
J. Math. Biol. (1999) 38: 534}570

A non-local model for a swarm

Alexander Mogilner1, Leah Edelstein-Keshet2

1Department of Mathematics, University of California, Davis, CA 95616, USA.
e-mail: mogilner@math.ucdavis.edu
2Department of Mathematics, University of British Columbia, Vancouver, BC,
Canada V6T 1Z2. e-mail: keshet@math.ubc.ca

Received: 17 September 1997 /Revised version: 17 March 1998

Abstract. This paper describes continuum models for swarming be-
havior based on non-local interactions. The interactions are assumed
to in#uence the velocity of the organisms. The model consists of
integro-di!erential advection-di!usion equations, with convolution
terms that describe long range attraction and repulsion. We "nd that if
density dependence in the repulsion term is of a higher order than in
the attraction term, then the swarm pro"le is realistic: i.e. the swarm
has a constant interior density, with sharp edges, as observed in
biological examples. This is our main result. Linear stability analysis,
singular perturbation theory, and numerical experiments reveal that
weak, density-independent di!usion leads to disintegration of the
swarm, but only on an exponentially large time scale. When density
dependence is put into the di!usion term, we "nd that true, locally
stable traveling band solutions occur. We further explore the e!ects of
local and non-local density dependent drift and unequal ranges of
attraction and repulsion. We compare our results with results of some
local models, and "nd that such models cannot account for cohesive,
"nite swarms with realistic density pro"les.

Key words: Swarming behavior } Aggregation } Non-local inter-
actions } Integro-di!erential equations } Traveling band solutions

1. Introduction

Partial di!erential equations with di!usive terms are traditionally used
to describe spatially distributed populations (Skellam, 1951; Fisher,



1937; Okubo, 1980; Murray, 1989). However, while many of the tradi-
tional models can describe phenomena such as invasions, represented
by traveling wave solutions (Fisher, 1937; Dunbar, 1983; Conley and
Fife, 1982; van den Bosch et al., 1988; Ludwig et al., 1979), none can
give rise to realistic representations of a "nite group of individuals
migrating together (e.g. a swarm or #ock). This phenomenon must be
described mathematically by a traveling band solution since the density
tends to zero both in front of, and behind the swarm. The di$culties of
constructing biologically meaningful partial di!erential equation (PDE)
models with this behavior were described lucidly in a pedagogical
exposition by Odell (1980). A recent paper describes several attempts
to model locust swarm migration (Edelstein-Keshet et al., 1997) based
on biologically reasonable hypotheses. The conclusions are mostly
negative, pointing to the di$culties of describing a cohesive, compact
swarm with traditional models. However, recognition of this fact is
underrepresented in classical texts (Murray, 1989; Okubo, 1980; Con-
ley and Fife, 1982). Further, recent work which claims to describe
properties of herd migration (Gueron and Liron, 1989) is based on
assumptions which are di$cult to justify biologically. Several surveys
give an overview of the models for aggregations (Grunbaum and
Okubo, 1994; Parrish and Hammer, 1997; Okubo, 1986; Okubo, 1980;
Turchin, 1997).

Though PDE models are popular due to a rich mathematical
experience (Holmes et al., 1994), they are at best an approximation.
A recent interest in models that include non-local e!ects has led to the
investigation of integro-di4erential equation models. These can describe
interactions at a distance, e.g. due to vision, hearing, and other senses.
Some examples of such models have appeared in the literature
(Kawasaki, 1978; Cohen and Murray, 1981; Levin and Segel, 1985;
Murray, 1989; Mogilner and Edelstein-Keshet, 1996; Lui, 1983; Cree-
gan and Lui, 1984; Mimura and Yamaguti, 1982; Nagai and Ikeda,
1991; Turchin, 1986; Edelstein-Keshet et al., 1997). See also Grunbaum
and Okubo (1994) and Flierl et al. (1998) for reviews. There are several
recent examples of models with nonlocal e!ects in the speed of motion
of organisms (Grindrod, 1998; Mogilner and Gueron, 1998; Edelstein-
Keshet et al., 1997). Numerous recent publications include nonlocal
e!ects in the production terms, e.g. birth of new individuals at a dis-
tance from the parent organisms, as in the case of seed dispersal (Kot
et al., 1996; Lewis, 1997, Allen et al., 1996, Lefever and Lejeune, 1997;
Boldrini et al., 1997).

In this paper, we consider an integro-di!erential equation model
that is simple enough to be treated analytically. The model captures
the idea of attraction-repulsion interactions between organisms. We
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show that the notion of a globally stable true traveling band solution is
still abstract, rather than biologically realistic, but that nearly band-like
solutions can be found in such models. We investigate the e!ects of
various terms in such a model, and show how certain terms, acting
together, can improve the cohesion of traveling bands, though none
can actually prevent the loss of straying individuals. We show that if
the random motility of the organisms vanishes at very low swarm
density, then locally stable traveling band solutions can exist.

The philosophy of the model here follows that of Novick and Segel
(1984) where requirements for strict traveling bands were replaced
by weaker conditions that led to quasi-traveling band solutions, i.e.
solutions that change shape very gradually. They showed that their
chemotactic system was characterized by two distinct time scales, a fast
and a slow one. Motion occurs on the fast time scale, while changes in
shape occur on the slow time scale. This accounts for the motion of the
swarm, without the need for unrealistic assumptions.

2. Background summary of integro-di4erential population models

In the traditional population models (Murray, 1989; Okubo, 1980;
Holmes et al., 1994), a single-species, spatially distributed population is
described by an equation of the form:

Lf
Lt
"

L
Lx AD( f )

Lf
LxB!

L
Lx

(<( f ) f )#B( f ). (1)

This di4usion-advection-reaction equation governs the spatio-temporal
dynamics of the population density f (x, t), where the spatial variable, x,
is, in this case, one-dimensional.

The "rst term on the right hand side of Eq. (1) describes random
motion. D ( f ) is the corresponding di!usion coe$cient. The second
term is advection with velocity <( f ), and the third term is growth (or
decay) of the population with rate B ( f ). These rates of di!usion,
advection and growth may be density dependent. A derivation of the
detailed di!usion and advection terms based on individual behavior
(such as jumps and turns) is described in a number of papers (Alt, 1980;
Othmer et al., 1988; Grunbaum, 1984). We will not consider these
precise biological details here, since our aim is to understand how
non-local terms operate together. This problem is challenging math-
ematically, and it is premature to formulate it with the detailed biology
in place.
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In Fisher:s equation (Fisher, 1973; Murray, 1989; Conley and Fife,
1982), and related models it is the logistic population birth terms,
B( f )"f (1!f ), that essentially prescribe the traveling wave behavior
of the solution. However, in models which describe motion on a short
time scale (that is, short with respect to the generation time of the
organism) the terms for birth and death can be neglected, i.e. B( f )"0.
In this paper, we will not consider growth terms, and focus exclusively
on non-linear and non-local transport properties of the population.

Density dependence in the di!usion coe$cient (Bertsch et al.,
1985; Bertsch et al., 1984) means that the random motility changes in
response to the density. For example, it is known that the random
tumbling of certain types of bacterial cells (Odell, 1980; Sherratt, 1994)
is density dependent. Density dependence in the advection term means
that the velocity of the organism is adjusted to the local population
density. This is observed in myxobacterial swarms where the swarming
rates are increasing functions of the density of the swarm (Kaiser and
Crosby, 1983). In general, the advection velocity and di!usion coe$-
cient may also depend on local density gradients. Biologically, such
factors lead to local aggregation (attraction) or dispersal (repulsion) of
the organisms.

Though there are many speculations and experimental observa-
tions, it appears that a quantitative framework for understanding
swarming behavior is still lacking. In the recent review, Parrish (1997)
summarizes the situation: &&Order is seen, but it is not immediately
obvious how to quantify it''. Experimental work is challenging, and
models can provide a tool for solving the inverse problem, namely, of
identifying which of various possible sets of individual interactions
might be consistent with the observed patterns of population behavior.
For example, one common observation is that the density of the
interior of a swarm is relatively constant and uniform, independent of
the total swarm size. Another observation is that the edges are abrupt.
Models with di!usion as the only dispersive e!ect cannot explain such
observations because the density in the core of a swarm is predicted to
grow with the number of organisms. Models with active repulsion
between organisms can correct this defect, as we will show.

Several biological papers describe properties of "sh schools (Keen-
leyside, 1995; Breder, 1954; Ranta et al., 1992) and bird #ocks (Miller
and Stephen, 1966; Conder, 1949; Emlen, 1952). For example, Keenley-
side (1995) measured the deviation of groups of sticklebacks and rudd
from a uniform distribution and noted that larger groups of "sh attract
a single individual more strongly than smaller groups (Keenleyside,
1995; Krause and Tegeder 1994; Tegeder and Krause 1995; Breder,
1954; Nakamura, 1952). The idea that individuals seek some uniform

A non-local model for a swarm 537



density } or distribute themselves with a nearly constant individual
distance between them is a common observation (Conder, 1949; Emlen,
1952; Miller and Stephen, 1966). For example, gulls space themselves
roughly one body length apart (Emlen, 1952) whereas tufted ducks
prefer 2-3 body lengths spacing (Conder, 1949). Sandhill cranes main-
tain an individual distance of about 5.8 ft, regardless of #ock size
(Miller and Stephen, 1966). Many of the biological papers recognize
that the spacing or density of the group stems from opposing forces of
attraction and repulsion (Emlen, 1952; Breder, 1954; Miller and
Stephen, 1966) and some further emphasize that these forces vary with
distance between the organisms and stem from distinct sensory mecha-
nisms (Breder, 1954; Krause and Tegeder 1994; Tegeder and Krause
1995). Short range repulsion to avoid overcrowding and collisions and
long range attraction to keep the group together are discussed by
Breder (1954). Some theoretical work on the types of attraction and
repulsion functions and the implications of behavior-distance relation-
ships to spatial patterns is given by Warburton and Lazarus (1991)
using individual-based simulations.

In this paper, we investigate a type of non-local advection, leaving
the dispersal term in a more traditional local form. Convection terms
lead to attraction, repulsion, and macroscopic motion. When we use
a non-local description of the advection of organisms, we are allowing
the speed and direction of motion of an individual to be determined by
some average of the density in its environment. The average may give
more weight to information about individuals that are closer, or those
that are farther away. For example, individuals may avoid direct
contact, i.e. exclude one another from some zone of repulsion, but
be attracted to one another in some larger annulus (Okubo, 1980;
Mogilner and Gueron, 1998). Because biological sensory systems have
some limitations, it is natural to assume that the interactions have
some "nite spatial extent or drop o! rapidly with distance beyond
some range. Typically, terms in the advective velocity have the form of
a convolution (Mogilner and Edelstein-Keshet, 1996), i.e.,

<( f )"K* f"P
R

K(x!x@) f (x@, t) dx@. (2)

This form describes the velocity induced at the site x by the net e!ects
of all individuals at various sites x@. The kernel K(x!x@) associates
a strength of interaction per unit density with the distance x!x@
between any two sites. The interactions take place over some "nite
domain, R. This is a &&minimal'' non-local form which assumes
pair-wise interactions and linear superposition of in#uences in the
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population. This simple form already leads to some qualitatively new
patterns of motion, as we will show.

Many biologically based models have already examined the inter-
action of a species with a natural food or nutrient distribution (Keller
and Odell, 1975; Odell and Keller, 1976; Keller and Segel, 1971; Odell,
1980; Novick-Cohen and Segel, 1984; Nagai and Ikeda, 1991; Gueron
and Liron, 1989) but this is not the main thrust of our paper. Thus, we
consider only one species and deemphasize consumption of resources.

3. Description of the model

Below, we discuss a particular form of the one dimensional advection-
di!usion equation that has been used to model swarming behavior
(Edelstein-Keshet et al., 1997; Kawasaki, 1978; Grunbaum and Okubo,
1994; Mimyura and Yamaguti, 1982; Nagai and Ikeda, 1991; Grindrod,
1998):

Lf
Lt
"

L
Lx AD

Lf
Lx

!<fB . (3)

Here x is a one-dimensional coordinate, t is time, f (x, t) is the swarm
density. For simplicity, we assume that di!usion is density inde-
pendent, with corresponding constant coe$cient D (the consequences
of the density dependent di!usion will be discussed in Sect. 6.4). The
second term describes the drift of organisms with a non-local, density-
dependent velocity <.

Analytically, the existence of solutions to certain non-local versions
of this equation was demonstrated (Grindrod, 1988) and stability analy-
sis of the homogeneous steady state to small perturbations have been
investigated (Kawasaki, 1978; Grindrod, 1988). Singular perturbation
analysis in the limit of weak di!usion demonstrated the existence of
sharp peaks in the distribution of the population density (Mogilner et al.,
1996). Numerical simulations of similar equations have been carried
out in Turchin (1986) and in Edelstein-Keshet et al. (1997).

In our own investigation, the group velocity term is determined at
a given position by a weighted interaction with the neighbors. Though
we will consider the combined e!ects of several non-local terms, we
"rst discuss special cases. It is helpful, when considering the e!ects of
these terms, to visualize a particularly simple swarm shape, consisting
of a rectangular band: i.e. a total number N of individuals distributed
evenly over an interval of length ¸. We can then describe how various
advection terms a!ect the velocities inside the swarm and at its edges.
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3.1. Drift with a strictly even kernel

Consider the situation that

<( f )"A
e
K

e *
f"A

e P x`r

x~r

K
e
(x!x@) f (x@, t) dx@, (4)

where A
e
is a positive constant. We assume that the kernel has compact

support, and that r is the &&sensing radius'' of the organisms. We further
assume that K

e
is a positive, even function (K

e
(x)"K

e
(!x)) on the

interval [!r, r] and zero otherwise, which implies that the organisms
react identically to density in front and behind.

If the rectangular swarm is large enough that an individual inside is
not aware of the swarm edges (i.e. ¸'2r), then inside the swarm,
(where f"F"constant), the velocity would be

<( f )
inside

"A
e P x`r

x~r

K
e
(x!x@) f (x@, t) dx@

"A
e
F P r

~r

K
e
(!x@) dx@"A

e
F.

This follows from normalization of the kernel which ensures that

P r

~r

K
e
(x@) dx@"1.

If the individual is at the front edge of a rectangular pulse swarm
(assumed to be at x"¸ where ¸ is the width of the swarm), then its
velocity would be

<( f )
frontedge

"A
e P L`r

L~r

K
e
(¸!x@) f (x@, t) dx@

"A
e
F P 0

~r

K
e
(!x@) dx@"1

2
A

e
F.

Thus, the drift velocity is slow if there are no others in front. It is
easily shown that the same result occurs at the back edge of a rectangu-
lar band, i.e.

<( f )
backedge

"1
2

A
e
F.

We can conclude that a non-local velocity with an even kernel
gives rise to a group drift (see Fig. 1). This implies that some type of
environmental cues are present so that there is a directionality inherent
in the coordinate system. The speed of the drift is proportional to the
density averaged over distance. Where an organism is completely
surrounded by others, this term has greatest e!ect. Edges of the swarm

540 A. Mogilner, L. Edelstein-Keshet



Fig. 1. The e!ects of an odd kernel (left) and an even kernel (right) on velocities
induced on individuals inside a swarm. The density of the swarm in space is shown here
as a simple rectangular band. Note that the odd kernel causes organisms at the front
and rear edge to move back towards the center of the swarm. The odd kernel has very
little e!ect inside the swarm where the density is constant. By comparison, the even
kernel induces a collective motion of the swarm as a whole. (This implies some external
environmental cues.) The e!ect of the even kernel is greatest inside the swarm.

are associated with lower drift speeds. We will demonstrate that this
averaging of the non-local drift has an important e!ect on the stability
of the swarm. Indeed, in the local case, the speed of individuals behind
the rear edge of the swarm drops sharply to zero. This causes the
swarm to disintegrate, losing individuals from its rear. The non-local
drift leads to a slower and smoother change in the velocity of indi-
viduals close to the swarm. This slows down the disintegration, though
it does not eliminate it completely.

3.2. The ewect of an odd kernel

We now consider the situation in which

<( f )"A
o
K

o *
f,

where K
o
is an odd function on the interval [!r, r], and is zero outside

this interval, and A
o

is a constant. We will assume that K
o
(x)60 at

x'0 and that the following normalization property holds:

P 0

~r

K
o
(x@) dx@"1

2
.

Then, for an individual inside the swarm:

<( f )
inside

"A
o P x`r

x~r

K
o
(x!x@) f (x@, t) dx@

"A
o
F P r

~r

K
o
(!x@) dx@"0.
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This implies that in regions in which the density is uniform (for swarms
larger than r), an odd kernel has no e!ect.

By repeating this calculation at the front and at the back edge of
a rectangular swarm, we "nd that

< ( f )
frontedge

"A
o
F P L

L~r

K
o
(¸!x@) dx@"!1

2
A

o
F,

<( f )
backedge

"1
2

A
o
F.

This shows that an odd kernel has an e4ect where there are uneven
distributions of density, for example at the edges of the swarm (see
Fig. 1). It is also apparent that sign of the velocity changes if the higher
density is in front or in back of a given individual. Thus, odd kernels
can describe the tendency to turn back at the front edge, or to move
faster and catch up at the back edge.

Odd kernels can be used to describe both attractive and repulsive
in#uences. We assume that K

o
(x)60 at x'0. Then A

o
'0 corre-

sponds to attraction (convergence of the organisms to regions of higher
density), and A

o
(0 describes repulsion (divergence from aggregation

sites).

3.3. The model with a combination of drift terms

We now look at a composite model with a combination of terms,
and discuss what happens to the density distribution under various
scenarios. We take, for the model, equation (3) together with the
velocity,

<( f )"a
e
f#(A

a
!A

r
f ) (K

o *
f ). (5)

In equation (5), the coe$cients represent attraction (A
a
'0), repulsion

(A
r
'0), and local (a

e
) terms in the density-dependent motion. The

aggregation kernel K
o
is an odd function with compact support, whose

detailed structure will be explained below. Note that the dimensions
of the parameters are: [a

e
], [A

a
]"velocity/density, [A

r
]"velocity/

density2. If the local density is F"A
a
/A

r
then attraction and repulsion

exactly balance and the non-local terms vanish in this expression.
The character of the non-linearity in the model deserves special

attention. Di!usion is taken to be density independent (but see later
remarks). The even drift term and the attraction term are proportional
to density. This means that beyond some critical density, aggregation
would dominate over dispersal, and there would be unidirectional
motion of the group. We use a simple local drift term for the analysis,
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and investigate a non-local term in numerical studies (Sect 8.2). Repul-
sion is more non-linear, i.e. proportional to a product of a non-local
factor and the local density. This means that when the local density is
low, there is almost no repulsion, and when it is high, the repulsion is
much greater than the attraction. These non-linearities lead to cohe-
sion of the swarm. Further, they prevent blow-up or degeneracy such
as collapse of the swarm into an unrealistic highly localized and dense
group, when there are many individuals present (Edelstein-Keshet
et al., 1997; Mogilner et al. 1996).

The speci"c form of the repulsion term allows for tractability of
analysis of this model. One might in general expect some non-linear
convolution terms in realistic models, but their analysis is prohibitively
complicated. We believe that the results with this simpli"ed version are
generic in some sense, and we are currently exploring several generali-
zations in the context of individual based models.

4. Onset of aggregation

In this section, we explore the onset of aggregation in the swarm. We
consider the case in which the attraction and repulsion have di!erent
spatial ranges that is biologically realistic:

< ( f )"a
e
f#A

a
(K

a *
f )!A

r
f (K

r *
f ), (6)

where

K
a
(x)"!

x
2a2

exp (!x2/2a2), K
r
(x)"!

x
2r2

exp (!x2/2r2), (7)

are, respectively, the normalized attraction and repulsion kernels.
Biological evidence suggests that for interactions between swarm
members, repulsion has a shorter range than the attraction, so that
r(a.

Consider the stability of a homogeneous distribution of organisms,
F, to a small perturbation of the form

f (x, t)"F#e(x, t),

such that De(x, t)D;F. Plugging this form into the equations of the
model (equations (6) and (3)) and keeping only terms linear in e, we "nd
the following equation:

Le
Lt

"D
L2e
Lx2

!

L
Lx

(2a
e
Fe#A

a
[F(K

a *
e)#e(K

a *F)]

!A
r
[F2(K

r *
e)#2Fe(K

r *
F)]).
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Because both kernels are odd and F is constant, terms containing
convolutions (K

a, r *
F) cancel, and we have:

Le
Lt

"D
L2e
Lx2

!

L
Lx

(2a
e
Fe#A

a
F(K

a *
e)!A

r
F2(K

r *
e)). (8)

We look for perturbations of the form e (x, t)\exp(jt) exp(iqx). Plug-
ging this perturbation into (8) we obtain the linear growth rate j(q)
associated with the wavenumber q:

j(q)"!Dq2!2iqa
e
F!iqA

a
FK]

a
(q)#iqA

r
F2K]

r
(q), (9)

where K]
a
(q) and K]

r
(q) are the Fourier transforms of the kernels, which

are:
K]

a
(q)"iqa exp(!q2a2/2), K]

r
(q)"iqr exp(!q2r2/2). (10)

Substituting these forms into the growth rate (9), we "nd that the real
part of the growth rate (which is responsible for the growth rate of the
perturbations) is:

Re(j(q))"q2 (F[A
a
a exp(!q2a2/2)!A

r
rF exp(!q2r2/2)]!D). (11)

Perturbations will grow when Re(j(q))'0. We note that at q"0,
Re(j)"0. This implies that a homogeneous distribution is neutrally
stable to homogeneous perturbations because of conservation of the
total size of the population. We can investigate the sign of the above
expression for Re(j) by looking for critical points of the expression

/ (q)"(F[A
a
a exp(!q2a2/2)!A

r
rF exp(!q2r2/2)]!D). (12)

We "nd that d//dq"0 whenever q"0 or

A
a
a3 exp(!q2a2/2)"A

r
Fr3 exp(!q2r2/2). (13)

This latter condition is equivalent to

q2"2
(ln(A

a
a3)!ln(A

r
Fr3))

a2!r2
. (14)

This implies that a critical point of / can occur at some "nite real
value of q in one of two possible cases: Case (1) r(a and A

r
F(A

a
,

which is biologically realistic. (In this case, these critical points are
minima, and do not lead to growth, since j is negative.) Case (2) r'a
and A

r
F'A

a
which corresponds to a local maximum, and which

results in positive j and instability. A maximum of the linear growth
rate in Case (2) corresponds to some "nite wavenumber q, implying
emergence of a periodic pattern (see Fig. 2). The fact that such periodi-
city is rarely if ever seen in swarms, stems from the fact that repulsion is
usually much more localized than attraction in organism interactions.
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Fig. 2. Plots of the growth rate j (vertical axis) as a function of the wavenumber
q (horizontal axis) for two values of the di!usion D. Parameter values used were:
Case (1): a"10, r"1, A

a
"5, A

r
"1, F"1, D"10; Case (2): a"1, r"10, A

a
"1,

A
r
"5, F"1, D"0.6.

(Note that the opposite balance of positive and negative e!ects occurs
in chemical systems in which long-range inhibition and short-range
activation gives rise to Turing-like instabilities.)

In the biologically realistic case, instability can occur only in
a small range of values of wave numbers close to the origin provided
that the di!usion coe$cient, D, is small enough (see Fig. 2). This type of
instability represents the onset of aggregation and formation of the
swarm (Gross and Hohenberg, 1993).
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In this case, considering small values of q leads to

Rej(q)+((A
a
a!A

r
rF) F!D) q2.

Let us analyze the simplest case a"r. Instability now depends on the
sign of the expression:

s"!A
r
F2#A

a
F!D/r.

When s is positive, Re(j)'0 implying instability and aggregation.
Viewed as a function of F (the density of the homogeneous distribu-
tion), this equation describes a parabola opening down, so that positive
s can occur only if the value of s

.!9
at its vertex (which occurs at

F"A
a
/2A

r
) is positive. From this observation we note the following:

First, instability occurs only for some range of densities which are
neither too low nor too high. Second, the most unstable density is one
half the level at which attraction and repulsion just balance. Further,
the condition that s

.!9
'0 leads to the inequality

2
D
r
(

A2
a

A
r

.

This inequality can be interpreted as a comparison of two speeds: the
average speed of di!usion (2D/r) through one interaction distance and
the average attraction speed induced on an organism by a density
A

a
/A

r
.

The instability corresponding to long wave-length perturbations
occurs either if the di!usion is low, or if attraction is high. If repulsion
or di!usion are strong and/or attraction is weak, then the organisms
do not aggregate.

5. Swarm shape and propagation

In what follows, we consider a rectangular pulse ansatz solution of the
equation

Lf
Lt
"

L
Lx AD ( f )

Lf
LxB!

L
Lx

((a
e
f#(A

a
!A

r
f ) (K

o *
f )) f ), (15)

where the piecewise constant kernel:

K
o
(x)"G

!(1/2r)sign(x), !r6x6r
0, DxD'r,

(16)

will be used to compute approximate swarm shapes. For distances
smaller than r, the interactions are constant. Beyond r, there are no
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interactions. Note that the density dependence is still distinct for the
attraction and the repulsion, but that both have the same spatial range.

We investigate the stability of the ansatz solution, and perform an
asymptotic analysis of the slowly decaying traveling wave. In the case
of density-dependent di!usion, we will obtain a locally stable traveling
band solution. After that, we look at certain perturbations including
the e!ect of even nonlocal terms and more realistic kernels and specu-
late on the general case. Finally, we support these analyses with
numerical studies.

In the limiting case in which the di!usion is absent, D"0, we
postulate that there exists a solution of equations (15) with kernel (16)
of the form:

f (z)"FH
L
(z), (17)

where z"(x!t<
drift

) is the traveling wave coordinate and H
L
(x) is

a rectangular pulse:

H
L
(x)"G

0, x(0

1, 06x6¸

0, x'¸.

(18)

In order for this pulse to be a solution, its amplitude, F must be
given by

F"

A
a

A
r

, (19)

i.e. the density inside the swarm is such that the repulsion and attrac-
tion are equal. The speed of the pulse, <

drift
, has to be

<
drift

"a
e
F"a

e

A
a

A
r

, (20)

and the width of the swarm is ¸"N/F.
This solution corresponds to a swarm of constant density, F, with

velocity<
drift

to the right (arbitrarily picked here as the axis favored for
motion } biologically, this would depend on environmental cues). The
fact that our ansatz is a solution is shown in Appendix I.

In this solution, the density of the swarm is de"ned by a balance of
attraction and repulsion: the greater the attraction (and/or the smaller
the repulsion) the higher the density of the swarm, and the smaller its
size for a given total number of organisms. This is observed biolo-
gically: increasing the total number of organisms in the group tends to
increase the width of the swarm, but the density at the core is usually
not a!ected strongly (Okubo, 1980; Parrish et al., 1997; Miller and
Stephen, 1966).
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6. Stability of the edges of the swarm

Consider the situation when density independent di!usion is very
small, but non-zero. Then we use singular perturbation theory to
investigate a nearly rectangular swarm pro"le. From now on, we will
be working in a coordinate system moving with the swarm. This means
that any individual motion is superimposed on a constant drift with
magnitude (20). We use the moving coordinate z, introduced above
(with z"0, z"¸ corresponding to the rear and front edges of the
swarm, respectively). Then in this coordinate system, the density f (z) of
the swarm satis"es:

D
d2f
dz2

!

d
dz

([a
e
( f!F )#(A

a
!A

r
f ) (K

o *
f )] f )"0. (21)

Integrating equation (21) once with respect to z leads to the "rst order
ODE:

D
df
dz

![a
e
( f!F)#(A

a
!A

r
f )(K

o *
f )] f"J, (22)

where the constant of integration J has the meaning of #ux.
To nondimensionalize the model, consider the equilibrium density

at the core of the swarm F"A
a
/A

r
as the unit of density, the drift rate

of the swarm <
drift

"a
e
F as the unit of velocity, and the range of

interaction r as the unit of length. Then the dimensionless equation for
the density f @(z@), where f"Ff @ and z"rz@, has the form:

e
df @
dz@

![( f @!1)#k(1!f @) (KI
o * f @)] f @"j. (23)

Here the dimensionless parameters

e"
D

r(a
e
F)

, k"
A

a
a
e

, j"
J

a
e
F2

re#ect the magnitudes of the di!usion, the strength of interaction
and the #ux, respectively. The dimensionless kernel is de"ned as
KI

o
(z@)"rK

o
(z/r).

We are interested in the limit of weak di!usion: e;1. We rescale
the spatial variable: y"z@/e and assume that the function f @ has the
following asymptotic expansion:

f @"
=
+
n/0

en f
n
,

where the zeroth approximation f
0

is the nondimensionalized rectan-
gular pulse given by (18): f

0
"H

l
(ey) (l"¸/r is the nondimensionalized
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size of the swarm). We also assume (to be con"rmed a posteriori) that
the #ux j is exponentially small with respect to e, and, thus, that the
right hand side of any equation for a "nite order approximation would
be equal to zero.

It is easy to check (see Appendix I) that the zeroth approximation,
f
0
, satis"es the equation obtained by collecting the terms of the zeroth

order with respect to e after plugging in the power series for f @ into
equation (23). We will now "nd the "rst approximation f

1
by collecting

the corresponding terms of "rst order and solving the resulting
equation:

df
1

dy
![( f

0
!1)#k(1!f

0
) (KI

o *
f
0
)] f

1
![ f

1
#k (1!f

0
) (KI

o *
f
1
)

!k f
1
(KI

o *
f
0
)] f

0
"0. (24)

On the interval [0, l] the solution of equation (24) just gives a small
correction to the constant density. Outside this interval, where f

0
"0,

the "rst approximation, though small, is of crucial importance since it
carries information about the stability of the swarm. Because f

0
"0

when z@(0 or z@'l, equation (24) simpli"es signi"cantly to the
following linear equation:

df
1
(y)

dy
!< (y) f

1
(y)"0, <(y)"!1#k (KI

o * f
0
) (y). (25)

The convolution in the above expression is easy to "nd, and the
velocity is given by:

< (y)"G
!1, ey7(l#1)

!1!(k/2) (l!ey#1), l(ey(l#1

0, 06ey6l

!1#(k/2) (ey#1), !1(ey(0

!1, ey6!1.

(26)

This velocity pro"le is shown in Fig. 3. The fact that the velocity
<(y)"0 for 1(ey(l!1 can be seen from symmetry arguments.
A less obvious statement, that this velocity is zero also at the edges of
the swarm, (at 0(ey(1 and l!1(ey(l) follows from a continuity
argument, from the fact that the local drift term is constant everywhere
inside the swarm where the density is constant, and from the choice of
kernels. The change in the aggregation term near the edges is exactly
counterbalanced by the change in the anti-crowding term for the right
swarm density.
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Fig. 3. Dashed line: the predicted shape of the propagating swarm. Solid line: the
velocity pro"le of an individual organism induced by the rectangular swarm.

The swarm actually deviates from its idealized rectangular shape,
but we will show that such deviations are relatively small when the
di!usion is low. We now look more closely at each part of the swarm
and compute the actual density distribution by solving the appropriate
equation.

6.1. Density behind the swarm

The solution of equations (25) and (26) has the dimension-carrying
form:

f (z)"C expC
A2

a
r

4A
r
D A

z
r
#1!

2a
e

A
a
B
2

D , !r(z(0, (27)

where the constant C is found from the continuity condition at the rear
edge of the swarm (z"0):

C"

A
a

A
r

expC!
A2

a
r

4A
r
D A1!

2a
e

A
a
B
2

D . (28)

For z6!r, the velocity <(z) is a negative constant in the coordi-
nate system being used. (Organisms appear to move backwards rela-
tive to the coordinate system moving with the swarm.) Two possible
solutions are a constant and an exponentially divergent one. Biolo-
gically, only the "rst of these is meaningful, and by continuity, this
solution is:

f (z)"constant"
A

a
A

r

expC!
A2

a
r

4A
r
D A1!

4a
e

A
e
BD , z(!r. (29)

(Note that this is a constant, not an exponentially decaying function.)
This "nding implies that the swarm leaves a trail of stragglers behind it,
i.e. that individuals are continually being lost from the group.
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The constant solution at negative values of z cannot be normalized,
and, rigorously speaking, is inconsistent with the assumption of the
"nite size of the population. The approximate solution described above
would be valid only on a spatial scale comparable to the size of the
swarm. Outside of this range (at negative values of z such that z6! M̧ ,
where M̧ \¸) the function f (z) must decrease to satisfy the conservation
constraint.

6.2. Density in front of the swarm

Using the velocity at the front of the swarm (for ¸(z), solving
equations (25) and (26), and using continuity conditions, as before, we
obtain the dimension-carrying form:

f (z)"G
A

a
A

r

expC!
A2

a
4A

r
D A1#
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e

A
a
B (z!¸)#
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¸(z(¸#r
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expC!
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a
r
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(30)

where

C
1
"

A
a
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r

expC!
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a
r
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D A1#

4a
e

A
a
BD .

Equation (30) describes the distribution at z'¸. In this region the
solution is exponentially decaying. Thus, the front of the swarm is
stable, and the shape of the front is that of an exponentially decaying
leading edge. The shape of the propagating swarm is illustrated in
Fig. 3.

6.3. Stability: size and lifetime of the swarm

The #ux of individuals away from the swarm will be equal to the
product of the density of lost individuals and their rate of drift away
from the swarm. This #ux is given by the expression

J"a
e

A2
a

A2
r

expC!
A2

a
r

4A
r
D A1!

4a
e

A
a
BD . (31)
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It is impossible to eliminate this continual loss of individuals, but we
can consider the circumstances under which this loss is relatively low.
This #ux is exponentially small provided that

4a
e
(A

a
and D;

A2
a
r

4A
r
A1!

4a
e

A
e
B . (32)

When this condition is satis"ed, the loss will be minor on the time scale
of observation.

We might ask what happens to the swarm as it shrinks due to loss
of members. We see from this particular example that the core density,
F, should not change, as it is prescribed by the density dependence of
the velocity terms. However, to compensate for loss, the width of the
swarm will decrease linearly. Using conservation of the total number of
organisms, we "nd that the size of the swarm satis"es:

d¸
dt

"
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expC!
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r
D A1!
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e
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BD . (33)

Thus, the width of the swarm will decrease exponentially slowly if
conditions (32) are satis"ed. The swarm will disappear after an expo-
nentially large time ¹\¸/(d¸/dt) . The &&lifetime'' of the swarm is thus:

¹\
¸A

r
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e
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expC
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r
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r
D A1!
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e

A
a
BD . (34)

6.4. Density dependent diwusion

We consider density dependent di!usion whose magnitude decreases
to zero as the local population density vanishes. We show that this type
of density dependence can make the swarm locally stable.

We investigate the asymptotically small density at the rear edge of
the swarm. (It was shown above that the front edge of the swarm is
locally stable. A density dependent di!usion does not change this
stability.) The simplest case to be considered is that of a linear density
dependence. We deal with this case in detail. It is our belief that more
complex density dependence which decreases to zero at least linearly
(or faster) will lead to similar behavior.

Equation (25) with <(y) given by (26) and density dependent
di!usivity, Df, governs the asymptotically small density and can be
rewritten in the form:

f
1
(y)

df
1
(y)

dy
!<(y) f

1
(y)"0. (35)
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Solving the equation
df

1
(y)

dy
!<(y)"0,

and using the continuity boundary condition at the rear edge of
the swarm we "nd the dimension-carrying form of the density distribu-
tion:
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#cB
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(36)

The equation for f (z) then describes a parabola whose height above the
z axis is given by h. For the following weak solution to hold, we require
that this height be negative. This leads to the condition

D(
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e
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2
. (37)

If this condition is valid then the weak solution of equation (35) is
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where
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4D
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r
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e
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.

In this case, the density of the &lost' organisms behind the swarm is
zero, and the swarm is locally stable. We get a true traveling band
solution. Otherwise, if the di!usion coe$cient is too big, the inequality
(37) is not satis"ed, so that the density everywhere behind the swarm is
non-zero and the local instability persists. The formal derivations here
do not prove the uniqueness or stability of the traveling band solution,
but this result will be supported with numerical studies below. It
is hard to imagine that this scenario is realistic in the case of
small organisms such as #ying insects or small marine animals,
since these are always subject to the random e!ects of turbulence
that would impose a non-zero di!usion on any deterministic behavior.
In the case of larger animals, such as, say, wildebeest, it is more
realistic to believe that stragglers in the rear of the herd may stop
meandering and random searching in favor of catching up with the rest
of the herd.
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6.5. Conclusions from analytical studies

The results of the "ndings in the above sections lead to the following
conclusions:

1. No global stability: Even with non-local attraction, there does not
appear to be a way to make the swarm globally stable. Di!usion,
which formally has an in"nite range, will move organism by distan-
ces greater than the range of interaction behind the swarm. There-
after, they will no longer &&sense'' the swarm, according to our model.
Then, the fact that the swarm is moving away (the stragglers have
a negative drift relative to the swarm) will mean that they do not
catch up. This conclusion follows from the qualitative assumption
that denser patches move faster. If we assume the opposite, (i.e. that
denser patches move more slowly) then the rear of the swarm is
stable. However, it can be shown that under such circumstances, the
front of the swarm becomes unstable.

2. Dispersal for a rapidly moving swarm: If 4a
e
'A

a
, which means

that advection is stronger than aggregation in some sense, then
equation (29) implies that the density of the stragglers behind the
swarm is greater than the density in the core. This contradicts our
assumption and indicates that, in this case, the swarm is unstable to
loss of individuals from the back and will deteriorate in "nite time.
(This will be demonstrated by numerical simulations.)

3. Dispersal for large density-independent di4usion: If di!usion is &&fast
enough'', i.e. the value of D is comparable to or greater than
A

a
(A

a
!4a

e
) r/4A

r
, then the density of stragglers behind the swarm

will not be small, and the swarm will also disperse in "nite time.
4. Exponential tail for low density independent di4usion: If D@A

a
(A

a
!4a

e
) r/4A

r
, the swarm leaves behind an exponentially thin

layer of lost organisms given by equation (29).
5. Local stability of the swarm for density dependent di4usion: If the

coe$cient D in the di!usivity, Df, is small enough, i.e. D((A
a
r/4)

(1!(2a
e
/A

a
))2, then the swarm is locally stable.

Although by remark (1) above, we have pointed to the global instabil-
ity of this swarm, we also noted that the swarm can be quasi-stable,
changing at an exponentially slow rate. By remarks in the introduction,
as far as realistic biological predictions (rather than abstract math-
ematical solutions), this would be adequate to guarantee cohesiveness
of the swarm on the time scale of observation. This analytical predic-
tion is con"rmed numerically below.
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7. Numerical simulations

The analytical results of the previous sections were supplemented and
veri"ed with numerical studies. We approximated the original pro-
blem, which was posed on an in"nite domain, with a model on a "nite
interval with periodic boundary conditions (the size of the domain is
taken to be several times larger than the width of the swarm which is, in
itself, a few times larger than the range of interactions). The domain
was discretized by 100 grid points. Equations (15,16) were solved using
a second order Lax}Wendro! algorithm (Nakamura, 1991). A time
increment of dt"10~6 was used. The convolutions were approxi-
mated using a second order accurate trapezoidal rule. Tests of this
numerical scheme for parameter values listed, and for various grid
sizes, demonstrated that the numerical solutions gave good qualitative
"t to the known approximate solutions of the original model.

In all simulations, the initial conditions were

f (x, t"0)"10H
20

(x!10),

i.e., a rectangular pulse of width ¸"20 and density F"10. The values
of the attraction and repulsion parameters were A

a
"20, A

r
"2, res-

pectively. With this choice of parameters and initial conditions, and
with equal ranges of the attraction and repulsion, the initial density
in the core of the swarm, F"10, is equal to the equilibrium den-
sity F"A

a
/A

r
. This choice saves computation time, skipping transi-

ents that would occur while the equilibrium density of the swarm core
was being established. (We checked separately that other initial condi-
tions evolved into the equilibrium core density.) In the course of the
simulations, the following governing parameters were changed: D,
the di!usion coe$cient, a

e
, the amplitude of the even local density

dependent drift term, A
e
, the amplitude of the even non-local density

dependent drift term, r
a
, the range of attraction, and r

r
, the range of

repulsion.

8. Results of the numerical experiments

In order to observe the evolution of a propagating pulse, the results
of the numerical experiments were plotted three times. The initial
density pro"le (solid line), the pro"le after 1000 (dashed), after 2000
(dot dashed), and after 3000 time steps (dotted) are shown in the
"gures.
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Fig. 4. Basic simulation with A
e
"0, r

a
"r

r
"5, a

e
"20, D"5.

8.1. Basic run; A
e
"0, r

a
"r

r
"5, a

e
"20, D"5

Figure 4 shows what happens in the absence of the even non-local
density-dependent drift term (A

e
"0) and equal ranges of attraction

and repulsion (r
a
"r

r
"5). A nearly rectangular-looking pulse propa-

gates virtually unchanged. A very thin layer of lost organisms can
barely be seen behind the propagating swarm. The density at the front
of the pulse decreases more rapidly than at the rear, while small
increase in the density at the very front of the swarm, and the depletion
at the very back of it can be seen. The following heuristic explanation is
helpful.

Let us assume that a small, highly localized increase in density
occurs somewhere in the core of the swarm. Then the velocity at the
location of this perturbation will be greater than at other places in the
core. This stems from the local density-dependent advection term and
from the fact that non-local terms average to zero in the core. This
means that such a perturbation would gradually drift to the front of the
swarm. At the very front, this denser area will be preserved by attract-
ive interactions. By a similar argument, a small, localized decrease in
density would drift to the rear edge of the swarm. This suggests that
there should be a denser area at the front edge of the swarm, and
a sparser area at its rear edge.
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Fig. 5. Results of a simulation with small, even, non-local, drift term.

8.2. Ewect of non-local even drift term

As shown in Fig. 5, we next introduced a small, even, non-local, density
dependent drift term:
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, (39)

where only the last term, considered as a perturbation, is new, and
where the non-local drift kernel, K

e
is de"ned on the interval

[!r
e
, r

e
], r

e
"1 as follows:
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e
.

(40)

All other parameters had their previous values.
As seen from Fig. 5, this kind of perturbation makes the shape of

the propagating swarm more perfectly rectangular. Qualitative argu-
ments about this e!ect are as follows. As a "rst approximation, the
change in the velocity due to this perturbation will be constant and
small in the core of the swarm (at r

e
(z(¸!r

e
). At the front

(0(z(r
e
) and rear (¸!r

e
(z(¸) edges of the swarm, the e!ect of

the perturbation convolution term decreases because the number of
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Fig. 6. E!ect of di!usion: A
e
"0, r

a
"r

r
"5, a

e
"20, D"8.

organisms inside the interaction range gets smaller. This means that
there is a decrease in the velocity at the edges (relative to the velocity at
the center of the swarm). The consequence of this decrease will be
a small #ux of organisms from the core to the rear edge, and from the
front to the core. This #ux smoothes out the denser front and the
sparser rear, leading the shape of the swarm to become a more perfect
&&rectangle''.

8.3. Ewect of diwusion

In Fig. 6, we used the original parameters, but increased the di!usion
coe$cient to D"8. In agreement with the theoretical predictions, the
density of the stragglers grows signi"cantly as the dispersal intensi"es.
This density gradually becomes homogeneous behind the propagating
pulse. Furthermore, the front of the pulse is now visibly denser than its
rear. The graph also con"rms the conclusion that the height of the
pulse (core density) hardly changes, while the width of the pulse
decreases due to loss of organisms.

For Fig. 7, di!usion was increased further to the value D"11.
Now, this strong dispersal destroys the swarm in "nite time: the density
of the individuals shed from the rear of the swarm is comparable to the
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Fig. 7. E!ect of di!usion: as in Fig. 6 but with D"11.

density of the swarm, and both height and width of the pulse decrease
rapidly.

8.4. Ewect of density-dependent diwusion

We consider a combination of the di!usion behavior as follows: for
moderate densities, f'0.1F, we use a density independent di!usion
with a constant di!usion coe$cient, D. (This was done to avoid
excessive growth of the di!usion at high densities.) At small densities,
f(0.1F, we used the density dependent di!usion, Df. The results are
presented in Fig. 8. Here we show the swarm pro"le after 3000 steps
corresponding to the model parameters A

e
"0, r

a
"r

r
"15, a

e
"20,

A
a
"20/3, A

r
"2/3, D"12. The density pro"les in both cases are

roughly the same. However, the "ne structure of the densities at the
rear of the swarm exhibit an important di!erence. The "gure inset
(shown magni"ed below) reveals that in the density independent case
(solid curve), a small constant density of &lost' organisms is left behind
the swarm. This would lead to the eventual disintegration of the
swarm. In the density dependent case (dashed curve), the density of
organisms behind the swarm falls sharply to zero (to a level of accuracy
greater than the error in the numerical method).
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Fig. 8. Comparison of the cases of density independent (solid curve) and density
dependent di!usion (dashed curve). The parameters were A

e
"0, r

a
"r

r
"15, a

e
"20,

A
a
"20/3, A

r
"2/3, D"12.

8.5. Ewect of range of attraction

In Fig. 9, the original parameters were used but with the range of
attraction increased to r

a
"6. E!ectively, this results in stronger at-

traction, and we see that loss of organisms is imperceptible. The swarm
is maintained as a unit, its average density increases, and it then
accelerates in comparison with the unperturbed case. Due to a more
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Fig. 9. E!ect of increasing the range of attraction: Results of a simulation with
A

e
"0, r

a
"6, r

r
"5, a

e
"20, D"5.

Fig. 10. E!ect of decreasing the range of attraction: Results of a simulation with
A

e
"0, r

a
"4, r

r
"5, a

e
"20, D"5.
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Fig. 11. E!ect of increasing the even local drift term: Results of a simulation with
A

e
"0, r

a
"r

r
"5, a

e
"50, D"5.

complex balance between attractive and repulsive interactions, some
more irregular and evolving pro"le is observed in the swarm.

For the simulation shown in Fig. 10, the range of attraction
was decreased to r

a
"4. Due to e!ectively weaker attraction, loss of

organisms in this case is noticeable, signi"cantly greater than in the
"rst, unperturbed, case. The average density of the pulse decreases, and
the swarm moves more slowly in comparison with the unperturbed
case. The complex balance between attractive and repulsive interac-
tions leads to a more irregular, oscillatory pro"le which evolves with
time. Spatial oscillations are predicted from the linear stability analysis
in this case, since the repulsion is larger than the attraction.

8.6. Ewect of an even local drift term

In Fig. 11, the ranges of attraction and repulsion were set equal, and
the even non-local term was absent. The even local term was increased
2.5 times to a

e
"50 in order to investigate the predicted instability. In

order to better observe the evolution of the swarm, the results were
plotted after 1500 (dashed), and 3000 (dotdashed) time steps. Because
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of the greater times of simulation and speed of motion, the swarm
revolved around the periodic domain several times. In agreement with
the analysis, the stability of the swarm was broken: the density of lost
individuals increased signi"cantly in comparison with the "rst case,
and the shape of the swarm changed. Of great interest is the fact that
the regime of swarm dispersal di!ers here from the smooth dispersal
observed in previous cases. Indeed, a second, smaller, peak appears
behind the &&main'' swarm after 3000 time steps. After that, (not shown)
two narrow peaks propagate for a long time without changing their
shape, with the smaller peak moving more slowly than the larger one.

This result can be understood as follows: Initially, an increase in the
even, local, density dependent drift causes the stragglers in the wake of
the swarm to lose speed relative to the swarm. This results in a greater
#ux from the rear of the pulse and more stragglers. As these stragglers
get more numerous, attractive interactions among them start to dom-
inate, and a new aggregation starts to form behind the main swarm. As
this new group is less dense than the original swarm, it moves more
slowly, and eventually has a diminishing e!ect on the core of the
original swarm. The even drift is not as destructive any more, and both
the new group and the main swarm (now smaller and less susceptible to
drift-induced instabilities) coexist, and stabilize. The original group
splits into two groups, traveling with di!erent speeds. If the swarm is
initially large, it may split into more than two groups. However, even
these groups are not globally stable, and will slowly disperse.

8.7. Results for Gaussian kernels

In the "nal test, shown in Fig. 12, we used a more generic Gaussian
form of the integral kernels:

K
e
(x)"exp(!x2/r2

e
), K

o
(x)"!x exp(!x2/r2). (41)

Here r
e
is the scale of the range of the even drift term, and r is that of

the odd terms. The odd kernel was used by Kawasaki (1978) in a model
for spatial distribution of organisms. The values of the parameters we
used for this simulation were: D"5, a

e
"0, A

e
"1, A

a
"20, A

r
"2,

r
e
"r"5. The swarm propagates with roughly constant shape. As

before, when the amplitude of the even term A
e

is large enough, the
swarm becomes unstable. Making the ranges of attraction, repulsion
and the even term di!erent, and changing the form of the kernel causes
changes in the shape of the swarm, but does not lead to its destabiliz-
ation if the attraction is su$ciently great and the even drift is su$-
ciently weak (not shown). This illustrates that the symmetry, rather
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Fig. 12. E!ect of Gaussian kernels (see text). Results of a simulation with D"5,
a
e
"0, A

e
"1, A

a
"20, A

r
"2, r

e
"r"5.

than the detailed form of the integral kernels is important for the
qualitative results of this paper, con"rming previous experience with
non-local models (Mogilner and Edelstein-Keshet, 1996).

9. Conclusions and discussion

Our main result in this paper is that the propagating swarm of
organisms, though not globally stable, can be long lasting. The e!ect
that leads to a long-lived swarm is mutual non-local attraction of
individuals. Repulsion limits the swarm density and prevents collapse
of the swarm. We have also shown that in the case of density dependent
di!usion, true locally stable traveling bands can occur.

The assumptions that were made in building the model may seem
overly restrictive at "rst. However, the simpli"cations have allowed
a rather complex set of interactions to be thoroughly explored analyti-
cally and numerical results can be understood much more fully. Some
variations of the strict simpli"cations were explored numerically. We
have seen that the detailed shapes of the kernels that describe non-local
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e!ects are not very important, but that their symmetry properties have
a large impact.

We have concentrated, here, on investigating the case of non-local
advection, leaving the dispersal term in a more traditional local form.
Convection terms lead to attraction, repulsion, aggregation and mac-
roscopic motion. Dispersal is a disordering and a smoothing in#uence.
The e!ects of generalized di!usion have been explored to some extent
(Cohen and Murray, 1981; Murray, 1989). It appears that, mathemat-
ically, di!usion with non-local e!ects does not lead to qualitatively
new patterns (Turchin, 1986).

Is it really necessary to include non-local e!ects to get a semi-
realistic swarm behavior? Can similar quasi-stable swarms be obtained
with strictly local terms, as in the traditional PDE's? As mentioned in
the introduction, non-local e!ects can be neglected when the popula-
tion density changes slowly on a spatial scale comparable to the
interaction range. When this is not the case, for instance at the sharp
edges of the swarm, any local approximation becomes inadequate
(Grunbaum and Okubo, 1994). If we were to approximate our integro-
di!erential model with a non-linear PDE, then the traveling wave
solution would not be found, even if higher derivative terms are kept. It
turns out that the short wave-length phenomena at the edges of the
swarm are vital.

It is shown in Appendix II, that the dispersion relation for the
analogous higher derivative model (obtained by a Taylor expansion of
the convolution terms) has the form:

j"!Dq2#F[!ia
e
q#(A

a
!A

r
F) (aq2!bq4#2)],

where a<b'0. We recognize that the term aq2 corresponds to
a negative di!usion which would lead to an ill-posed problem as
discussed in Alt (1985). The problem is due to the fact that modes with
increasing q are more and more unstable. (This corresponds to un-
bounded instabilities on an arbitrarily short length scale.) It would
appear that the term !bq4 can eliminate this di$culty, but we observe
that the coe$cient, (A

a
!A

r
F) can be either positive or negative,

depending on the size of F relative to A
a
/A

r
. But this value is the level

of the equilibrium density inside the swarm, so that small perturbations
can make the sign of the term (A

a
!A

r
F) #uctuate. This means that the

fourth order term will actually lead to even worse instabilities. A sim-
ilar conclusion applies for any number of terms in such local appro-
ximations.

In previous literature, (Murray, 1989; Cohen and Murray, 1981;
Ochoa, 1984), local approximations corresponding to the above two
terms in our expansion were used to model so-called generalized
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di!usion. In these models, absence of wild instabilities was due to the
absence of repulsion (i.e. A

r
"0). However, as we have argued, this

term is essential if it is desired to reproduce a swarm whose internal
density is constant (not a goal of the above papers).

Our main result is still that an exact traveling band solution only
exists under restrictive assumptions, and that more generally, a band-
like solution can be stable only for some limited (if possibly long)
lifetime. This leaves us wondering why it appears that #ocks of birds
stay together, and that individuals are not lost in the most commonly
recognized animal aggregations. We might speculate that "rst, the time
of observation may be short compared with the exponential time
scale on which signi"cant loss occurs (the solution decays on greater
time scale). Second, the continuous description of the swarm may be
inadequate in the case of a limited number of organisms. These specu-
lations, which were already voiced in a previous paper (Edelstein-
Keshet et al., 1997) may partly explain the disparity between the
idealized model pulses and the true behavior of swarms.
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Appendix I: Veri5cation that the rectangular ansatz is a solution

We consider the case that D"0 and show that the rectangular pulse,
given by (17), is a solution of the model consisting of equations (15,16).

For r(x(¸!r the last two integral terms in equation (15)
cancel by symmetry of the kernels. Then, if at such x, f"F"const, we
have

Lf
Lt
"!(a

e
F)

Lf
Lx

,

which allows the solution (17) where, so far, we have <
drift

"a
e
F

de"ned, but F is still to be found. At 0(x(r the repulsion term in (5)
contributes the value !A

r
F2 (r!x)/2 to the drift velocity, while the

aggregation term contributes the value #A
a
F(r!x) /2. The contribu-

tion of the drift term is a
e
F. To ensure the existence of the ansatz

solution,

<(x)"a
e
F#A

a
F(r!x)/2!A

r
F2(r!x)/2"<

drift
"a

e
F
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independently of x, so
A

a
F"A

r
F2.

Thus we "nd the density of the swarm F"A
a
/A

r
from these boundary

conditions. The same is true for ¸!r(x(¸:

< (x)"a
e
F#A

a
F(x!¸#r)/2!A

r
F2(x!¸#r)/2"<

drift
"a

e
F

and again F"A
a
/A

r
. For x(0, x'¸ the statement is obvious.

Appendix II: Local approximation

We reason here that there is no sensible local approximation to our
non-local model. Let us assume that the range of interaction is very
small, and that the density f (x, t) changes on a longer spatial scale. In
this case, we can use a Taylor approximation:

f (x@)"f (x)#(x@!x)
Lf (x)
Lx

#

(x@!x)2
2

L2f (x)
Lx2

#

(x@!x)3
6

L3f (x)
Lx3

#2.

Then,

(K
o *

f ) (x)"a
Lf (x)
Lx

#b
L3f (x)
Lx3

#2, a<b, a"!P=

~=

xK
o
(x) dx,

b"!P=

~=

x3K
o
(x) dx.

Then our model assumes the local form:

Lf
Lt
"D

L2f
Lx2

!

L
Lx Cae f 2#af

Lf
Lx

(A
a
!A

r
f )#bf

L3f
Lx3

(A
a
!A

r
f )#2D .

Linear stability analysis shows that if we let f (x, t)"F#cejteiqx, we
would obtain the dispersal relation:

j"!Dq2#F[!ia
e
q#(A

a
!A

r
F) (aq2!bq4#2)].

As discussed in Section 9, this expression indicates that a purely
local model would have de"ciencies that cannot be easily overcome.
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