifically designed to exhibit adaptation to spatially
uniform stimuli. Its chemicals include two that are produced in direct proportion to an external
stimulus S(t, x); these are a membrane-bound (localized) activator, A, and a diffusible (global)
inhibitor, I. A third, localized chemical R, creates the response. Generic LEGI models contain
too few nonlinearities and spatial terms to have inherent pattern-forming or wave-propagating
features of their own, and are not intended as such. Rather, LEGI models are ideal as a readout
of persistent macroscopic signals of various amplitudes. LEGI modules are normally coupled to
other hypothesized chemical circuits to amplify or shape aspects of the behaviour (18, 27, 45, 61).
Typically the response of a LEGI model on its own includes a transient phase (elevation of A, I
and R), followed by polarization (for a sustained gradient stimulus), or return to a rest state (for
a homogeneous constant signal or for any transient signal after it is turned off).

Excellent reviews of the LEGI models, and their application singly, coupled to amplification
models, and/or to one another appear in the literature (18, 45, 47, 59, 61), and details are here
omitted for brevity. In Fig. 1 of the Supplementary Information, we demonstrate prototype re-
sponses to the same repertoire of stimuli used in our wave-pinning tests. Unlike the wave-pinning
model, the LEGI model does not have a threshold for stimulation, does not have persistence memory
of a stimulus, and does not polarize in response to spatially noisy perturbation of the homogeneous
steady state. However, it does allow for reversal of polarity when the stimulus gradient is reversed.
(See Supplementary Figs. 1, 3.)

3.2 The activator substrate-depletion model (ASDM)

Several variants of RD systems in which a substrate (b) is depleted in the production of an activator
(a) are given in the literature. Some of these have been described decades ago (1, 24), and certain
variants have been analyzed thoroughly for pattern-forming properties4. In general, related systems
can exhibit other pattern-formation phenomena such as spots, stripes, labyrinthian patterns, peak-
splitting or merging, etc. Substrate-depletion models that include saturation terms have been used
in larger models for other biological phenomena5(52). Cytoplasmic diffusion is sometimes replaced
by averaging. For the purpose of comparison, we chose a two-variable saturating kinetics variant

4See, e.g. (49), where the name “Schnackenberg” is occasionally associated with essentially the same system. The
“Brusselator” reaction (62) is related to these as well.

5An anonymous reviewer of this paper pointed out that saturation leads to a plateau distribution, with peaks that
are more easily shiftable to favorable positions.
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(kindly supplied by Prof. H. Meinhardt) whose various terms most closely resemble those of our
own model,

∂a

∂t
= b

(

sa2

1 + saa2

)

− raa + Da
∂2a

∂x2
, (19a)

∂b

∂t
= bb − b

(

sa2

1 + saa2

)

− rbb + Db

∂2b

∂x2
. (19b)

As in our model, positive feedback from a to its own production is governed by a Hill function with
an amplitude s and a saturation parameter sa. This production of a in Eq. 19a is at the expense
of b in Eq. 19b. It is assumed that the diffusion of the substrate is greater than the diffusion of
the activator (Db > Da). Such positive feedback with a limited substrate supply has been used in
many chemotaxis models, but the striking similarity of Eqs. 19 to our Eqs. 5 with kinetics of Eq. 3
is misleading. Significantly, the system 19 does not satisfy a conservation principle such as Eq. 7
and consequently cannot admit a wave-pinning mechanism: the decay rates of the activator and
substrate, (ra, rb) and constant input of substrate (bb) are inconsistent with simple interconversion
of a and b, and the total amount is not conserved.

Unlike our model, Eqs. 19 do admit a Turing (diffusion-driven) instability and this is the
mechanism associated with the pattern forming ability of that model. We explain the implications
of this fact in Section 3.3. In the Supplementary Information, we also describe how a comparison
was made between the ASDM and WP model using the same repertoire of stimuli. Briefly, the
evolution of a polar pattern is found to occur to arbitrarily small perturbations of the uniform
steady state, but to evolve more slowly than wave-pinning (for reasons outlined below). ASDM
polarity is locked, once formed, and does not on its own reverse if the stimulus gradient is reversed.
(See Supplementary Figs. 2, 3.)

3.3 Time to polarize

Some estimates for the conditions for polarization and the temporal behaviour in the distinct models
is obtainable from dimensional considerations, linear stability, and asymptotic analysis. Here, we
concentrate on the specific case of diffusion coefficients relevant to Rho proteins (Da � Db), for a
context in which to compare the models. A comparison in full generality is beyond our scope, since
the essential behaviour of the models is so different.

A preliminary remark is that any model based on Turing instability (such as ASDM) is asso-
ciated with a dispersion relation that describes the growth rate σ(q) of any wavenumber q. At
the Turing bifurcation, a single critical wavenumber qcrit becomes unstable, and its corresponding
growth rate σ(qcrit) just turns positive. A pattern of the form cos(qcritx) then starts to grow. A
tradeoff then exists between tuning parameters to increase the growth rate of this pattern, versus
preventing other wavenumbers from also becoming unstable. If the importance of having a specific
pattern (e.g. a polar one) is strong, then strict limitations occur on how rapidly that pattern can
grow from a small perturbation.

Now consider the conditions for polarization in the WP and ASDM systems. Let representative
reaction rate parameters be γw, γs (units 1/time) in these mechanisms and L be the domain size.
Then, in order for polarization to occur at all, the parameters must fall approximately within the
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following ranges :
√

Db

γw
∼ L Wave-pinning (20)

√

Da

γs
∼ L Substrate Depletion (21)

(No such restriction exists in the LEGI model). The first condition is obtained from asymptotics
and scaling in WP (the details of which will be presented elsewhere); the second is a condition for
Turing instability in the case Da � Db.

Define chemical reaction times, τw,s, and times for diffusion of the substances, τa,b
D by

τw = 1/γw, τs = 1/γs, τa
D = L2/Da, τ b

D = L2/Db.

Then, the above conditions can be rewritten as:

τ b
D ∼ τw Wave-pinning (22)

τa
D ∼ τs Substrate Depletion (23)

In order to work, both mechanisms are predicated on a balance of a diffusion time scale with
a reaction time scale, but note that the diffusive time scale in question are different in the two
mechanisms since τ b

D � τa
D. One implication here is that reaction rates must be rather slow, in

keeping with the slow diffusion of the activator in ASDM, or else no polarization would be possible.
By comparison, the reaction rates in WP could be much faster, as they must only balance the
diffusion rate of the rapidly-diffusing inactive form.

Suppose now that the above conditions are satisfied. Then, the transition times Tw,s to the
polarized state can be expressed approximately as follows:

Tw ∼ L√
γwDa

=
√

τwτa
D Wave-pinning (24)

Ts ∼
1

γs
= τs Substrate Depletion (25)

The first of these is obtained from considerations of the speed of the wave that moves into the
domain in the wave-pinning model. The second estimate is obtained from an approximation for the
largest positive eigenvalue (growth rate of the most unstable mode), close to a Turing instability,
in the case Da � Db.

Thus, in the wave-pinning mechanism, the diffusion coefficient of the inactive form dictates
the possibility of the polarization response, whereas the diffusion coefficient of the active form
determines the speed with which the polarized state is reached. In the substrate depletion model,
the diffusion coefficient of the active form dictates the possibility of polarization whereas the speed of
the polarization response is solely determined by the reaction rate. We describe a related timescale
for LEGI polarization in the Appendix.

From Fig. 2a, we note yet another timescale of importance in the wave-pinning model, and that
is the initial “jump” between the steady states a− and a+. This dynamic is responsible for creating
the large difference in cell edges very rapidly in response to a stimulus applied at one edge. This
time, TResp is also of the order

TResp ∼ 1

γw
= τw, Initial jump, Wave-pinning
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However, as noted above, in wave-pinning, a much faster reaction rate is consistent with polariza-
tion, and consequently this response time is also much faster, as discussed in the comparisons of
Figs. 2 and Supplementary Fig. 2.

For example, for rates of diffusion Da = 0.1,Db = 10µm2s−1 typical of the active and inactive
Rho GTPases, with cell size on the order of L ≈ 10µm, we find the following: reaction times on
the order of one to a few seconds that characterize Rho GTPases, would be consistent with a wave-
pinning mechanism ( τw ≈ τ b

D ≈ 1 − 10s). However the substrate-depletion mechanism requires
that reaction times be on the order of τs ≈ τa

D ≈ 1000s, likely too slow to be consistent with Rho
GTPase kinetics.

Furthermore, if we compare the time to complete polarization in the two mechanisms, we find
that Tw ≈

√

τwτa
D ≈

√
1 · 1000 ≈ 30s for wave pinning. By comparison, the time to polarization in

the substrate depletion mechanism (Ts ≈ τs) would be on the order of some hundreds to thousand
seconds (about 20 min), which is slower than seen experimentally. As mentioned above, the wave-
pinning mechanism has an even faster response when we consider the fact that an initial jump
already defines a clear polarity even before the final polarized state is attained. This occurs on a
timescale of τw, i.e. within a few seconds. There is no comparable “fast” response in the substrate-
depletion model. (Compare also Fig. 2 in the text with Fig. 3 in the Supplementary Material for
simulations illustrating the same conclusions.) These rough estimates illustrate the distinctions
between the mechanisms and suggest that the wave-pinning mechanism may be inherently better
for polarizing a cell rapidly.

4 Discussion

In this paper, we have used simplification to reach a better understanding of phenomena that we
previously observed in more detailed models containing a larger parameter set. By reducing those
models to the minimal plausible scenario, we have explained how a single pair of proteins in active
and inactive forms, cycling between plasma membrane and cytosol, together with conservation
and cooperative positive feedback could suffice to provide a basic cellular polarization mechanism.
Part of this analysis points to the functional importance of such membrane-cytosol exchange and
its role in separating the rates of diffusion of the intermediates. Candidates for proteins that
have such features are the Rho-GTPases with their GEF-mediated activation and GAP-mediated
inactivation. Cytosolic Rho-GTPases, the inactive forms, diffuse up to two orders of magnitude
faster than the active membrane-bound forms. Thus, the inactive forms inherently act as “global
information carriers”. Unlike some models for cell polarity with global or long-ranged inhibition,
our model is based on a depletion mechanism, but one in which simple interconversion guarantees
a conservation principle.

One of the contributions of our investigation is the proposal that not only pattern forming
mechanisms, but also wave-propagation based aspects of reaction-diffusion systems, and specifically
the freezing and pinning of those waves, can lead to cell polarity (See also (63) for a recent wave-
based cell motility model.) A second contribution is the explicit formulation of the necessary
qualitative properties that the reaction term f(a, b) must satisfy for the wave-pinning mechanism
to work. Given that reaction diffusion equations can exhibit a wide range of phenomena depending
on the choice of reaction term, it is difficult to judge how general or applicable are behaviours of
specific examples (such as those in (21)) without this type of qualitative characterization.

Our model captures a number of essential properties of cellular polarization. First, a “model
cell” responds to a variety of stimuli by spatially amplifying the stimulus, and attaining a polarized
state. This occurs for both localized as well as graded signals (Figs 2(a-b)). Second, the polarization
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is maintained even after the signal is removed. Third, the cell remains sensitive to further stimuli,
and reverses its polarity in response to a sufficiently strong second signal of opposite orientation
(Figs 2(c)). Finally, the model cell polarizes in response to spatially random (“noisy”) signals under
some circumstances (Fig 2(d)). Such behavior characterizes the responses of numerous cell types,
from Dictyostelium discoideum to neutrophils.

Several types of experimental findings lend support to application of this model to Rho GTPases.
Some biochemical evidence of a positive feedback loop in Cdc42 activation (64) supports the Hill
function term in our kinetics in Eq. 3. Other evidence points to phosphorylation of RhoGDI as
a possible mechanism to control which proportion of Rho GTPase is in the active form (65, 66).
In yeast, the cycling of Cdc42 between its GTP and GDP bound states is known to be crucial for
polarization (67). Furthermore, other proteins signalling to Cdc42 such as Rsr1p (Bud1p) can exist
in both membrane-bound and cytosolic fractions, and deletion of these proteins leads to a travelling
patch of active Cdc42 rather than a stable cap formation (53).

The model suggests a number of experimental tests that could be used to check its validity.
For example, we predict that incremental overexpression of the Rho protein in the cell would
incrementally shift the position of the transition zone. Beyond some level, further overexpression
should abolish cellular polarity altogether, as the total amount of protein in all forms no longer
satisfies the condition required for wave-pinning inside the domain.

The basic polarity module described here (or variants with the same qualitative structure) could
be embedded in larger pathway structures, with feedbacks that fine-tune, modulate, and adapt the
response to the given cell type, conditions, and stimuli. Crosstalk of Rho GTPases (Cdc42, Rac,
and Rho) occurs in neutrophils and other cell types (6, 68). These have been explored elsewhere and
shown to give rise to spatial polarization and mutual exclusion between Cdc42/Rac and Rho both
in one (20, 21) and two (19) spatial dimensions. Other pathways could account for stochasticity
of the response, periodic formation of pseudopods, or a spatially uniform rise of signal and return
to rest (adaptation) in response to a uniform signal observed in Dictyostelium (8). Additional
pathways or crosstalk can also help to hone sensitivity to small gradients (17, 20) or to accelerate
the resolution of multiple peak patterns into a single front (46).

Other models have been proposed to explain cell polarization and chemotactic gradient sensing,
some of which we briefly compared in a previous section. Many models are based on a diffusive
Turing-type instability or on local excitation global inhibition (LEGI) mechanisms (2, 25–27). The
identity of the inhibitor is still controversial in such models. The work of (43) includes some models
with depletion of components, but is otherwise directed towards other aims. Some models share
similar elements with ours. For example, in (4), directional sensing also depends on a membrane-
bound and a cytosolic species (e.g. α and β−γ subunits of a heterotrimeric G protein), but these are
not conserved: they are both produced at equal rates. A switch-like response to external gradients
is also discussed. In (53), a similar behaviour is obtained in polar coordinates (i.e. along the
perimeter of yeast cell), with related kinetic terms, but without characterization of the mechanism
of wave-pinning. Our own previous work (19, 20) demonstrated the phenomenon of wave-pinning
in systems of Rho GTPases, but the greater complexity of the six-PDE version discussed there
(with crosstalk between Cdc42, Rac, and Rho) was much less transparent mathematically.

A recent model of (21) is probably the closest to our system in its overall formulation. The
authors also identify Rho GTPases, and global conservation of active and inactive forms as im-
portant for cell polarization. Their model is also built on a system such as Eqs. 5, but notably,
with different type of term for the reaction rate, f(a, b). The authors used two specific reaction
terms for which explicit computations could be carried out. Neither of these choices satisfy the
conditions for bistability and wave-pining. Rather, the cell polarization mechanism proposed in
(21) is based on a Turing-type diffusive instability. Their homogeneous state becomes unstable to
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arbitrarily small perturbations, unlike our own system where conditions for Turing instability are
not satisfied. In our hypothesis about the type of reaction term (given by Eq. 3, or 13, or other
variants with similar qualitative properties), polarization results from front-propagating behavior
of the bistable reaction diffusion system.

Unlike mechanisms based on a Turing instability, the homogeneous state is linearly stable (i.e.,
stable to very small perturbations) in our model. It requires a stimulus of finite, possibly small6,
amplitude to polarize the cell (Supplementary Fig. 3). We argue that this property is beneficial,
as it allows for stability of a resting (unpolarized) cell to arbitrarily small noise. The difference
in these mechanisms is reflected in the requirement on the diffusivities. In (21), the authors only
require Da < Db whereas we require that Db be much larger than Da, a requirement satisfied by
Rho proteins. In comparing our model to two competing models, LEGI and ASDM, we have shown
that predictions of these differ in numerous aspects. A single LEGI module is a graded readout of
signal that does not remember a stimulus once it is removed, but this facilitates a sensitivity to new
stimuli. The ASDM model can polarize in response to the smallest spatial noise but its generated
pattern is subject to locking; also, the requirement of a polar pattern (rather than one with two or
more activator peaks) can make its response inherently slower that of the wave-pinning mechanism.
Both LEGI and ASDM models can produce a panoply of realistic behaviour when embedded in
larger systems that modify or complement their basic behaviour (47, 52). Our model too, becomes
more complex, capable of more subtle responses, and more realistic when embedded in a larger
system that specifically describes Rho protein and phosphoinositide feedbacks (19, 20, 46).

The mechanism may prove to have greater implications in cell biology: any bistable kinetics,
together with reduced mobility of one of two interchangeable states (e.g. due to binding to the
cytoskeleton, membrane, or other cellular structures) could, in principle, lead to similar phenomena.
It would be of interest to explore other pairs of interconvertible biochemical agents that share the
characteristics here specified. (Par proteins and assymetric division in the C. elegans embryo may
be one example; A. T. Dawes, personal communication.) Bistability in protein-kinase cascades has
been noted as a mechanism for promoting waves that allow rapid long-range signalling across cells
(see, e.g. (29)). Here we showed that bistability also leads to stable fronts, and subdivision of the
cell into multiple domains.

Aside from application of our model to cell biology, several mathematical implications merit
discussion. Many reaction-diffusion systems with bistable reaction terms admit travelling wave
solutions (49). Waves can be stopped by specific parameter values consistent with a Maxwell
condition (analogous to Eq. 11), but zero velocity fronts are generally structurally unstable, and
do not persist if parameters in the model are perturbed slightly. In our coupled bistable RD
equations, wave-pinning occurs within a range of parameter values. Within that parameter range,
an appropriate input can lead to formation of a moving front that decelerates as it propagates, and
that freezes at some predictable position; the location of that frozen front depends on parameters
and on the total amount of material, i.e. on the initial configuration. We have also shown that such
solutions coexist with stable spatially uniform steady states: the same range of parameter values
is consistent with both uniform and stationary front asymptotic solutions. Similar RD systems on
an infinite domain (69), or without conservation (70, 71) miss this phenomenon.

Our model is closely related to the globally constrained Allen Cahn equations consisting of one
reaction diffusion equation with a global integral constraint (72–74). These equations are used to
model phase separation, and support structurally stable zero velocity front solutions. Our wave-
pinning argument above rested upon the reduction of our reaction diffusion system Eqs. 5 to a single
equation where the equation for the inactive form b(x) was reduced to an integral constraint. For

6depending on parameters
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this reason, the two models seem to show qualitatively similar behavior under certain circumstances.
While related, the full mechanisms are, nevertheless distinct. For example, the globally constrained
Allen Cahn model does not support a stable homogeneous solution, unlike the model we discussed
here.

In some of our numerical experiments (not shown), multiple peaks persisted for certain random
initial data. We conjecture that these multiple peaks are metastable and that they eventually merge
to form a single peak on a very long time scale. This prediction stems from the corresponding
behavior of the globally constrained Allen Cahn model. A two dimensional generalization of the
above model is expected to exhibit behavior analogous to that of the one dimensional model. In
the initial phase, we expect to see expanding “islands” of the active form. This expansion will
eventually come to a halt, corresponding to the phenomenon of wave-pinning explained in this
paper. After this initial phase, the fronts will evolve to decrease mean curvature and the patches of
the active forms will eventually merge to form a single patch. The predicted slow dynamics in this
latter phase is analogous to that of the two-dimensional globally constrained Allen Cahn model.
In two-dimensional exploratory simulations by Marée (personal communication), there is evidence
to suggest that such is indeed the case. A more faithful physical model will be to have the active
form diffuse on a 2D membrane and the inactive form diffuse in a 3D cytosol. We believe that such
a model will also exhibit similar wave-pinning behavior, but this is yet to be confirmed. This and
other mathematical issues will be dealt with in detail in future work.

Despite our belief that multiple peak solutions are metastable, the time scale on which they
merge to form a single peak is too large to be biophysically relevant. If our mechanism is indeed an
ingredient of the cell polarization machinery, the cell must possess other mechanisms to more quickly
dissipate multiple peaks. Computational experiments with models that take into account the more
detailed biochemical kinetics exhibit more rapid merging of multiple peaks, in line with biological
observations. The key component here seems to be the presence of phosphoinositide pathways (46).
We plan to clarify the precise role of this pathway in the context of the wave-pinning mechanism
in a future study.
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A Appendix

A.1 Wave-pinning Model

To run the simulations of the wave-pinning model (Eqs. 5,3), we used parameter values described in
the text. Time is in units of seconds. Concentration would typically be in some units of (quantity
of molecules/length). We selected b = 2.0. The equation f(a, b) = 0 is then solved for a, yielding
three values. The lowest of these, a−(b) = 0.2683312, corresponds to the basal (low activation) rest
state of the cell. Henceforth, for (a-c), we used the initial conditions a = 0.2683312, b = 2.0. This
means that the total amount of material, C = 10(a+ b) = 22.6833 is fixed and constant for all runs
in Figure 2a-c.

A.2 Stimuli repertoire

The following set of stimuli were used to generate Figure 2 and comparable figures:

(a) Transient localized stimulus: We stimulated 10% of the domain, using

kloc
S =

{

s(t)(1 + cos πx), 0 ≤ x ≤ 1,

0 otherwise.

where the time dependence was as follows:

s(t) =















S
2 0 ≤ t ≤ t1,
S
4 (1 + cos

(

π (t−t1)
(t2−t1)

)

, t1 ≤ t ≤ t2,

0, otherwise.

S = 0.05, t1 = 20, t2 = 25 were used.

(b) Transient graded stimulus:

kgrad
S = s(t)(10 − x), 0 ≤ x ≤ 10,

where

s(t) =















S, 0 ≤ t ≤ t1,

S
(

1 − t−t1
t2−t1

)

, t1 ≤ t ≤ t2,

0, otherwise.

(26)

S = 0.07, t1 = 20, t2 = 25 were used.

(c) Reversal of graded stimulus: We applied same stimulus kgrad
S as in (b) followed by

kgrad
S = s(t)x, 0 ≤ x ≤ 10

where

s(t) =















S, 200 ≤ t ≤ t1,

S
(

1 − t−t1
t2−t1

)

, t1 ≤ t ≤ t2,

0, otherwise.

(27)

S = 0.07, t1 = 120, t2 = 125 were used.

17



(d) Random initial conditions:

Here kS ≡ 0. We used nonuniform initial conditions of the form a(x, 0) = a−(b0) · 2R,
b(x, 0) = b0 so that the noise has zero mean about the homogeneous steady state. The
parameter values a−(b0) = 0.2683312, b0 = 2.0, together with a uniformly distributed random
number R = UNIF (0, 1) lead to some outcomes with polarization (as in Fig. 2d), some with
long-lived multiple peaks, and some with decay back to homogenous distribution.

A.3 Simulations for Fig. 4

For Figure 4 we numerically solved the nondimensionalized system

ε
∂a

∂t
= ε2 ∂2a

∂x2
+ f(a, b), (28a)

ε
∂b

∂t
= D

∂2b

∂x2
− f(a, b). (28b)

with f(a, b) = a(0.8− a)(a− 0.8− b) and ε = 0.01,D = 0.1. The system is initialized with b(0) = 1
at the high steady state (a(0) = 1.8) on 0 < x < 1/2, and to the low steady state (a(0) = 0) on
1/2 < x < 1. It is integrated for 10 non-dimensional time units. Note that using typical parameter
values for Rho GTPase (L = 10µm, Da = 0.1,Db = 10µ2s−1, γ = 1 s−1) we obtain the small
dimensionless quantity, ε =

√

Da/(γL2) = 0.03, and D = Db/(γL2) = 0.1.
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Figure Legends

Figure 1

(a) A schematic diagram of the membrane translocation cycle of a typical Rho family GTPase
and its approximation by the A−B reaction-diffusion system. The inactive cytosolic form diffuses
much faster than the active membrane-bound form and is approximately uniformly distributed.
(b) Schematic diagram, showing the assumed 1D spatial geometry of the cell in a side view. The
axis 0 < x < L represents a cell diameter (length L ≈ 10µm) with no-flux boundary conditions.
Membrane thickness is exaggerated for visibility. Active/inactive Rho proteins are represented by
solid/open disks, and assumed to diffuse along the axis of the cell in both membrane and cytosol.
Polarization corresponds to concentration of the active form in the membrane at the nascent cell
front. Typical profiles of active (a) and inactive (b) proteins, and the position of the sharp front,
xf , is shown in the lower panel.

Figure 2

Wave-pinning: Polarization behaviour in response to four distinct stimuli and/or initial conditions
computed numerically for the model system given by Eqs. 5 with the reaction term of Eq. 3 and
parameter values given in the text. Initial conditions (lowest line/curve), transient (t = 20s), and
asymptotic behaviour (t = 200s) are shown by solid lines. The final position of the wavefront (at
t = 200) does not depend on the stimuli (dotted lines), but only on the total amount of material,
which is the same in all cases. Detailed forms of stimuli are given in the Appendix. (a) A localized
stimulus kloc

S , of amplitude of 0.05 (enlarged for clarity) is applied at t = 0 for 20s. (b) A graded

stimulus of amplitude 0.01, kgrad
S is applied at t = 0 for 20s. (c) As in (b), but a graded stimulus

of amplitude 0.02 for 20s at t = 0 is followed, at t = 200, by a similar graded stimulus of reverse
orientation for 20s (kresp

S ). The first stimulus defines one polarization (at t = 200), but the second
stimulus causes the system to reverse polarity (curve labeled t = 400). (d) Large amplitude noise,
superimposed on the homogeneous initial conditions, with no additional stimulus (see Appendix)
also leads to polarization.

Figure 3

A diagram schematically explaining wave-pinning behavior. The left column plots the concentra-
tions of a and b versus position x whereas the right column plots the reaction terms (LHS and RHS
of Eq. 4) as functions of a. At the beginning, the value of the integral I(b) (numerator of Eq. 10
and difference of shaded areas) is positive, and the wave front moves to the right (top figure). As
the wave front sweeps across the domain, b and hence I(b) decreases, and the wave decelerates
(middle). The wave eventually comes to a halt when shaded areas are equal (I(b) = 0, bottom).

Figure 4

Initial conditions a(0), b(0) and eventual solutions a(10), b(10) to a nondimensionalized variant of
Eqs. 5 with the cubic kinetics function of Eq. 13 are shown in (a) for asymptotically large Da/Db.
The evolution of the steepest point xf through time and the solution of Eq. 17 is shown in (b). See
Appendix for further details.
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