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Abstract. The interactions of host plants with herbivores can be mediated by 
factors other than population sizes or biomass alone. Recent evidence indicates 
that features of the vegetation (loosely termed "plant quality") may change 
in response to herbivory and may, in turn, influence the performance of 
herbivores (i.e. by affecting survivorship, fecundity, or growth rates). A model 
which incorporates the effect of plant quality is presented. First it is shown 
that the frequency distribution of plant quality in the vegetation (p(q, t)) 
satisfies an equation of conservation. Then, qualitative aspects of the system 
are discussed in three situations: (1) mobile herbivores interacting with all 
plants; (2) sessile herbivores feeding exclusively on single plants; (3) inter- 
mediate situations in which mobility is moderate to low. 

I show that depending on the plant quality response, f(q, h), and the 
herbivore response, g(q, h), it is possible to obtain stable equilibria as well 
as stable periodic oscillations. In the former case the populations tend to lose 
their heterogeneity. In the latter case, oscillations are accompanied by alternate 
narrowing and broadening of the distribution. Empirical testing and further 
research are suggested. 

Key words: Plant-herbivore systems--Plant quality--Structured popula- 
tions - -  Conservation laws - -  Mathematical models 

1. Introduction 

Classical approaches to modeling plant-herbivore systems are based on an 
analogy to predator-prey systems (see for example, Caughley and Lawton 1981; 
Crawley 1983; May 1973). There are limitations to this analogy. One distinction 
is that plants can be infested without being killed; this places the association 
more within the class of host-parasite systems. A more subtle but equally impor- 
tant aspect recently discovered is that some plants can exhibit an "immune 
response" which limits the effectiveness of their attackers. 

It is generally recognized that many aspects of the vegetation can change in 
response to herbivory. One example of this situation occurs in the interactions 
of the larch budmoth with larch. Defoliation by the larch budmoth causes an 
increase in the "raw fiber" content of larch needles, this then results in an 
increased mortality and lowered fecundity of the herbivore (Fischlin and 
Baltensweiler 1979). 
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The abundance of plant and arthropod species in our world and the amazingly 
complex ways that they have adapted to each other means that attempts at 
generalities are at best feeble. Nevertheless, carefully understanding certain 
simplified prototypes can be illuminating if only for the empirical questions these 
suggest. For this reason I have attempted to study several models which incorpor- 
ate the effect of change in aspects of the vegetation on herbivory. This paper 
outlines the approach and several examples to which it can be applied. 

2. A simplified view 

Abstracting from the properties of numerous examples, I will refer to the feature 
or aspect through which the plant most closely interacts with its herbivores as 
the plant quality (q). Since this concept is potentially confusing, a word of 
explanation is called for. In the theory, q is simply an index which conveys how 
a given part of the vegetation might be "rated" by a herbivore on a purely arbitrary 
scale (for example q = 0 might be totally repulsive or non-nutritious, whereas 
q = 1 might be exceedingly appealing). This variable is clearly correlated to the 
physiological state of the vegetation, which both affects and is affected by 
herbivory. Since a plant's physiological state would consist of a multitude of 
factors, q is simply a means of lumping together such factors into a single 
independent variable. (A common technique in modeling is thereby used to get 
a preliminary appreciation of a system before getting enmeshed in all of its details). 

In a given situation, the aspect or attribute which we call "plant quality" 
would have to be empirically determined, possibly using a set of bioassays (see 
Sect. 10). It should be emphasized that a plant may be of different quality to 
different herbivores. Quality could, in specific instances, be correlated to physical 
or chemical properties (e.g. internal nitrogen, concentrations of noxious defence 
substances, succulence of foliage, toughness of stems, amount of resin, and/or  
size or business of the plant). A given plant may be heterogeneous (see Whitham 
et al., 1984) so that the natural unit of vegetation might be a single leaf or branch 
rather than a whole plant. 

Good summaries of recent biological findings on the role of plant quality 
may be found in Rhoades (1982); Mattson and Addy (1975); Lincoln et al. (1982); 
Myers and Post (1981); Kraft and Denno (1982); Crawley (1983); Denno and 
McLure (1983); Strong et al. (1984). 

In the proposed model, a basic starting step is to represent the vegetation as 
a heterogeneous population in which individual components have different 
qualities. A frequency distribution of plant quality is defined in the following way 

p(q, t) = frequency of plants whose quality is q at time t. 

More precisely, the integral 

~+aq P(q, t) dq 

is the number of plants (or equivalently the vegetation biomass) whose quality 
falls within the range (q, q + Aq). Note that p(q, t) of this definition can be used 
to describe the vegetation whether its components are whole plants, single leaves 
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of one plant, stems or flowers, etc.). Dyer (1975) and Whitham (1980, Fig. 2) 
give frequency distributions of corn ear size and of leaf size which can be used 
to convey the general idea of  p(q, t) (at a fixed time t). 

The first step in formulating the theory will be to make a statement describing 
the effects of herbivory on the plant quality distribution p(q, t). Once this is 
accomplished, the goal will be to investigate what qualitative outcomes may be 
expected when plant and herbivore populations interact. 

3. The single plant model 

Let us start with the response of a single component of  the vegetation to the 
herbivores that consume it. From empirical observations of the system at different 
host quality and at different intensities of herbivory it should be possible to 
reconstruct functions f and g that depict the mutual effects of the two species. 
More explicitly, given a particular vegetation quality index q and herbivore 
density h, I assume that one can predict changes in q and h based on the equations 

-dt =f (q '  h), ( la)  

dh 
-d~ = g(q' h). ( lb)  

The functions f, g above are, respectively, the rates of change of  the plant 
quality and of the herbivore population. Both functions may depend on q and 
on h; they are specific to a particular plant and herbivore system, and must be 
determined or conjectured based on biological information. Given this empirical 
knowledge of  single plant components, the goal will be to deduce what happens 
to the plant population as a whole. 

Implicit in Eq. (la) is a statement that herbivory causes changes in the 
physiological state of a plant. (These changes are then reflected in the quality of 
the plant as perceived by the herbivore.) Note that the function f can also 
encompass physiological changes which take place in a plant as it matures (e.g. 
in the absence of herbivores, f (q ,  0)). Such processes as relocation of energy 
reserves within the vegetation could make some of its components less attractive 
to herbivores as the season advances. 

In the above, I have assumed that two ordinary differential equations describe 
a single plant and herbivores interacting with it in isolation. This means that the 
model applies to situations where plant quality and herbivore load vary in a 
continuous way (as for example, during a single season). The accuracy of this 
assumption would depend on the system and the time-scale of observation. 

For plant-herbivore systems in which quality changes abruptly in all all-or- 
none effect (e.g. the induction of chemical defenses (Rhoades 1982)) or in which 
many nonoverlapping herbivore generations are implicated, a better starting 
model of the single vegetation component would be 

n + l  n n 

q = F(q , h ), (2a) 
[ h  "+1= G(q ~, h"). 
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for qn, h" respectively the plant quality and herbivore population during the nth 
generation. A model of type (2a) has been discussed by Fischlin and Baltensweiler 
(1979). Models of type (1) have been described by Caughley and Lawton (1981). 

While the applicability of the models given by Eqs. (la, b) or (2a, b) depends 
on the particular case, the availability of the analytical techniques for ordinary 
differential equations makes the first model an attractive first step in gaining a 
preliminary understanding of general effects. Thus, in this paper, analysis will 
be restricted to the case of plant-herbivore systems in which the processes are 
continuous ones. 

4. Herbivory-induced changes in the vegetation 

Given a particular view of what happens to a single plant (or to a single vegetation 
unit), equations will now be written to describe changes in the populations as a 
whole. The way in which this transition from the level of the individual to that 
of the population is made will form the key new concept of the model. 

The equation for the vegetation (represented by p(q, t)) can be derived in a 
rigorous way by discretizing q and making a statement of balance for plants 
which enter or leave a given quality class (e.g. the class of plants whose quality 
is in the interval q to q + Aq). A more amusing method is to employ the physical 
analogy below: 

The vegetation p(q, t) is a collection of individual plants displayed along a 
scale of quality q. Each plant shifts along this scale at the rate prescribed by 
dq/dt = f  ( f  an empirically determined function). Now consider an analogous 
collection c(x, t) of particles displayed along a scale of distance, x. If  these 
particles move collectively at the rate dx/dt  = v they form a "convective fluid," 
described by the standard equation of conservation 

Oc Ocv 
J=o- 

Ot Ox 

(ev is their flux and tr is a rate of local production or degradation of particles). 
By making a correspondence between variables in the two situations above 

one can deduce an appropriate equation for the vegetation. Replace location in 
physical space by location on the quality scale (x ~ q), the density of particles 
by the vegetation density (c(x, t )~p(x ,  t)) and physical velocity by rate of shift 
in quality (v = d x / d t ~ f =  dq/dt). The result is 

Op Opf or, (3) 
ot Oq 

where tr is a term which accounts for death of plants. 
Many previous models for plant-herbivore systems have focused primarily 

on quantitative changes in the vegetation which stem from removal of plants or 
herbivory-induced mortality. While this is easily included by selecting appropriate 
terms for o- in Eq. (3), I purposely omit this term in order to focus attention on 
effects which arise purely from quality changes. Taking o-= 0 means that one 
neglects plant mortality over the timescale of observation. The case t r r  0 is briefly 
discussed in Sect. 9. 
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To place the above analogy into a somewhat broader perspective, one should 
mention that conservation laws appear widely in applied mathematics. Other 
biological problems have previously been tackled with similar equations. The 
most well-known example stems from a continuous model for populations dis- 
tributed into age classes. In that context such equations have been studied by 
Von Foerster (1959), Rubinow (1968), and others. Another example, that of size 
distributions of growing organisms, has been described by Thompson (1983) and 
by Edelstein and Hadar (1983). 

To go further in assembling the model it is necessary to make several assump- 
tions about how mobile herbivores are as they feed on the vegetation. Two extreme 
cases will be discussed in some depth: (a) the herbivore visits many plants in 
its foraging, (b) the herbivore is intimately associated with a single plant. A 
grazing grasshopper would exemplify type (a) (see Parker and Root 1981) whereas 
a scale insect would exemplify type (b) (see Edmunds and Alstad 1978). An 
intermediate case in which an herbivore migrates occasionally from plant to plant 
will be outlined in Sects. 7-8. 

5. Mobile herbivores 

First consider the case of a highly mobile herbivore which feeds on many different 
plants and responds only to an average of the quality index in the vegetation. 
Define h as the average herbivore load per plant. If the total plant population 
is constant, a differential equation for h can be written as follows: 

dh 
dt g(o '  h), (4) 

where (~ = average plant quality. The average quality is something that can be 
obtained directly from the frequency distribution of plant quality p(q, t), since 
for Q = total quality, P = total number of plants, 

I0 o Q(t) = qp(q, t) dq, (5) 

P(t) = p(q, t) dq, (6) 

and (~ = O/P- 0 and P are the first and second moments of the distribution p(q, t). 
Thus, in the case of the mobile herbivore, Eqs. (3) and (4) would completely 

describe the plant-herbivore population. Supplemented by particular forms for 
the empirical functions f and g, as well as initial conditions and assumptions 
about p(0, t), these equations would make up the mathematical problem to be 
studied. 

a. Example 1: low herbivory increases food quality of  the plant 

In the following hypothetical example, I select the two functions, f for the plant's 
response to herbivores and g for the herbivore's response to plant quality. The 
particular choices are made only in order to illustrate the method - -  not as a 
claim to a general theory. 
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Let us consider the situation in which a low to moderate level of herbivory 
increases the quality of the plant as a potential food source for the herbivore. 
Several examples of this type are given by Crawley (1983, pp. 123-124) under 
the general term "group feeding". For instance, aggregations of sawfly larvae 
can more readily penetrate the tough exterior of pine needles and thus stand a 
greater chance of survival than solitary individuals (Ghent 1960). McNaughton 
(1983) also discusses the potential stimulation of a plant at low herbivore densities 
which would tend to increase food availability to the herbivore. The choices of 
f and g were made with this general situation in mind. 

More particularly, I assumed that the plant quality index (e.g. the amount of 
accumulated internal reserves of the plant) increases at some constant rate K1 
when herbivores are absent, and is further increased when h is small. Thus, f, 
the rate of increase of quality, was taken to be 

f(q, h) = g I + K2qh(h o- h). (7) 

Note that for h < ho, f will always be positive. For h > ho, f will be positive for 
low q, and negative for sufficiently large q. The dependence of f on q might 
reflect a dependence of plant sensitivity on the current state of the plant. (Low 
q plants produce lower responses than high q plants.) This dependence means 
that when herbivores abound (h > ho), the quality of high-q plants will dwindle 
while that of the low-q plants will continue to increase. 

For the rate of change of the herbivore population, g(q, h), consider 

g(q, h) = K3h(1 -K4h/Q). (8) 

This represents a standard assumption that eventually population growth is 
density-limited. Here I have assumed that the carrying capacity of the vegetation 
for the herbivore population is proportional to the average quality of the vege- 
tation. 

The model consisting of Eqs. (3), (4), (7), and (8) will now be discussed. It 
has been assumed that the total number of plants, P, remains constant. In 
particular, it will be assumed that or in Eq. (3) is zero. This assumption does not 
alter the basic character of the equations. (See comments in the previous section.) 

b. Integrating Eq. (3)for f linear in q 

The special form chosen for f allows, in this one instance, a reduction of the 
model to a set of ordinary differential equations. Note that f is linear as a function 
of q, i.e. 

f =fl(h)+qf2(h). (9) 

Using the definition of total plant quality, Q, and carrying out an integration by 
parts, yields 

=-IoqO(Pf)  dq=-(qpf);+fo~ Oq 
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The first term in the resulting expression would be zero in any practical situation 
since there are no plants of infinitely high quality. (It is assumed p(q, t) has 
compact support.) Now substituting the special form o f f  in the above, one obtains 

dO= f~ (pf,(h)+pqf2(h)) dq, 
dt Jo 

=fl(h) foPdq+f2(h) f?pqdq, 

=f,(h)P+ f2(h)Q. (10) 

Thus, if the total number of plants P is constant, one can investigate fluctuations 
in the average plant quality and total herbivore density by studying the set of 
ordinary differential equations: 

{ ~ = f l ( h ) n  + f2(h)Q, ( l la )  

-~t h=  g(h, Q/P). (11b) 

c. Predictions of the model 

The steps of the previous section, applied to Eqs. (7) and (8) lead to 

~ = KxP+ K2Oh(ho- h), 

dh (12) 
~ -  = g 3 h ( 1  - g4h/01. 

Since P is constant, the above can be written in terms of the total herbivore 
population H = hP, 

d Q  ^ A 
- ~  = K, + K2QH(Ho- H), 

dH (13) 
-~- = KaH(1 - K4H/Q), 

where /(1 = KIP, /s = K2/P 2, Ho = hoP. To investigate the behavior of the 
equations it is convenient to rewrite them in the dimensionless form below: 

I d-TQ-Q= 1 + KQH(1 - H),  
at 

~ =aH(1-H/Q) ,  (14/ 

with K = (K2Ka/KOh 3, c~ = (K3K4/KOho (see Appendix for further details). 
It may be verified by a combination of linear stability theory and phase plane 

analysis that these equations admit a single steady state (Hs, Qs) at the intersection 
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of the null clines given by Q = 1 / ( K H ( H - 1 ) )  and Q = H. The steady state is 
stable (either a node or a focus) and, has the property that Hs > 1. 

Translating this into a biological prediction, the herbivore attack will lead to 
decaying oscillations in the average plant quality index as well as in the total 
herbivore population; both variables eventually settle into a stable equilibrium 
in which a limiting herbivore density persists on vegetation whose average quality 
is constant. 

d. The distribution of plant quality 

To predict how the distribution of  quality in the vegetation changes due to 
herbivory one  needs to solve the full model (Eqs. 3 and 4, given 7 and 8), not 
just the simplified system of  ordinary differential equations. To prepare the way 
it is helpful to notice that by results of the previous section, the system will settle 
into a stable equilibrium with a level of herbivores Hs greater than 1. The herbivore 
density per plant at equilibrium, hs, thus exceeds the value ho (in Eq. 7). From 
this it follows that after some possibly transient response, f (q,  h) viewed as a 
function of q will converge to a straight line with negative slope -K2hs(hs - ho), 
and f ( 0 , . )  will be a positive number (see Fig. l(b)). 

An important feature of  the example is the fact that f eventually has a negative 
slope. Below it is shown that this attribute guarantees that the diversity of the 
vegetation will decrease. 

Lemma. Let p(q, O) be a function of compact support on some interval (0, qmax). 
Let f :  R 1-> R 1 be a continuous function satisfying the following properties: 

(a) f (q*)  = 0 for some q* e (0, qmax), f(O) > O, 
(b) f ' ( q )  <0 ,  Vq~ (0, qmax). 
Then for p(q, t) the solution of 

Op Opf 
ot Oq 

(15) 

with boundary conditions p(O, t) = O, p(q, t) = 0 for all q >I qmax we have 

p ( q , t ) ~ 6 ( q * )  as t~oo.  

Proof The characteristic equations to (15) are 

dp f, 
-~-~=-Jp. 

Combining (a) and (b) note that f ( q )  > 0 for q < q* while f ( q )  < 0 for q > q*. 
Thus the slope of the characteristic curves is positive for q < q*, negative for 
q > q*, and approaches zero as q ~ q* from both directions. For t-~ oo, these 
curves therefore converge to the line q = q*. 
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Note that since f '  < 0, p(q, t) will increase along characteristic curves whenever 
p(q, 0) # 0. The conclusion is that q* is a point o f  accumulation for the distribution. 

Bioeorollary. If vegetation of high quality tends to decline in quality whereas 
vegetation of low quality tends to improve then all parts of the vegetation will 
eventually acquire some intermediate quality q* (for which f(  q*, . )=  0). 

The preceding lemma and its corollary suggest that in certain cases herbivory 
can have a homogeniz ing influence - -  i.e. cause a decline in the diversity of  the 

6 
~ 1 5 0  a 

"5 ~" 100 I- 

0.2 0.3 O.Z, 0.5 0.6 0.7 08 
Quati ty 

I 2 - -  

3 ~ 

0 0.2 0.4 0.6 0.8 1.0 
Quality 

13- 

o" 

3~-  

C I L P 
0.5 1.0 1.5 

Time 
2.0 

>. 2.0 

"~ 15 c~ 

1.0 
1.0 1.5 2.0 
Herbivores 

Fig. 1. (a) Quality distributions of  plants over the course of  the herbivore attack in Example 1. For 
low pest populations all plants are increasing in quality (1, 2, 3). As the herbivore load gets heavier, 
damage to plants forces a decrease in the mean quality (4). Damped oscillations eventually result in 
a nearly homogeneous vegetation in which the predominant quality is q* (5, 6). Equations (3), (4), 
(7), (8) were integrated numerically with parameter values ~ = 5.0, K = 1.0, an initial quality distribu- 
tion p(q, 0) = 30.0 exp(- (q-0 .3)2/0 .004) ,  and an initial herbivore load h(0) = 0.8 (dimensionless 
units). Shown are six successive distributions at intervals of  At = 0.25 dimensionless time units starting 
with t = 0. 

(b) Graphs of  the rate of  change of  quality, f, as a function of  quality, q. The slope of  the line 
depends on the herbivore population level, and changes during the course of  the outbreak. Note that 
the lines are converging to line 8 which intersects the f =  0 axis at q * =  0.55. At same as in (a). 

(c) Total plant quality, Q (solid curve), total herbivore population, H (dashed) and total number 
of  plants, P (dot-dashed) as functions of time. Note that while P stays constant, Q and H undergo 
damped oscillation. 

(d) Q plotted against H reveals the phase plane trajectory traced out by the system for this example 
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vegetation. The particular features of  the example which lead to this conclusion 
were (a) deterioration in the quality of the high-quality vegetation, (b) the fact 
that response to herbivory is not uniform at all qualities, but greater (and more 
negative) at high qualities. 

In general if the response function f considered as a function of q is positive 
at q = 0 and has a negative slope (Of/aq < 0) there is a tendency for the distribution 
of  plant qualities to narrow. The opposite conclusion (i.e. widening) follows i f f  
satisfies Of/aq > 0. In summary, for f ( q  = O) > 0 

af /aq<O ~ p(q, t )narrows,  

Of/aq>O ~ p(q, t) widens. 

e. Predictions of  the model 

Equations (3), (4), (7), (8) were integrated numerically using a method of 
characteristics (i.e. integrating an o.d.e, along characteristic curves of the hyper- 
bolic Eq. 3). Figure l(a) displays p(q, t), the frequency distribution of  plant 
quality in a time sequence at various stages of herbivory. As the analytical results 
predicted, a sequence of  decaying oscillations accompany a general overall 
tendency of  narrowing in the distribution. The total plant quality and herbivore 
populations are depicted in Figs. 1(c) and (d). In addition, several plots o f f  as 
a function of q are also displayed to illustrate its convergence to a line with 
negative slope. 

To underscore the message of  this example, properties of the plant's response 
function, f ( independent of  the herbivore function, g) can influence qualitative 
changes in p(q, t) such as narrowing or widening over certain intervals of q. 
However, f and g acting in concert determine the overall stability properties of  
the system, including presence or absence of oscillations. 

While f in (7) is not based on any one real-life situation, data from Dyer 
(1975) indicates that this type of  response function is characteristic of  red-winged 
blackbirds and the size of corn ears. Dyer noted that corn tends to overcompensate 
for damage due to bird pecking by increasing in size faster than the natural rate. 
Dyer further claims that birds preferentially attack larger corn ears. Identifying 
the size of a corn ear as the feature of  the vegetation which determines its quality 
as a food source for red-winged blackbirds, one obtains the formula (7) as a 
representation for the plant response to herbivory, f It is interesting to observe 
that the sort of  narrowing size distribution which was predicted by the model is 
in fact observed in some of Dyer's data. 

6. Sedentary herbivores 

The single major difference between sedentary and mobile herbivores is that in 
the former, individuals interact largely with a single host plant; thus they affect 
and are in turn affected by the plant quality of  one plant, not of  the whole plant 
population. While herbivore species could characteristically have varying degrees 
of  mobility, in this section the limiting case of  totally sessile herbivorous insects 
will be discussed. 
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The new feature to be included in the model is the fact that herbivores are 
not identical. Those sitting on plants of favorable quality may reproduce rapidly 
or have a low mortality. Others may suffer higher mortalities and low reproductive 
rates if their hosts are of unfavorable quality. Lack of mobility effectively sub- 
divides the population of herbivores into classes that will be successful to different 
degrees depending on their distribution among hosts of different qualities. 
Moreover, the effect of herbivory on a plant will no longer be related to the total 
population of  pests, but rather to the relative proportion of the herbivores on 
the plant. In modeling this type of plant-herbivore system, the letter b ("bugs") 
will be used in place of  the previous variable h ("herbivore") to emphasize that 
the model applies to sessile herbivorous insects. 

Several approaches were used in developing a model to describe this situation. 
In the first, the sessile herbivores were described by the variable 

b(q, t) = density of herbivores per plant on plants whose 
quality is q at time t. 

The problem with this definition is that it presupposes a correlation between the 
quality of the plant and its herbivore load. That this assumption is faulty emerges 
from the equation for b derived by straightforward considerations: the equation 

0b ~b 
-~ = - f--~q + g 

(L. Edelstein-Keshet, unpublished observations) is a nonlinear hyperbolic 
equation (since f depends on both b and q). It is well known that such equations 
admit solutions in which a given q value does not have a unique b ("shocks" in 
the terminology of applied mathematics). 

In a more valid second approach to the problem of  sessile herbivores the 
extent of  herbivory is considered an additional independent variable, along 
with plant quality. The motivation for this approach is to some extent derived 
from a discussion of  herbivore attack patterns in Crawley (1983), who defines 
p(i)  as the proportion of  plants with i herbivores. Crawley assumes that p(i)  

>_- .~ 
o (i) 
Z 

0 

/ o. `4 

HERBIVORE LOAD, b 

Fig. 2. In the case of sessile herbivores, b and q are both viewed as attributes of  the plant. The set 
S consisting of  pairs (q, b) represents a collection of  plants, with p(q, b, t) a frequency distribution 
with support  S. The vector (f, g) defines the motion at each point in the plane 
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does not change with time. More realistically, since some plants provide more 
hospitable conditions than others, the pattern of  herbivore attack could gradually 
shift during the course of  herbivory. 

To incorporate this more general situation, a new distribution is defined to 
simultaneously describe the plant quality and herbivore load of plants. What 
makes this possible is the fact that an herbivore load can be viewed as an additional 
attribute of  the plant, particularly in the case of  sessile herbivores. I then define 
p(q, b, t) to be the frequency distribution of  plants of quality q and herbivore 
load b at time t. 

That is, 

f ~-F Aq f b+ Ab 
Jb p(q,b,t) dqdp, 

is the number of plants (or biomass of the vegetation) whose quality is between 
q and q + Aq and whose herbivore load is between b and b +,:lb. 

This definition proves useful for several reasons. First, it leads to a rather 
natural generalization of  a previous plant equation which condenses information 
about the two interacting populations into a single statement. Second, it applies 
to a situation in which plants may have few or many herbivore units, regardless 
of  the current plant quality, i.e. it eliminates problems which arise if one assumes 
that herbivore loads are correlated to the quality of the plant. 

The derivation of an equation for p(q, b, t) again follows by analogy with a 
physical situation, but one of  a higher dimensionality. Each plant is now associ- 
ated with a pair of  coordinates, (q, b), i.e. (plant quality, herbivore load of plant). 
These coordinates change with time as before in accordance with the equations 

{ -~t=f(q,b), (19a) 

-~= g(q, b), (19b) 

which summarize the mutual effects of  plant quality and herbivory on one another. 
Now identify the plant coordinates (q(t), b(t)) with a position (in a two- 
dimensional "state-space"), and the vector (f, g) with a velocity (i.e. rate of 
change of  (q, b) with time). Then, by an identical analogy with a distribution of 
particles moving over a plane, one finds the equations for p(q, b, t) to be 

Op Opf Opg (20) 
Ot Oq Ob " 

Note that the RHS is equivalent to div(J) where J = (pf, pg) = flux of plants and 
div is the operator (0/Oq, O~ O b); i.e. the equation is again in the form of  a standard 
conservation equation, Oc/Ot---div(J). 

Equation (20) is written for a constant total plant population. One can include 
a death of  part of  this population by using a term of  the form (-dp) in the RHS 
of  the equation. For the purpose of this analysis it will again be assumed that 
plants do not die. 
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a. The mathematical problem 

The mathematical problem consists of Eq. (20), together with initial conditions, 
such as p(q, b,O)=po(q, b) and boundary conditions. The precise boundary 
conditions depend further on details of the specific situation, and in particular, 
on the functions f and g. It should be clear from Eq. (19b) that g(q, 0) = 0, i.e. 
that if there are no herbivores, the herbivore population cannot increase. This is 
equivalent to a no-flux boundary condition at the boundary b = 0, i.e. there are 
no initially herbivore-free plants which later become colonized by pests. If 
f (0 ,  b ) = 0  or else po(0, b ) = 0 ,  one has an additional no-flux condition at the 
boundary q = 0 which ensures that no plants of initially "zero quality" eventually 
become part of the population. 

About the initial conditions one can generally assume that the distribution 
p(q, b, 0) has compact support (i.e. is identically zero outside some interval). 
(Under reasonable assumptions about f and g this will imply that p(q, b, t) will 
always have compact support, although the support may grow as t ~ 0o in some 
instances.) 

Harvesting or other biological manipulations such as removal of  heavily 
infested plants can be accommodated in the problem by setting p --- 0 for q i> ql 
or b >/b~ for b~, q~ fixed. This means that all plants attaining or exceeding a 
quality q~ are removed and /o r  all plants which are infested by bl or more 
herbivores are eliminated. (One can calculate the biomass which has been removed 
by integrating the flux at q = ql or b = b~ over the timescale of the process.) 

b. A qualitative interpretation 

Suppose the plant population consists of a number of plants, n. At starting time 
t -- 0 each plant i could be represented by a pair of values (qi, bi), its plant quality 
and herbivore load. The whole population can be thus depicted by a collection 
of points in the qb-plane. (These points will move as a result of herbivory.) The 
frequency distribution p (qo, bo, 0) can be identified with the probability of finding 
a plant whose initial state is (qo, bo). Then, for the ith plant, 

{ - ~ = f ( q i ,  bi), (21a) 

dbi b = g(q,, i). (21b) 

These are the characteristic equations associated with (20), which describe the 
population from the standpoint of cohorts (following a group of plants that had 
a specified initial state). Writing n systems of equations (with two equations 
each) for the n plants in a sample population appears to complicate the problem. 
However, an equivalent point of view is to consider Eqs. (21a, b) as a dynamical 
system equipped with a set of  initial data s = {(ql, bl) �9 �9 �9 (q,, b,)}, and a probabil- 
ity function p(q, b, t) defined on this set. More generally, a large population of 
plants could be characterized by any compact subset S(t)  of the qb-plane, where 
S(t)  = sp{p(q, b, t)} is the set on which p is non-zero. This leads to a qualitative 
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theory for the effects of  herbivory on the plant-herbivore population to be outlined 
below. 

c. Qualitative outcome of herbivory 

With the interpretation given in the previous section, the problem can be restated 
in the following way: given a dynamical system in the qb-plane and a compact 
set S of initial data, how will S evolve with time? The answer to this type of 
question would depend on the set S(0) and the functions f and g. Typically, the 
set S may shrink, expand, or distort as it undergoes motions governed by the 
dynamical system. This is related to a phenomenon observed in example 1 where 
it was demonstrated that assumptions about the quality-response function f lead 
to a narrowing or broadening plant quality distribution. In this section, I demon- 
strate analogous properties for the case of sedentary herbivores. To be more 
precise, conditions will be obtained which guarantee that plants represented by 
points of  the set S will become more (or less) similar in their properties. 

Starting with two initially similar plants (qo, bo) and (qo+ e, bo+ 8), where e 
and 8 are, respectively, their differences in quality and herbivore load, the first 
outcome is equivalent to e, 8 ~ 0 as t ~ oo. Using Eqs. (21a, b) and substituting 
for the coordinates of the second plant, one gets 

d(qo+e) 
- f(qo+ e, bo+ ~), dt 

d(bo+ 8) (22) 
dt g(q~ b~ ~)" 

For e and 8 small, upon expanding the LHS, rewriting the RHS in a Taylor 
series in e, 8, one obtains 

de_ eOf +80f  +..  ", 
dt Oq (qo,bo~ Ob (qo.bo) 

(23) 
dS_  

E 0g + 8 ~  +. �9 
dt Oq (qo,bo) (qo, bo ) 

in which all quadratic and higher order terms in e, 8 have been omitted. 
Using a shorthand notation in future references to the above set of  equations, 

we write 

where 

d e A e 

A=(Of/Oq Of/Ob~ 
\Og/Oq Og/Ob] 

(25) 

is the Jacobian of the mapping associated with the dynamical system (19). 
The deviations e and 8 will decay, i.e. two plants whose initial states were 

(qo, bo) and (qo+ e, bo+ 8) will become more similar when (0, 0) is stable steady 
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state of (24), the linearized version of the equations. By linear stability theory 
two prerequisites are necessary for such stability: 

(a) Tr A<0 ,  and (b) det A>0 .  (26) 

Given f and g, conditions (a) and (b) are inequalities, (fq+gb <0  and 
fqgb +fbgq > 0) which define certain regions (open sets in the set-theoretic sense) 
in the qb-plane. When two nearby points representing two plants fall within a 
region satisfying (26) they will get closer with time. Equivalently, as long as the 
set S(t) is completely contained in this region it will contract. 

For example, a somewhat obvious result is obtained when the system described 
by Eqs. (19) has a single stable equilibrium, (q*, b*). Since (q*, b*) must itself 
satisfy a) and b) to be stable, it must be contained in the interior of a region 
which contracts the distribution. All points in the plane will converge to (q*, b*), 
simultaneously growing arbitrarily close to each other (see Fig. 3). More complex 
outcomes may ensue for systems in which f and g admit multiple steady states 
with various stability properties. 

d. Stable oscillations and the plant population 

Given that the underlying structure of a sessile herbivore-plant system is that of 
a dynamical system in the plane, it is reasonable to anticipate the possibility of 
sustained stable oscillations. That is, for particular f and g which lead to stable 
limit cycles in q and b one should perceive periodic oscillations in the herbivore 
load and plant quality of each plant. This phenomenon has been observed in 
empirical situations (see Haukioja 1981, Fischin and Baltensweiler 1979). The 
following result addresses the nature of the plant population in situations where 
stable oscillations occur. 

Claim. Sustained periodic oscillations in a (sessile) herbivore-plant system must 
be accompanied by both narrowing (at some phases) and broadening (at other 
phases) in the distribution of plant quality and herbivore load, p(q, b, t). 

�9 . . \  

z w ~ ~7C_ p ( q ,b,o)l ~ 

.. .:.".: i : . . . . . .  i - i :. : "  : . . .. 
�9 \ 

HERBIVORE LOAD,b 

Fig. 3. In the sessile-herbivore case, the nature of the populations can be partly deduced by observing 
the qualitative features of the set S in the phase plane. When the set S enters a region (shown white) 
satisfying (26), it shrinks. This corresponds to a peaking or narrowing of the distribution p(q, b, t) 
which means that there is a tendency towards uniformity of  quality and herbivore load in the vegetation 
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Proof Verification of the claim follows from Bendixson's negative criterion. (For 
the system (19) it may be paraphased as follows: in order for a region D in the 
qb phase plane to contain a closed trajectory it is necessary that the quantity 
(Of/Oq+Og/ab) vanish identically or change its sign in the region.) Thus, it is 
impossible for a region characterized by (Of/0 q + Og/0 b) < 0 to completely contain 
a limit cycle. The closed trajectory must dip outside this region, forcing the 
expansion of the set characterizing the plant population. On the other hand, 
assuming that only expansion takes place as the cycle is traversed leads to a 
contradiction since, by assumption, the limit cycle is stable and attracts neighbor- 
ing trajectories. 

Bioeorollaries. (1) In plant-herbivore systems in which sustained oscillations are 
present, herbivory cannot lead to a homogenizing effect on the vegetation. 

(2) In the presence of  sustained oscillations, the vegetation will alternate between 
a disperse (broad) quality distribution, and a focused (narrow) quality distribution 
during every cycle. 

Example 2: periodic oscillations in plant-herbivore systems 

To demonstrate how the model for sessile herbivores would be applied, consider 
the following particular case, again chosen only for the purposes of illustration. 
Let the response functions f and g be given by 

{ -~tq =f (q ,  b) = q(1 - q)(a(1 - b) + q), (27a) 

~ t  b= b) = - b). (27b) g( q, flb( Kq 

For the purposes of this example, the plant quality response, f was constructed 
with the following properties: f =  0 for q = 0 and for q = 1, so that plant quality 
initially in the range 0 < q < 1 is forever confined to that interval. Further, there 
is a critical quality q* such that f (q*)=0 and Of/Oq(q*)>O. (Note that q* 
depends on herbivore-load, q* = a (b - 1), and is in fact in the interval of interest 
provided a(b - 1) < 1, i.e. 1 < b < 1 + 1/c~). 

For a fixed b, if q* is in the (0, 1) interval, the plant population is effectively 
divided into two groups. Depending on the intensity of herbivory, plants whose 
quality is lower that the threshold level (q*) will deteriorate in quality whereas 
those above the threshold q* will increase in quality (up to a maximum quality 
q = 1). For high herbivore loads the "breakeven" point, q*, is large, meaning 
that most quality levels are not adequate to prevent deterioration. 

One interpretation is that fitness or hardiness of a plant is correlated with the 
index which determines its attractiveness from the standpoint of the herbivore. 
This means that low q values also mean low tolerance to herbivory. Depending 
on the herbivore pressure, this situation would imply that weak plants grow yet 
weaker and loose their attractiveness for herbivores, whereas hardy plants are 
either unaffected (if close to q = 1) or else continue to increase in attractiveness. 
Note that for very large herbivore intensities, f is always negative (all plants 
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succumb) whereas for very low herbivore pressure f is always positive (all plants 
flourish). 

The function g was chosen as before, with the idea that the quality of the 
plant is a feature that at high levels, enhances herbivore growth rates. Thus the 
carrying capacity of the plant for its inhabitant pests is again assumed to be 
proportional to plant quality. Note the duality in the mutual effects of the 
herbivore on the plant and vice versa. On one hand, the herbivore load determines 
the threshold level of quality, q*, that determines whether plant quality will then 
increase or decrease. On the other hand, plant quality determines the threshold 
level of herbivore density on plant beyond which overcrowding implies a net 
mortality. 

To avoid potential misunderstanding, it is again stressed that the interpretation 
given to the terms in Eqs. (27) are somewhat arbitrary, and are not to be viewed 
as a claim for a general theory, only as an illustrative example. 

The above model will now be analyzed for predictions about the population 
of plants. Since f and g are both nonlinear functions, an attempt to extract 
meaningful equations for mean plant quality and total herbivore population using 
(20) is unsuccessful. (Failure stems from the fact that integration by parts results 
in higher moments of the distribution being introduced into the equations.) 
However, we study the dynamical system given by (27) with the idea that it 
describes individual plants represented by points (q, b) and thus a set consisting 
of many such points which represents the whole population. 

It is readily verified that the system (27) admits four steady states, at (0, 0), 
(1, 0), (1, K)  and (7, KT) for y = a / ( a K  - 1). The first two are saddle points. 
Stability of the latter two depends on 7 and/3. If 7 >  1, then (1, K)  is a stable 
node and (3, Ky) is a saddle. If  3,<1, then (1, K)  is a saddle and (% K7) is a 
focus. In the latter case, stability of (% K7) hinges on the value of/3, i.e., for 
large/3 this point is a stable focus which, as/3 decreases, gives rise to a Hopf 
bifurcation resulting in the birth of a stable limit cycle and an unstable focus at 
(% KT). Figure 4(b) illustrates the appearance of a stable limit cycle. 

Turning attention to the whole plant population, we examine what happens 
to a set S(t) whose points (q(t)b(t)) satisfy (27). The conditions 26(a) and 26(b) 
are shown in Fig. 4(c). In the intersection of regions where these inequalities are 
satisfied, plants which are of similar qualities and herbivore laods should become 
nearly identical. They then diverge and grow dissimilar as the set S leaves the 
above regions. A repetition of this process occurs each time the limit cycle (not 
explicitly shown here) is traversed. 

Figure 5 gives one example of the actual evolution of an initial population 
of plants, marked by 1. Eleven points (along a straight line segment) represent 
the initial states of 11 hypothetical plants. It can be seen that the flow in the qb 
phase plane causes the line-segment to distort, bend and twist, so that these 
points are at times closer to each other, and at times further separated. The 
example also reinforces a remark made previously, namely that one may not 
presuppose any correlation between the level of quality and the herbivore density 
on a given plant. (While the initial distribution, 1, has a unique b for each q, 
this property breaks down later, e.g. in the 10th step.) 
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Fig. 5. An initial set of 11 points (marked 1) 
was chosen to represent 11 plants in a popula- 
tion. (S would consist of these points.) With 
time, the points shift in the (q, b) plane under 
the influence of the flow governed by Eqs. (27), 
The trajectory of one of the plants is explicitly 
shown 
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On a more abstract note, the problem of sessile herbivores appears to be 
equivalent to the problem of determining the asymptotic behavior of compact 
set(s) in the phase plane given an underlying dynamical system. Given general 
properties of such dynamical systems (e.g. the numbers and stability properties 
of steady states and closed orbits) one would like to make general predic- 
tions about how such sets evolve, and whether or not their volume shrinks or 
contracts. 

7. Herbivores with partial mobility: foraging and the pattern of herbivore attack 

When herbivores have a moderate degree of mobility, their distribution in the 
vegetation may be affected by a number of factors. Such factors may include 
attractiveness or apparancy of plants (i.e. "plant quality," q), the degree to which 
herbivores tend to aggregate or to avoid high densities of their kind, as well as 
predetermined effects such as interplant spacing and geometry,. 

Models which have dealt with spatial herbivore moyements have been 
described by Kareiva (1982), and Cain (1984). Continuous models for population 
dispersal over space are reviewed by Okubo (1980). While formulating a model 
which includes spatial distributions is relatively straightforward, the gain in 
realism is somewhat offset by a loss in analytical insight. At this stage, the 
plant-herbivore system is already being described by a function of three indepen- 
dent variables p(q, b, t); it therefore seems prudent to restrict attention to the 
spatially homogeneous situation before turning to a more detailed description 
which would include spatial variations. 

Ignoring the spatial distribution of plants means that one is describing a 
system for which interplant spacing is small compared to herbivore movelength 
so that the hosf plant selection is not strictly correlated to the physical location 
of a plant. With this qualification in mind, a generalization of the theory in Sects. 
1-6 is given and used to understand the steady state herbivore distributions in 
an unchanging vegetation. 



44 L. Edelstein-Keshet 

After deriving a set of  equations to describe the process of  herbivore mingling 
a somewhat accessible special case will be examined with the following question 
in mind: Given particular assumptions about how herbivores select or reject a 
host plant, what is the resultant effect on the distribution of  herbivores in the 
vegetation? To use current biological phrasing the purpose is to derive the 
herbivore attack pattern (Crawley 1983) and its relation to the vegetation quality 
distribution. It is also possible to treat a fuller problem which encompasses both 
the plant response and the herbivore reproduction/migration and growth, though 
here the equations are sufficiently complicated to warrant a numerical approach, 
not abstract analysis. 

As before, the distribution of herbivores and quality in the vegetation will 
be described by the double frequency distribution p(q, b, t) (as defined in Sect. 
6) which relates the probability of finding a plant of  quality q with a population 
of b herbivores on it at time t. In particular, the focus is on how herbivore mobility 
affects a steady state distribution Pss. It will be assumed that while finding a plant 
is largely a matter of  chance, the decision to leave a plant may depend on two 
factors: the current herbivore load, and the quality of the plant. Initially taking 
plant qualities fixed, two equations are derived to describe the redistribution of  
herbivores in the vegetation. The first is an equation for herbivores on plants 
written from the standpoint of  the plant, i.e. in terms of p(q, b, t). It is derived 
by considering the possible transitions which take place when a plant is found 
or rejected by one herbivore (see Fig. 6). Being a continuous approximation to 
a discrete process, the equation applies primarily to cases in which the average 
herbivore load of  a plant is large (e.g. aphids). A second equation will keep a 

k r Xj 

bk-I bk bk+l 
t / 

/ 
/ 

bivores 

transition probabilities 

plants classified 
by herbivore 
ood,b 

Fig. 6. In the case of  partly mobile herbivores, plants of  a given quality are classified according to 
their herbivore loads. Transit ion to the left, with probability Al, is identified with loss of  a herbivore, 
whereas transit ion to the right, with probability Ar signifies the addition of a herbivore 
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count of the herbivores which are not on plants, h(t) with the assumption that 
a herbivore which rejects one host plant must temporarily join this population. 

a. The distribution of herbivores in the vegetation 

Figure 6 summarizes the idea behind the derivation of an appropriate set of 
equations. First, consider a classification of plants according to their herbivore 
loads. If Bmax is the largest number of herbivores that could be present on a 
given plant, it is convenient to define 

b* = b~ B . . . .  

Ab = 1/Bma• 

Then b* is a dimensionless number (smaller than unity) and Ab is the dimension- 
less equivalent of a single herbivore. (Thus, the distribution p(q, b*, t) will be 
nonzero only for 0<~ b * ~  1.) The loss (or gain) of 1 herbivore will result in a 
shift of the state of  a plant from (b*,q) to (b* -Ab ,  q) [or to (b*+Ab, q), 
respectively]. Now consider a timescale T over which interactions between 
herbivores and their hosts occur and let T* be the fraction of that time for which 
an average of one herbivore leaves or finds a plant. The likelihood of leaving a 
plant may depend on its quality, q as well as on the degree of crowding on the 
plant, b*. The likelihood of  finding a plant may depend on plant quality (e.g. in 
the case of aromatic or physically more apparent plants) and on the pressure of 
searching herbivores (those not currently on plants, h). Define 

X~ = hi(b*, q) = probability that a plant of quality q 
infested with b* herbivores loses one 
herbivore during the dimensionless time r, 

hr = ,L(h, q) = probability that a plant of quality q 
gains one herbivore during T*. 

Note that the above transition probabilities are defined from the standpoint 
of the plants, not the herbivores (i.e. they represent the likelihood that a plant 
changes its state from (b*, q) to ( b * - A b ,  q) or to (b*+  Ab, q) during the time r*). 

By keeping track of  the transitions into and out of a given herbivore load 
class ( b  k -= kAb for fixed q) one arrives at the following discrete equation (in 
which *'s have been dropped for convenience of notation): 

p(bk, q, t+z) - -p(bk ,  q, t) = hr{p(bk-1, q, t)--p(bk, q, t)} 

+{h,(bk+l ,  q)p(bk+l, q, t)-- A~(bk, q)p(bk, q, t)}. 
(28) 

A standard diffusion approximation (Karlin and Taylor 1981) then leads to 
the continuous version 

02 Op 0 r p u l + _ _ ~ p ~ l  ' 
(29a) t J o q b 2 t  J 3t 3b 
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for 

or an equivalent equation, 

where 

u = (At - At) Ab, (29b) 
"l" 

zl2b 
= (A,+At) ~r , (29c) 

ap a a ap 
at ab {PW}+-Ob ~-~ (30) 

w:(u 
Several comments are called for: first, note that u, w, and @ may be functions 

of  the variables b, q and h (as will presently be demonstrated). Also, it is of 
interest to point out that the equation resembles a diffusion-convection equation 
(not in physical space but in the abstract state space of  herbivore loads). In 
particular, this means that tendency to form sharp peaks in the p(q, b, t) distribu- 
tion will be tempered by the smoothing effect of  the " random motion".  Technical 
discussions of other biased random walk equations and their continuous approxi- 
mations are also given in Patlak (1953) and Okubo (1980). 

While Eq. (30) depicts only the process of  redistribution of herbivores in the 
vegetation, it is easy to include herbivore growth, mortality or plant quality 
changes as before: one would obtain, by direct superposition of  flows in the 
qb-plane 

aJb aJq 
~-(b, t) = - V .  J = (31) q, 

ab aq" 

where 

Jq = {pf}, 

with f and g having their previous meanings, as in (19a, b). 

(32a) 

(32b) 

b. Herbivores searching for plants 

To now complete the model for mobile herbivores let us write an equation to 
keep track of  herbivores which are not currently on plants. Here one could include 
terms for higher mortality from starvation or aggravated risk of  falling prey due 
to greater exposure. Typically such an equation would be 

dh 
- SE(t) - izh + e, (33a) 

dt 
where 

5~(t) = f f  (A,-Ar)p(b,q,t)dbdq. (33b) 
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The first term, ~ represents the sum of net herbivore loss from all plants, the 
second term, /xh is net mortality while searching and the last term, e includes 
net migration into the patch. The equation is written in dimensionless variables 
as before. In a steady state situation it can be assumed that ~ ( t ) =  ~ is some 
constant. Then hs~ = (~f + e)//.L, i.e. the size of the steady state herbivore population 
off plants depends on the relative magnitude of the mortality while searching 
and the sum of the arrival rates, ~ and e. In a limiting case taken in the next 
section it will be assumed that the migration pressure e is much larger than the 
term ~ so that the steady state h = e//x is virtually independent of the transition 
probabilities. 

A "complete" model would be composed of Eqs. (33), (31), (32), and (19). 
In addition, one needs some empirical information governing the transition 
probabilities At and Ar which would then make u and ~ known functions of q, 
b and h. A steady state analysis of this model is used for describing the pattern 
of herbivore attack in the next section. 

8a. Steady state herbivore attack patterns 

In this section it is shown that assumptions about the way that herbivores select 
and reject a host plant lead to predictions about the steady state distribution of 
herbivore loads in the vegetation (p ( . ,  b, oe)). In the biological literature (e.g. 
Crawley 1983) this distribution is called the herbivore attack pattern and is often 
assigned a purely phenomenological functional description, without derivation 
from underlying mechanisms. 

Below I examine three possible situations. 

Case I" The probability that an herbivore leaves its plant is constant, regardless 
of the current herbivore load on the plant. 

Case II: Crowded conditions increase the likelihood that an herbivore will reject 
the plant. 

Case III: A large herbivore load tends to lower the likelihood that an herbivore 
will leave; i.e. the herbivores are gregarious or cooperative. 

To simplify analysis I consider only the steady distributions when dh/dt=O, 
dp/dt = 0. Setting the derivative equal to zero in Eq. (30) leads to 

0 

After integrating once with respect to b one arrives at 

Op 
wp - ~-~ = C~. (35) 

The general solution of (35) is 

p,s(b) = e-lSab[I ~eC1 isdb+c2] ' (36a) 

for 
\ 

- u ] .  (36b) S=~kOb / 
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The quantity C1 is a flux which would be zero if there are no new plants 
introduced at b = 0 and no loss of  plants at b = 1. Consider the case when the 
problem consists of  Eqs. (29) with zero-flux boundary conditions at b = 0 and 
b = Bmax. Taking C1 = 0, using Eqs. (29b) and (29c) and simplifying the expression 
leads to 

C2 (37a) P~s(b)=--~exp( -b+2II'e e~ 

where e = Ab/2, C2 is a constant of  integration, and 

f db. (37b) 
Ar 

I = Ar+A~ 

While the p roof  of  stability of  the above steady state may be mathematically 
nontrivial, physical arguments would tend to support  the notion that this steady 
state is a stable one which is established asymptotically as a result of  the underlying 
physical processes. Now we introduce assumptions about what governs the 
departure and arrival of  an herbivore to or from a plant. 

Let us examine the definitions of  At and Ar in more detail. Recall that these 
are defined as probabilities of  transition of  the state of  a plant. Thus, given a 
plant whose herbivore load is b, if  K is the probabili ty per herbivore that the 
plant will be rejected, then At -- Kb. Depending on whether herbivores are aggrega- 
tive or avoid overcrowding and whether they make choices based on plant quality, 
K could itself depend on b and on q. On the other hand, hr the likelihood that 
a plant is found is generally independent of  its current herbivore load but is 
proport ional  to the size of  the subpopulat ion h which is searching for plants, 
Ar = k2h. In some cases, particularly where olfactory or visual stimuli guide 
herbivore searching, k2 could depend on plant quality. For example, plants which 
are bushier or give off volatile substances could be more apparent  and thus more 
easily detected by herbivorous insects. 

By the arguments presented above, in the idealized situation it can be assumed 
that 

At = K(q, b)b, (39a) 

Ar = k2h. (38b) 

I now examine the three cases previously outlined: 

Case I: K(q, b) = kl ; 
(Each herbivore has a constant probabili ty of  rejecting a plant.) 

Case II: K(q, b) = k3b; 
The probabili ty of  leaving per herbivore increases with the herbivore load. 

Case III: K(q, b)= k4/(k5+ b); 
The probabili ty of  leaving per herbivore declines as the herbivore load increases. 

By performing an integration of Eq. (37b) in each of these cases and substitut- 
ing the result into Eq. (37a) one obtains a functional description of the steady 
state herbivore attack pattern. The quantities 9 ,  w, and u can also be given as 
functions of  b. A summary of  the results is given in Table I in terms of  dimension- 
less parameters.  In Cases I and I I  a single parameter  0, the ratio of  (departure 
rate of  last herbivore inhabitant) to (arrival rate) governs the solution, whereas 
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in Case III an additional parameter is involved (th = number of herbivores which 
result in half-maximal departure rate from a plant). 

Figure 7 is an example of the three types of steady state attack patterns 
pss(x; O) for several values of 0. The graph generally has a maximum, representing 
the most probable herbivore load which occurs when u = a~/Ob (see Eq. 30a). 
The location of the peak shifts to higher herbivore loads when 0 decreases, since 
there is then a greater propensity to gain herbivores than to loose a remaining 
few. In Case III a peak is present only when 0 > 1, i.e. when the maximal departure 
rate K4 is bigger than the constant arrival rate, k2h, and the solution is extremely 
sensitive to slight changes in ( 0 - 1 )  (see ~ in Case III of Table 1). 

The following are general trends displayed in these graphs. (Some of  these 
can be anticipated, to some degree, from the assumptions.) For comparable 0 
values, most plants have lower herbivore loads in Case II than in Case I since 
herbivores tend to leave crowded plants more frequently. In Case III the attack 

0,80 
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I 0,115 

0 .10  

0,015 

0.00 - -  ' " 
0 10 ~0 80 40 

Fig. 7. Examples of typical herbivore attack 
patterns for mobileherbivores which reject a 
host plant at a rate dependent on herbivore 
load. For plant quality fixed, the steady state 0 .05  

frequency distribution p~5(b, .) of  herbivore 
loads is shown in three distinct cases: (I) o .o , t .  
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when host plant has many herbivores on it; ~ 0.0a 
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"1~t. o.3"3"q~ 
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b P~s .o 

' . ~  ~ 

,,b, 0.66 ~ 3 3  :~ ~ 
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o 

Fig. 8a-e. Steady state herbivore attack patterns p~(b, q) for vegetation of  heterogeneous quality. A 
herbivore leaves its plant at a rate k 1 and finds a plant at rate k 2. (a) kl,  k s constant; (b) kl = 2/(q § 0.5), 
k2 constant; ( e ) /q  constant, k2 = 2(0.5 + q). When plant quality is a cue for the herbivore's rejection 
or detection of  a host, the attack pattern reveals a tendency to aggregate on higher quality plants 

pattern is more disperse even when its maximum is at low values. This stems 
from the fact that high herbivore densities are self-sustaining in that they result 
in lowered likelihood of departure. 

b. Plant quality dependent herbivore attack pattern 

More generally, an herbivore's selection of a suitable host plant may depend on 
plant quality. If the vegetation has some quality distribution, assumed fixed 
momentarily, then high densities of herbivores and high quality vegetation may 
well be correlated. I give two examples of this relationship below. 

One can proceed in several ways. A typical plausible assumption is that 
herbivores tend to exhibit a lower rejection rate when host quality is high. This 
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would mean that K(q, b) is a decreasing function of q. Because Eq. (30) only 
explicitly involves b as an independent variable, all the previous calculations 
carry through and one finds that in the solutions given in Table 1, the parameter 
0 is a function of quality. A second assumption could be that plants of  higher 
quality are more apparent, or more easily found that those of low quality. This 
means that the parameter k2 of  Eq. (38b) increases with q. Again the result is 
the same, so that one could in principle select some representative dependence 
O(q) and plot Pss as a function of two variables, b and q. 

In Fig. 8(a) through (c) I have assumed that plant quality is normally 
distributed with mean q = 0.5 and standard deviation o- = 0.2, that herbivores are 
of  type I, and that kl = 2 / ( q + 0 . 5 ) .  (This is equivalent to 0=(0.5/q+0.5) for 
e = 0.025; see Table 1.) The distribution is significantly shifted towards higher 
quality plants. In a second example, assuming that the arrival rate k2 = 2(0.5 + q) 
has an analogous effect. 

In this section I have dealt only with the "easy cases" in which the herbivores 
are not changing the quality of  their plants and are at some steady state population 
density. (The functions f(q, b) and g(q, b) which depict changes in plant quality 
and in herbivore population are zero in Eqs. (29) and (30).) However, it is not 
difficult to visualize what happens when these responses are incorporated, as in 
Eqs. (31)-(32). Typically, the distributions shown in Fig. 8 may undergo some 
distortion, their peaks may shift gradually, and there may be a narrowing or a 
widening, depending on the nature of  the functions f and g. The exact dynamical 
process would depend, among other things on the relative timescales of  herbivore 
mingling and changes in plant quality and herbivore numbers. 

9. Discussion 

Some previous theoretical work on plant-herbivore systems will be briefly 
described in this section and compared with the model presented in this paper. 

Earlier plant-herbivore models (Caughley and Lawton 1981; Crawley 1983) 
were phrased in terms of  total vegetation biomass and total herbivore population, 
assumed to vary continuously. This would lead to a system of coupled ordinary 
differential equations to describe changes in densities or biomass. Most of  these 
models do not address the changes in vegetation quality to which recent empirical 
work has drawn attention (see Rhoades 1982). 

The catch-phrase "plant  quality" has appeared in several previous models, 
although the emphasis is often quite different. For example, Moran and Hamilton 
(1979) discuss the effectiveness of  low nutritive quality as a defense for plants 
against insect attackers by showing that low plant quality can, under particular 
assumptions, minimize the damage to a plant. (Damage is represented by a 
variable, D, which stands for the total consumption of  plant material by her- 
bivores.) In their model, larval growth rate is proportional to plant quality, a 
fixed parameter which is not changed or affected by herbivory. In this sense, the 
duality of  plant-herbivore interactions is not fully explored in their model. 

In a classic model for the spruce budworm, the health or condition of  the 
forest plays a role analogous to that of plant quality. Ludwig et al. (1978), give 
a set of  three ordinary differential equations for B, the budworm population, S 
the average three size, and E the "condit ion" of  the forest. The growth rate of 
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budmoth is coupled to S and E;  the condition of the forest in turn depends on 
the average herbivore load per unit tree size (B/S) as well as on E. The average 
size of the trees, S, increases at a rate which depends on the average tree condition 
E. Data for outbreaks of budworm in previous decades is used to estimate values 
of twelve parameters, three of which determine the qualitative properties of the 
system. The authors note that while qualitative behavior similar to a typical 
outbreak cycle is obtained, there are differences which probably stem from 
lumping 75 tree age classes into a single variable, S. On this point, the difference 
between our models emerges. The present author would probably have treated 
E as an independent variable and looked at a partial differential equation version 
for S(E, t). 

Wliile the above models all treat herbivory as a continuous process, it is more 
realistic to use difference equations for cases where herbivores or plants have 
nonoverlapping generalizations. Fischlin and Baltensweiler (1979) have given a 
model for the larch budmoth in which plant quality is identified as raw fiber 
content of  larch needles. Experimental data is used to fit functional forms for 
the effect of raw fiber content on larval mortality and fecundity and also for the 
annual recruitment of raw fiber based on previous defoliation. (Note that these 
are analogous to f and g in Eqs. (1).) In emphasizing the dual effects of herbivores 
and plants on one another, the Fischlin-Baltensweiler model bears a parallel to 
the present one. It differs considerably in detail, being a discrete model which 
does not deal with the way that herbivory or plant attributes are distributed in 
the vegetation. 

A model due to Wang et al. (1977) for the Boll weevil on cotton uses several 
equations mathematically related to Eq. (3). However, similarity in appearance 
is misleading, since emphasis is placed on another phenomenon, that of herbivore- 
dependent vegetation mortality. The authors follow age distributions of  herbivores 
and of vegetation components with von-Foerster McKendrick equations coupled 
via the mortality terms. 

To contrast the new model with the above, the following points might be 
emphasized: (a) properties of the vegetation other than quantity or biomass are 
accommodated in its relationship to herbivores. (This follows from the definition 
of the variable q for plant quality.) (b) On the level of the individual, the herbivores 
and the vegetation exert mutual effects. (These are depicted by the two response 
functions, f and g, which are in principle empirically measurable; see Sect. 10.) 
(c) Information at the level of the individual is used in following collective 
changes in the populations as a whole. (This is done by the conservation equation 
for the distribution p(q, t) or p(q, b, t); see Eqs. (3) and (20).) 

To paraphrase the results, conclusions depend somewhat on the degree of 
intimacy shared by the two species. If  herbivores are committed to a single plant 
(sessile), the mathematical problem consists of a single partial differential 
equation for both populations. This case can be partially analyzed by phase plane 
arguments, but the object of interest is a set S which evolves with time, not a 
single trajectory. (The set contains information about the structure of the plant- 
herbivore system, i.e., about the distribution of the herbivores and the plant 
quality in the vegetation.) 

For philandering (i.e. highly mobile) herbivores it is necessary to use separate 
equations for the plants and their visitors. At present, this leads to a coupled 
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ODE-PDE system which under a very restrictive assumption (linearity of f (q , .  )) 
can be replaced by a pair of ODE's. 

The model at present can be applied to real specific cases provided that (a) 
the plant-herbivore interactions are continuous or graded over the timescale of 
observation; (b) the spatial distribution of the vegetation is not a major deter- 
minant of the pattern of herbivory in the vegetation (i.e. spatially homogeneous 
vegetation or small inter-plant spacing relative to movelength for mobile her- 
bivores, or else sessile herbivores); (c) the response functions f and g can be 
conjectured or experimentally ascertained (see Sect. 10). 

The model can readily be accommodated to incorporate plant mortality by 
including or (a negative term) in Eqs. (3) and (20). Presumably, mortality depends 
on the combination of herbivory damage and the current physiological state of 
the plant, i.e. o- = tr(q, h) is correlated to the quality variable and herbivore load 
of the vegetation. The effect of this term will be to selectively decrease the 
proportion of the vegetation at a particular range of q (for which the magnitude 
of o- is large). This sort of mortality term parallels the presence of a "sink" in 
the description of physical fluids in that it tends to make particles "vanish" locally 
rather than causing a shift in their state. For example, a typical term for mortality, 
e.g. o'(q, h) =ph/(k+ q) might represent the fact that loss rate is proportional to 
the rate of encounter between plants and herbivores (ph), but that plants of 
higher quality are more resistant (1/(k + q)). Other examples (of age-dependent 
mortality) can be found in Wang et al. (1977). 

The next major step in extending the model to more realistic situations will 
be to deal with spatially heterogeneous vegetation and herbivore movement. Some 
work in this direction has been done by Kareiva (1982) who considered situations 
in which the spatial distribution of the vegetation and its quality were empirically 
predetermined. 

The model can be readily generalized to cases where two or more uncorrelated 
attributes of the plant play equally important roles in mediating its relationship 
with its herbivores. It is similarly possible to consider larger systems with multiple 
plant or herbivore species. While the underlying ideas would be the same, the 
complexity of these multi-dimensional problems would clearly increase rapidly 
with their size. 

Another divergent approach would be to modify the model to deal with 
discrete, nonoverlapping generations (e.g. annual plants, annual herbivorous 
insects). Some of the mathematical methods suitable for this approach appear 
in the work of May et al. (1974). The perhaps unfortunate aspect is that relatively 
simple difference equation models frequently produce exotic dynamic behavior 
which, at present, defies mathematical analysis (e.g. approach to chaos in the 
Henon equations). This might tend to detract from ease with which such systems 
can be understood from a theoretical point of view. 

10. Possible empirical approaches 

Two key ideas emerge from the general theory. First, one perceives the importance 
of determining the responses of the vegetation and the herbivores simultaneously. 
A second, somewhat more subtle point, is that changes in the heterogeneity of 
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the vegetation may reveal important features of the plant-herbivore system. The 
vegetation may be better described by a frequency distribution of  some attribute 
than by its biomass or average quality. 

Below, I have attempted to give a rough indication of empirical approaches 
that might be adopted in connection with the theory. Since the details will clearly 
differ vastly from system to system, this is meant to be a sketchy outline, at best. 

a. Setting up a quality gradient. A collection of initially "identical" plants are 
subdivided into herbivory groups (A, B , . . . ,  N) .  Each group is subjected to a 
controlled intensity of herbivory (e.g. A = l o w , . . . ,  N = high). This will presum- 
ably induce the physiological changes that result in plant qualities qA, qB . . . .  , qN 
respectively in each of these groups. 

b. Chemical or physical quality assays. By methods detailed in the literature, one 
might assay for nitrogen, water content, presence of secondary chemicals, physical 
toughness or fiber content. One or several of these may be readily correlated to 
the intensity of herbivory and could thus serve as a "chemical marker" for the 
state of the plant. 

c. Herbivore " tas te"  tests. Where feasible, portions of the vegetation could be 
presented to herbivores in N-way preference tests. If  herbivores are selective, 
such tests could provide a second biological marker for the variable called "plant 
quality". 

d. Plant quality bioassay. For each of plant groups (A, B . . . .  , N)  which result 
from (a) above, remove "o ld"  herbivores and apply "fresh" ones (reared on 
identical plants) at two levels, low and high. On the resulting groups of plants 
(Alow, Blow,. . . ,  Nlow) and (Ahigh, Bhigh,. �9  Nhigh) determine the herbivore mor- 
talities, fecundities, and growth rates. If  these responses differ over the plant 
types A - N ,  they can in future be used as a bioassay for the plant quality variable. 
If no difference is perceived, the plant-quality theory must be rejected for the 
particular system studied. 

e. Identifying the plant 's  response. Cross an initial quality gradient (established 
in a) with a second application of herbivores at levels (a, b , . .  m) for a time 
duration At (At should be small on the natural timescale of interactions, but 
large enough to detect changes in plant quality). The above procedure leads to 
an array of  plant groups, p~:j, where K -- A . . . . .  N and j = a, m. Assay for plant 
quality before and after herbivory. The plant response function, f would then be 
given by 

f (  qr ,  hi) --~ (qinitia,- qnna,)/ At- 

(Note that it may be necessary to replace herbivores which fall off or die to keep 
the herbivore intensity hj constant within a given vegetation group.) 

f Identifying the herbivore's response. This would be determined in a cross similar 
to the above, but with focus on changes such as growth rates, mortalities, etc., 
in the herbivores. The time interval At would be chosen with the idea of detecting 
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small  changes in the herbivore  densi ty  or biomass.  The herbivore 's  response to 
a given vegetat ion type would  then be: 

g (  qK,  hi) ~- (hinitia I - -  hfinal)/ At.  

(Note  that  it may be necessary to contrive to fix the quali ty of  the vegetat ion by 
con t inua l ly  present ing  the herbivore with "fresh" vegetat ion whose qual i ty qK 
has been  predetermined. )  

While  certain of  these suggestions u n d o u b t e d l y  present  p roblems in m a n y  

systems, it is to be hoped  that  some par t icular ly  convenien t  exper imenta l  systems 
might  al low for the above or s imilar  man ipu la t i ons  which could then be used to 

test the theory. 
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Appendix A1 

B. Dimensional analysis, Eqs. (13) 

In Eqs. (13) set 

O= 0"0, 

Then, 

t = t*'r, H = H*I?I. 

dQ* = g , (  r 0. ) - I~2( r Q* H*( IYtH* - Ho) 
dt* 

dH* 
dt* = Ka(r)H*(1 - K4I~IH*/QQ*). 

Choose 

= 0//~,, f i  = no, 

After dropping stars, the equations are given by (14) with 

K = s  2 = ,~2K4HUI~, z':g<"~h~ = K'~- o 

a = K3r = K3K4Ho/I~I KaK4h~ 
K1 

Q = K4H. 

(A1) 

(A2) 

Appendix A2 

C. Phase plane analysis, Eqs. (14) 

Letting W= 1 -KQH(H-1) ,  V= a l l ( 1 - H / Q ) ,  coefficients of the Jacobian matrix for Eqs. (14) 
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consist of 

a l l = O ~  = - K H ( H - 1 ) ]  
oQI ss I s~ 

wl a 0 
H = ~ - 1  ss = - K Q ( 2 H  - 1) ss 

OV 
a21 = ~ = ctH2/Q2 = a 

s s  s s  

a OV l, =-a. 

(Where the above quantities are evaluated at the steady state.) Then 

all + a22 = - K H ( H  - 1) - at ,  , is negative (H~s > 1) 

alla22- a12a21 = T = K a H ( 3 H  -2)1~ is positive so that (Q~s, H~) 

is stable. Oscillations would occur if 

{ ( K H ( H  - 1)+ a)  2 - 4 K a H ( 3 H  - 2)}l~s < 0. 
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