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Abstract. We develop and analyze a model for the swarming behaviour 
observed in army ants. The model assumes that the ants coordinate their 
movements by using chemical pheromones as trail markers. The markers 
continuously evaporate, and are reinforced by new markers laid down by the 
ants as they move. The motion of the swarm is modelled by a system of partial 
differential equations (PDEs). The equations are derived from the motions of 
the individuals, but represent the collective motion of the group, and the 
formation and decay of the trail network. The PDEs have travelling wave 
solutions which correspond to the propagation of the leading edge of the 
swarm. We describe these solutions qualitatively, and use them to determine 
how both the shape and the speed of the swarm depend on the parameters 
describing the motion of the individual ants. 
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1 Introduction 

A raiding column of a swarm of army ants maintains a regular structure and 
advances at a steady speed [20, 21, 22]. The purpose of this paper is to 
determine how the behaviour of the individuals in these swarms contributes to 
the 'shape' and speed of motion of the raiding column. Depending on the 
species, army ant swarms may consist of a few thousand, or several hundred 
thousand individuals. They have no fixed leaders, nor is there any apparent 
pattern or order at the level of the individual [23]. The movement of the 
swarm is coordinated through the use of trail pheromones [3, 4]. Each ant 
deposits these chemical trail markers as it moves. Those ants following 
previously laid trail markers will reinforce the existing trails. Any ant finding 
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itself on previously unexplored terrain will deposit a similar marker before 
returning to the swarm [22]. Schneirla [23] refers to these ants as the 
pioneers, and notes that their movements are faster, and more erratic than 
those of the ants following the trails. Since the pheromone is volatile [3, 4], the 
trails will decay if not continuously reinforced. Further, the ants have only 
a limited ability to follow these trails [4]. This leads to a continuous exchange 
between the followers and the pioneers. This feature of swarming has also 
been noted by Schneirla [23]. 

Laboratory experiments [2] suggest that the swarming patterns are self- 
organized. Self-organization is the hypothesis that the 'behaviour' of a group 
is not coordinated by a few 'privileged' individuals, but rather arises from 
interactions between many simple individuals [5, 7, 18]. Several previous 
studies [8, 13, 24] using cellular automata simulations show that swarming 
structures similar to those observed in nature can result from very simple 
models. These models are based on the differences in the behaviour of ants 
following trails and those exploring new ground, and on the known properties 
of the trail pheromones. Although these simulations are useful in examining 
the motions of the ants in two dimensions, they cannot provide a thorough 
analysis of the underlying models. A more rigorous analysis is provided by 
Edelstein-Keshet [10] who has developed a simpler model to predict the 
density of traffic on the trails. Her model is also based on the behaviours of the 
individual ants. She proposes a system of ordinary differential equations to 
model the densities of ants and the densities of trails. Her results indicate that 
small changes in the behaviours of the individuals can give rise to a switching 
between diffuse trail networks and concentrated trail columns. An alternate 
approach works from a point of view of statistical mechanics [15]. Here 
changes in the properties of the trails networks can be studied as phase 
transitions. 

The model presented in this paper is intended to study the propagation 
of a raiding column. We develop a system of partial differential equations 
(PDEs) to describe the evolution of the density of the trail network, and 
the densities of the ants following the trails and those exploring new 
territory. The model is based on the movements and behaviours of the 
individual ants in the swarm. Our goal is to determine how the local 
behaviour of the individual ants in the swarm affects the global motions of 
the swarm. 

To analyze the model, we first reduce the system of PDEs to a system of 
ordinary differential equations (ODEs) whose solutions represent travelling 
waves. This step is motivated by the observations that the swarm progresses at 
a steady rate and maintains a regular shape [21, 22]. We then analyze these 
equations qualitatively using the state space of the system. A travelling wave 
solution is represented in the state space by a heteroclinic orbit (a solution 
curve connecting two fixed points). The analysis leads to a simple numerical 
technique to test the existence of a structurally stable heteroclinic orbit for 
a given set of values for the parameters, and more importantly, provides us 
with a qualitative description of the travelling wave. 
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2 Development of the model 

2.1 The basic model 

For simplicity we will examine the motion of the ants along a single direction. 
We are ideally interested in swarm propagation in two, or even three spatial 
dimensions to account for movement over a complex environment such as 
a rain forest floor. At present, our investigations of two dimensional motions 
are limited to cellular automata simulations [24]. Scenarios where the motion 
of the ants is confined to a single dimension can be constructed and studied 
experimentally. For  example Deneubourg et al. [6] restrict the movements of 
the ants to narrow bridges. Natural restrictions to motion also exist. Schneirla 
[22] has noted that the swarm often proceeds in the direction which offers the 
least resistance. When the ants first emerge from the nest, they will form trails 
in several directions. Over a period of approximately fifteen minutes a single 
direction will be chosen. The swarm then moves in this direction. In this 
preliminary analytical investigation we focus our attention on the movement 
of the developing swarm in this single direction. 

In developing a model for the swarming behaviour of army ants, there are 
several known facts which must be incorporated. 

F1. There are no fixed leaders [23]. 

F2. The ants communicate by using pheromones as trail markers. These 
chemical markers are deposited by the ants as they move, and are attractive to 
other ants [14]. 

F3. The pheromones used are volatile, and decay over time [3]. 

F4. The ants have a finite ability to detect the trails. Experiments show 
that they are able to follow a trail only a finite distance before turning off 
it I4]. This leads to a continuous exchange between followers and pioneers 
[23]. 

FS. The ants following the trails tend to make more directed motions than 
ants which are exploring new ground. The pioneer ants will move faster, and 
turn more frequently than the followers [23]. 

The limited ability of the ants to follow trails (F4) combined with the two 
distinct behaviours of ants following and not following trails (F5), prompts us 
to divide the ants into two groups: ants which are following trails (followers), 
and ants which are exploring and laying new trails (pioneers). The pioneer 
ants are observed to move faster and turn more frequently than the followers. 
Trails are laid by the pioneers, and reinforced by the followers° 

Consider a domain with a fixed width which is small relative to its length 
(Fig. 1). Let x represent the distance along the length of this domain. The 
following state variables are defined as densities per unit length of this strip. 
We use the abbreviations d (distance), t (time), and @ (number) for the 
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dimensions. 

T(x, t) = density of trails at (x, t), [d/d] 

F(x, t) = density of trail followers at (x, t), [ # /d]  

L(x, t) = density of pioneers (lost ants) at (x, t). [#c/d] 

The trail density T(x, t) is defined so that T(x, t)dx is the total length of all 
trails in the interval (x, x + dx) (see Fig: 1). It is possible to approach this 
modelling problem in two distinct ways, namely by considering the physical 
length of the trails or the concentration of trail pheromone along the domain. 
The dichotomy between long, chemically weak trails, and short, but heavily 
marked trails has been explored by Edelstein-Keshet [10]. We do not ex- 
plicitly consider this distinction here. 

Since the ants may move in either direction along the trails, we must 
distinguish between those moving towards the nest, and those moving away 
from the nest. 

F÷(x, t) = density of followers moving away from the nest. 

F-(x, t) = density of followers moving towards the nest. 

L+(x, t) = density of pioneers moving away from the nest. 

L-(x, t) = density of pioneers moving towards the nest. 

A similar distinction was made by Pfistner [19] and Alt [1] in models for the 
motion of bacteria. 

The above facts also suggest that the swarming structures arise from the 
collective behaviour of the individual ants. To incorporate this hypothesis 
into our model, we must base the derivations of the equations on the motions 
and behaviours of the individual ants. Further, the ants respond only to local 
signals. Thus we attempt to determine how the local interactions of the ants 
can give rise to a global swarm structure. This emergence of a global pheno- 
menon from the simple local interactions of many individuals is a key feature 
of self-organizing systems. The following parameters are used to describe the 
behaviour of the individual ants, and the properties of the trail pheromone: 

7 rate of decay of the trails, [1/t] 
z I rate of trail reinforcement by followers, [d/t] 
"el rate of trail deposition by pioneers, [d/t] 
v speed of the followers moving in either direction, [d/t] 
s speed of the pioneers moving in either direction, [d/t] 
2 reversal rate of pioneers, [1/t] 

p+ rate of reversal for followers moving away from the nest, [1/t] 
p-  rate of reversal for followers moving towards the nest, [1/t] 
e rate of trail loss for followers, [l/t] 

rate of recruitment of pioneers to trails. [l/t] 
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Fig. 1. The one-dimensional formulation of the trail network models trails as moving 
towards or away from the nest. Trail loops correspond to followers changing their direction 
of motion along parallel trails. The model sums the total concentration of parallel trails per 
unit distance from the nest. Thus, followers on looping trails are indistinguishable from 
followers reversing along the same trail (parameters p:~) 

The parameters y, xl, and xt govern the growth and decay of the trail 
network (F2, F3). The differences in the behaviour of followers and pioneers 
(F5) require us to define the two velocities v and s. The parameters 2, p ~, and 
p -  measure the average number of reversals per unit time. Since the motion 
of the pioneers is erratic (F5), 2 will be large relative to p+ and p-. The 
distinction between p + and p-  is explained below. The exchanges between the 
followers and the pioneers (F1, F4) are described by the parameters e and a. 

We will approximate the decay of the trail pheromone by assuming that 
the total length of the trails in a given region decays exponentially at a rate y. 
We further assume that the ants mark the trails using only a single pheromone 
which is secreted continuously and at a constant rate. However, we allow this 
rate to be different for followers and pioneers by introducing two rate 
constants ~/ for followers, and zz for pioneers. Edelstein-Keshet [10] and 
Watmough and Edelstein-Keshet [24] discuss these assumptions in more 
detail. These assumptions lead to the following equation for the evolution of 
the length density of the trail network: 

a~ T(x,  t) = - 7T(x,  t) + zyF(x, t) + zzL(x, t) .  (1) 
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There is, unfortunately, very little information on the values of y, z s and zz. 
Edelstein-Keshet [11] tabulates several estimates of these parameters. 
For most species of trail following ants, ~/, zt ~-2-3 metres/minute, and 
y ~- 10 minutes-I .  

Equations for the rates of change of the densities of ants follow from 
considering the exchanges between pioneers and followers, and between ants 
moving to the left, and ants moving to the right. Pioneers will become 
followers at a rate aT as they encounter and begin following existing trails. 
Followers will lose the trail and become pioneers at a rate e, and reverse their 
direction at rates p+ and p- .  The looping motion of the pioneers corresponds 
to reversals at a rate 2 (see Fig. 1). The rates of change of the densities of the 
ants at any given point (x, t) are modelled using the following equations: 

~F + ~F + 
+ v  = - e F  + + a L + T - p + F  + + p - F - ,  (2) 

~t c~x 

~ F -  ~ F -  
v - -  = - 8 F -  + a L - T  + p + F  + - p - F -  , (3) 

& ~ x  

for those ants which are following the trails, and 

~L + ~L + 
~-----f- + s - - ~ -  x = e F  + - a L  + r  - ) .L  + + ~ L -  , (4) 

OL - dL - 
dt  s - - ~ -  x = e F -  - a L - T  + 2 L  + - 2 L -  , (5) 

for those exploring new territory. 
The parameter e has been estimated by Calenbuhr [4] to be on the order of 

one per minute. Although there is little experimental evidence, we will assume 
that the parameter a is of the same order of magnitude. Schneirla [22] has 
measured the velocity of the followers, v, to be between 2 and 3 metres per 
minute. The speed of the pioneers, s, has not been measured, but is noted to be 
slightly faster. A realistic estimate is in the range of 3 to 5 metres per minute. 
The motion of the pioneer ants is erratic, consisting of rapid, short runs, 
punctuated by frequent turns. We therefore assume that 2, the rate the 
pioneers reverse their direction is on the order of 15 to 30 times per minute. 

We assume that the distributions of the ants near the nest are homo- 
geneous. This leads to the following boundary conditions: 

F;(0,  t) = 0 ,  lim F +(x, t) = 0 ,  
X - - *  oO 

F2(0, t) = 0 ,  lim F2(x, t) = 0 ,  
X - ~ O 0  

L +(0, t) = O, lim L +(x, t) = O, 
~;--} aO 

L 2  (0, t) = 0 ,  lim L2 (x, t) = 0 o 
x ~ a o  

(6) 
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Note that these are not zero flux boundary conditions since the densities 
F and L are the densities of ants moving with velocities v and s respectively. 
Thus there will be a steady flux of ants both into and out of the nest. For more 
realistic boundary conditions, the densities of pioneers and followers exiting 
the nest should depend on both the length of trails at the nest, and the number 
of ants inside the nest. 

The above equations comprise a basic model based on the behaviours of 
the individual ants in the swarm. We will now proceed to make several 
simplifications based on the magnitudes of the parameters° 

2.2 The s impl i f ied  model  

An equation for the evolution of the total density of followers at the point (x, t) 
is obtained by adding equations (2) and (3). 

aF a 
~---~ + v-~x (F ÷ - F - )  = - , F  + a L T o  (7) 

There is some evidence that ants following a trail can determine the 
direction of the nest. Schneirla [22] speculates that the ants determine the 
direction to the nest by contacts with other ants on the trails. The trails 
themselves are not oriented. He also notes that during the initial stages of 
foraging, the majority of the ants are observed to be moving away from the 
nest. If we assume that p- ,  the reversal rate for followers moving towards the 
nest, is much larger than the other parameters of equation (3), then changing 
the timescale of (3) and neglecting the smaller order terms implies that 
F -  decays rapidly to (9(1/p-)o This assumes that the ants are more inclined to 
turn away from the nest than towards it. If F -  is small and can be neglected 

• then equation (7) reduces to 

~F aF 
~--~ + V-~x = - eF + ~ L T  . (8) 

The rate of change of the total number of pioneers is obtained by adding 
equations (4) and (5). 

Ot + s ( L  + - L - )  = eF  - a L  T (9) 

The rate of change of the total flux of pioneers is obtained by multiplying (4) 
and (5) by the speed s, and taking the difference of the two equations. 

a + S2 L s - ~ ( L  - - L - ) +  a x L = S ~ ( F + - F - )  

- as (L  + - L - )  T - 2).s(L + - L - ) .  (10) 
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If we now differentiate (9) with respect to t, and differentiate (10) with respect 
to x, the resulting equations can be subtracted to yield 

a2Lt3t2 s2a2L = ~ (eF -- aL T) - 22s~---x (L - L-) 

+sf-f-x[e(F+-F-)-a(L + - L - ) T ] .  (11) 

Dividing through by 22 and using (9) to replace the second term on the r.h.s 
leads to 

l a 2 L t ~ L s 2 0 2 L  l a (  ) 
2 2 ~  -t at = 2 2 a x  2 eF+~tLT+~-~ eF-~LT 

s O F  - + ] 
+ ~ x x l e ( F  --F-)--a(L + - L - ) T  . (12) 

Note that ifs 2 ~ 16 m 2 min 2, as noted above, and 2 ~ 15 min -1, then the 
above equation can be approximated by the interaction-diffusion equation: 

a L  S 2 t~2L 
aF + ~LT . (13) Ot 22 ax 2 

We have neglected the terms of (9(1/2) and (9(s/2). This is equivalent to 
observing the motion of the ants on a time scale which is larger than the rate of 
reversal of the pioneers, and on a spatial scale which is much smaller than the 
distance a pioneer ant would have travelled if it had moved at a constant 
speed s without reversing for a time t. This limit is discussed in greater detail in 
Othmer et al. [17]. As mentioned above, typical speeds are 3 metres per 
minute, and the reversal times are on the order of a few seconds or less. The 
swarm propagates at speeds of only 0.3 metres per minute, and so this 
approximation is expected to be valid for studying the variations in the swarm 
over periods of several minutes to a few hours. 

Collectively, equations (1), (8), and (13) represent the evolution of the trail 
network in the case where the frequency of the random turns of the pioneers 
(2), and the rate at which ants following trails towards the nest turn away from 
the nest (#-)  are large relative to the remaining parameters of the system. After 
deriving these equations from the considerations of the behaviours of the 
individual ants (microscopic), it is useful to discuss the physical and biological 
significance (macroscopic) of each term. For convenience we repeat the cam- 

aT 
- -  = zzL + z s F j -  vT , (14) 
at t -r 

(i) (ii) 

aF 
--Ot = -- ~ x ~  ,-- eFt+ ~LT , (15) 

(iv) 
(iii) 

3L 02L 
0-"-[ = ~ _ ~  + ~ F - - e L T .  (16) 

(iv) 
(v) 

ptete system below° 
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The trail density T is the total length of trails per unit length of the strip 
(0, oo ). F and L represent the total densities of followers and pioneers 
respectively. The parameter # = s2/2,~ is known as a motility coefficient, and 
represents the scale of the random motion of the pioneers. Terms (i) depict the 
reinforcement of trails by each ant, and term (ii) the decay due to evaporation 
of the trails. Term (iii) represents the directed motion, or convection of 
followers along the trails at the velocity v. Terms (iv) represent the rate, 8, at 
which followers lose the trail, and the rate, a, per unit length of trail, at which 
the pioneers begin to follow an existing trail. The space independent version of 
this model is analyzed by Edelstein-Keshet [10]. 

3 Analysis 

3.1 The dimensionless  sys tem 

Upon introducing the rescalings: 

T* ct T, y* ? 
8 8 

t *  = St,  

F* =--azt F, #* =--e/~ (17) 
8 ~8 1) 2 ' 

X *  = - X,  

v L* ctZtL, z* ~Y 
~8  "C l ' 

and dropping the *'s, we obtain the dimensionless equations: 

T,  = y (L  + z F  - T ) ,  (18) 

F,  = - Fx - (F - L T ) ,  (19) 

Lt  = #Lxx  + (F - L r )  . (20) 

We have rescaled space and time relative to the speed of the followers, and 
their ability to remain on the trails. The rescaled 7 is the lifetime of the trails 
relative to the affinity of the followers to the trails. The dimensionless/2 is 
a ratio of the motility of the pioneers to a measure of the motility of the 
followers. The values quoted in the previous section indicate that # will be 
approximately 1/12. 

3.2 Reduct ion  to the travelling wave  f o r m  

We are interested in examining solutions to this system which represent waves 
of a population propagating into an unexplored area. These solutions are 
characterized by a fixed profile moving at a constant speed c. Such solutions 
are known as travelling waves, and are studied by transforming the system to 
the moving coordinates z = x -  ct, and t ' =  t [9, 16]. The steady state 
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solutions of the PDEs in these new coordinates, found by setting the deriva- 
tives of T, F, and L with respect to the new time t' to zero, correspond to 
waves with a fixed profile, moving at a constant speed c in the original 
coordinate system. These steady state solutions will satisfy the following 
system of autonomous ODEs in the variable z: 

- c T '  = 7 ( L  + z F - -  T ) ~  (21)  

(1 - c ) F '  = - (F  - L T ) ,  (22)  

- c L '  = # L "  + (F  - L T ) .  (23)  

Note that the ' indicates differentiation with respect to the wave variable z. 
These equations can be further simplified by the following operations. 

First, add equations (22) and (23) to produce the equation 

(1 - c )F '  - c L '  = # L " .  (24)  

This equation can be integrated once from - oo to z to give 

(1 - c ) F  - -  c L  = # L '  + k .  (25)  

The constant of integration, k, is given by 

k = cLo - (1 - c)Fo + # ( L ' ) o ,  (26) 

where a zero subscript indicates evaluation at the point z = - oo, the origin 
of the wave. 

Replacing (23) with (25) leaves us with an autonomous system of first order 
ODEs. We can study the solutions to the original PDEs by examining the 
trajectories of the solution curves in the T - F - L  state space. If these trajectories 
are to represent a wave profile travelling through a population, then they must 
satisfy the following criteria: 

• Populations must remain bounded. Hence, the trajectories are restricted 
to homoclinic orbits (closed curves passing through a single fixed point), 
heteroclinic orbits (curves connecting two fixed points), or limit cycles (dosed 
curves which do not pass through any fixed points). 

• A population density must remain non-negative. Hence the trajectories 
must be contained in the positive octant of the state space. 

• The waves represent a swarm propagating into an empty region of 
(physical) space. Hence the trajectory must end at the origin (T, F, L ) =  
(0, 0, 0). Further, the origin represents a homogeneous spatial distribution (no 
ants, and no trails) and must therefore be a fixed point. With regards to the 
variable z, the solution will asymptotically approach (0, 0, 0) as z ~ oo. This 
fixed point will be referred to as the trivial steady state, and denoted by ux. 

• Finally, we expect that some fixed density is established behind the 
wave; hence the trajectory must originate at a fixed point in the state space. 
With regards to the variable z, the solution will asymptotically approach this 
fixed point as z ~ - ooo This fixed point will be referred to as the populated 
steady state, and denoted by Uo. 
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Taken together the above points imply that the travelling wave of interest is 
represented in the state space by a heteroclinic orbit connecting a fixed point 
in the first octant to the origin. 

An inspection of (25) shows that the origin, u~, is a fixed point if and only if 
k = 0. In addition, if Uo is a fixed point then by definition (L') o = 0. With these 
simplifications (26) reduces to 

cLo = (1 -- c)Fo. (27) 

Thus, given any initial steady state (To, Fo, Lo), there is a unique wave speed 

Fo 
c (L0 +F0)  (28) 

for which the final state will be unexplored territory. Note that this is just the 
fraction of the ants which are following trails. Thus, the dimensionless wave 
speed c is restricted to the interval (0, 1). In the original dimensions this 
restricts the speed to the interval (0, v). That is the wave can travel no faster 
than the velocity of the followers. According to the observations of Schneirla 
[22], the speed of the swarm front is about 20 metres per hour, or 0.3 metres 
per minute. This is roughly one tenth the speed of the followers. Thus we 
expect that c is about 0A, which indicates a ratio Lo/Fo = 9. This is difficult to 
verify experimentally as the distributions of pioneers relative to followers are 
difficult to observe. 

We have now reduced the original system of PDEs to the following system 
of first order ODEs: 

T'  = -~ IT - L - z F ] ,  (29) c 
1 

F' = - -  [ -  F + L T ] ,  (30) 
(1 - c) 

#L' = (1 - c ) F -  cL . (31) 

Setting the l.h.s, of these equations to zero we find that there are only two fixed 
points. The first of these is the origin, which we have already labeled ul, and 
the second is the populated state Uo: 

t c 
1--c ¢2 

U o =  ( 1 - c ) ( 1 - c + ~ c )  

c 
1 - - c + z c  

(32) 

Since each of the quantities c, 1 - c, and z are positive, this fixed point is in 
the first octant of the state space. 
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3.3 Local analysis o f  the steady states 

Linearizing equations (29-31) about a point (T~/r ~) yields the system: 

F '  -~- 
L' (1 

Substituting ('T, 3, ~) = 
linearized system has the 

and eigenvectors: 

7 rz 
c C 

Z 1 
- c )  (1 - c )  

1 - c  
0 

~i = , ~ =  

r 
c 

(1 c) F T 
c L 17 

# 

(33) 

(0, 0, 0), it follows that at the fixed point ul, the 
eigenvalues: 

2~ = ~/c > 0 

22=  - 1 / / ( 1 - c )  < 0  , (34) 

23 = - c /#  < 0 

(1  - c )  2 + z ( c ( 1  - c )  - # )  

#(1 - c + c b )  

1 c 

l - c  # 

1 - - c  

# 

c 

, ~3 = 0 
y_+c 
c 

(35) 

Since r, #, c > 0, we have that 21 > 0, and 22, 23 < 0 over the entire parameter 
space. This indicates that ul is the intersection of a two dimensional stable 
manifold W s, and a one dimensional unstable manifold WI v. 

At the populated steady state Uo the eigenvalues of (33) are roots of the 
cubic equation 

23 + A,~ 2 + B2 + C = 0 ~ (36) 
where 

c 1 
A = -  -~ ),/c, (37) 

# 1 - c  

B =  - r  -t c ( 1 - c + ~ c )  ' 

C =  7 
# ( 1  - c + z c )  ° ( 3 9 )  

The fact that B < 0 and C > 0 for all values of the parameters implies that 
two of the eigenvalues have real parts greater than zero, and the third is real 
and negative. Thus, there are a two dimensional unstable manifold Wo e and 
a one dimensional stable manifold Wo s intersecting at Uo. 
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Fig. 2. The State Space (Octant I), showing the nullclines T °, F °, and L °, and the regions 
A +, and A-. The monotonic travelling wave solution is contained in the region A- 

3.4 Global analysis 

For systems of two ODEs, a qualitative, heuristic study of the global structure 
of the state space can often be performed quickly and easily. By contrast, our 
system consists of three ODEs, and such study proves more difficult. As with two 
dimensional systems, it is possible to examine the direction of the flow through 
the nullclines of the vector field, and also the direction of the flow through the 
different regions bounded by these surfaces. Simple geometric analysis can then 
be used to determine the possible locations of the stable and unstable manifolds 
W s and Wo v. The existence of the heteroclinic orbit requires the intersection of 
these two manifolds. Our analysis provides a simple numerical experiment to 
determine the existence of the heteroclinic orbit for a given set of parameter 
values. It also provides a qualitative description of the travelling wave. 

The nullelines of the vector space can be used to determine the flow in the 
state space. At each point u = (T, F, L) in the state space, we can define the 
vector 09 = (T', F', L') by equations (29-31). This vector is tangent to the 
trajectory passing through each point. Let T °, F °, and L ° denote the null- 
clines (see Fig. 2). These are the surfaces where the respective components of 
co are zero, and are given by the following equations: 

T O = { ( T , F , L ) I T -  L -  zF = 0}, 

F ° = { ( T , F , L ) I L T -  F = 0}, 

L ° = {(W, F, L)l(1 - c)F -- cL = 0} . 
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T O Intersect k 0 T O Intersect F 0 
# Inter.ct LO 

F - axis 

Fig. 3. A schematic showing the boundaries of A- and their intersections with the mani- 
folds Wo v and W s near the points u o and u 1 respectively. The F o surface has been distorted 
for clarity. For the existence of the travelling wave solution, the heteroclinic orbit must be 
contained in the intersection of the two manifolds 

In addition, we define A ÷ and A-  to be the portions of the positive octant in 
which each component  of co is positive and negative respectively. Computing 
the components of the vector field normal to the boundaries of the region 
A-  shows that: (1) a n y  trajectory which passes through A-  must exit the 
region through either T °, or the T = 0 plane; and (2) any trajectory which 
enters A-  must do so though either T O or F oo Further, since the flow velocity 
(magnitude of co) is everywhere decreasing and bounded away from zero, 
a trajectory cannot remain in A- .  This implies that there are no limit sets 
contained entirely in this region. 

The unstable manifold Wg must pass through Uo tangent to the unstable 
eigenspace of the linearized system near Uo. If we consider this eigenspace as 
a disc spanned by the unstable eigenvectors, then it follows that this disc must 
be imbedded in the state space near Uo, and that to do so, it must intersect 
both A ÷ and A- .  For  the case of real eigenvalues, a simple geometric 
argument is sufficient to show that the unstable eigenvectors of this system are 
directed into the sets A -  and A ÷, and the above statement follows immediate- 
ly. This argument consists of considering the vector associated with a point 
arbitrarily close to Uo. If this vector is to be oriented away from Uo then it must 
lie in either A -  or A ÷. For  the case of complex eigenvalues, the proof of the 
statement uses the fact that intersection of the eigenspace and L ° (a transverse 
intersection) must be a straight line. The only orientation of this line which is 
consistent with the vector field near Uo implies that the unstable manifold 
intersects with A ÷ and A-g This intersection is shown in Fig. 3. 
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The intersection of the unstable eigenspace with T O must also be trans- 
verse, and lie below F o and to the right of L °. Since the unstable manifold 
Wo v must be tangent to the eigenspace at Uo it must intersect with T O and L ° as 
a continuous curve in these same regions. If this curve were to intersect ul, 
then the intersection of Wo v and W f would follow immediately. Since a tra- 
jectory through A-  cannot leave through F o, it follows that this curve cannot 
cross the line T°~F o, nor can W v intersect the portion o f f  o that makes up 
the boundary of A- .  For similar reasons, the curve cannot cross the line 
T°~L°. However, the curve may be of finite length, and thus the intersection 
of We and W s cannot be guaranteed based on the behaviour of Wg. 

The stable manifold W s intersects A-  for all parameter values, and passes 
though F o, and L ° near u~. This follows since W s is tangent to the eigenspace 
spanned by the vectors of (35). Since the stable manifold intersects with 
A-  near u~ there must be a trajectory in the stable manifold which passes 
through A- .  As noted above, this trajectory must have either originated in 
A- ,  or have entered A - through either F o or L °. The existence of a trajectory, 
other than one connecting Uo to ul, which is contained entirely in A-  is not 
possible. Such a trajectory would be decreasing in each of its components, and 
T would increase without bound as we integrated o) backwards along the 
trajectory° This contradicts the fact that A-  is bounded above at the height To. 

The shape of the heteroclinic trajectory can be determined from the above 
arguments. For  the case where the eigenvalues of the linearized system near 
Uo are all real, the heteroclinic orbit would be contained entirely in A-  and 
therefore be monotonically decreasing in each component. For the case of 
complex eigenvalues, the orbit would oscillate about Uo before reaching ul; 
however, the orbit must remain in the positive octant, and can therefore 
represent a travelling wave of population expansion. 

The only conditions under which the intersection of the two manifolds will 
fail is if the unstable manifold Wo v is bounded. This would imply the existence 
of a limit cycle enclosing the point Uo. The system does not undergo a Hopf 
bifurcation for any values of the parameters. Therefore, such a limit cycle 
would necessarily arise from a global bifurcation of the system. Note that in 
this case it is still possible that there is an orbit connecting the limit cycle to 
the point u~, and that this orbit is also a travelling wave solution of the PDE 
model. 

Numerical experiments can be used to to determine the existence of the 
heteroclinic orbit at specific parameter values. The above analysis indicates 
that if the unstable manifold W ° intersects the plane T = 0 then it must also 
intersect the stable manifold W~. Further, this intersection will be transverse. 
The unstable eigenvectors of equation (33) about the point Uo can be com- 
puted numerically, and used as initial values in equations (29-31). The 
solutions to these initial value problems will approximate the unstable mani- 
fold. If any of these solutions intersect the plane T = 0 then this is akin to 
showing the non-existence of a limit cycle separating u0 from ul. 
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Fig. 4. Numerical solution of the PDEs (18-20) using Bard Ermentrout's xtc [12"1. For 
(a) Ax = 0.25, At = 0.05, z = 0.6, # = 0.2, and ? = 5. For (b) dx = 0.0625, At = 0.005, 

= 0.6, /~ = 0.2, and 7 = l. The solutions were integrated from the initial conditions 
T = F = L = e-X2, until the solution appeared to stabilize to a travelling wave. In case (a), 
the solution is monotonic, corresponding to the case where the eigenvalues of Uo are real. In 
case (b), an oscillating solution appears to be stable 

3.5 Numerical analysis 

W e  have  used  the  p r o g r a m  "xtc" wr i t t en  by  Bard  E r m e n t r o u t  [12]  to  solve the 
full sys tem of  P D E s  g iven  by  e q u a t i o n s  (14) t h r o u g h  (16) a n d  the b o u n d a r y  
c o n d i t i o n s  (6). T h e  e q u a t i o n s  were so lved o n  the  finite d o m a i n  0 < x < N,  
wi th  the  in i t i a l  c o n d i t i o n s  T = F = L = e-x2. I n  o rder  to m i m i c  the  inf in i te  
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domain in the calculations, the domain width, N, was taken to be large enough 
that the evolving front did not propagate as far as the right boundary. The 
method of "Euler" was selected from the numerics menu of the program. This 
method proved faster than the other possible choices of "Gear" and "Backward 
Euler" despite the restrictions on the time step. The equations were solved for 
# = 0.2, ~ = 0.6 and 0.1 < 7 < 5. Two apparently stable travelling wave solu- 
tions are shown in Fig. 4. The solutions appeared to maintain their shape as the 
wave traversed the domain. Both monotonic and oscillating travelling waves 
were observed. The solution shown in Fig. 4(b) was recomputed over a refined 
grid, and did not appear to change. We therefore expect that the oscillating 
wave is a solution to the equations, and not an artifact of the discretization. 

4 Discussion 

Our initial analysis shows that if we are to achieve a travelling wave propagat- 
ing at the observed velocities of roughly 10% that of the speed of the followers, 
then the ratio of pioneers to followers along developed portions of the trails 
should be on the order of 9:1. Unfortunately, there is little evidence at the 
present time to either support or refute this prediction. 

One interesting prediction of the model is that travelling waves will 
develop with a monotonically decreasing density of pioneers. It seems more 
likely that the number of pioneers should attain a maximum near the fore of 
the wave, indicating a populated steady state uo with a small L component. 
Such a situation is not permitted by our model. Both steady states must lie on 
the L ° nullcline. This nullcline is planar, and will be regardless of the mechan- 
ics of the exchange between followers and pioneers. It may be possible to 
achieve this effect by introducing dependence of the reversal rates p ÷ and 
p-  on the state variables F and T. 

We have also derived equations to model the motion of automata inter- 
acting with a trail network in two dimensions (Watmough, unpublished). Such 
a model would be better suited to examine the formation of a trail network in 
two dimensions. Although the full system in two dimensions is difficult to 
analyze, several simplifying assumptions can be made. For example, Edelstein- 
Keshet (unpublished) has developed a model with no spatial dependence to 
examine the orientational aspects of the pattern, and to determine the condi- 
tions necessary for a transition from a loose network of trails to a network 
with a strong directional order. A simulation of the full two dimensional 
model has also been studied [24]. Both of the above versions of the model 
indicate that introducing a dependence of the parameter e on the trail density 
would promote the formation of stronger trails. 
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