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A b s t r a c t .  Social insects such as ants use trial-marking and trail-following to orga- 
nize the behaviour and movement patterns of a large population. Since behaviour 
has to meet needs of the population in a changing environment, the type of trail net- 
works formed must be adaptable. Both solitary foraging as well as mass migration 
along a system of trunk trails are behaviours essential for survival of the colony, 
and the population must be able to switch from one behaviour to the other, depend- 
ing on conditions. Using a mathematical model for trail following we show that 
subtle changes in individual behaviour can give rise to dramatic differences in the 
behaviour of the population, including the ability to switch from solitary movement 
to organized group traffic. The model incorporates biological parameters associated 
with the organism, the trail-marker, and the population. Ordinary differential equa- 
tions are formulated for the density of the trails and for the number of individuals 
following trails or exploring randomly. It is assumed that the followers reinforce 
trails by pheromone marking, and that individuals respond to the strength of the 
trails by becoming more efficient followers. The model is analyzed by qualitative 
phase-plane methods. 

K e y  words:  T r a i l - f o l l o w i n g  - Ant trail pheromone - Se l f -organ iza t ion  - Collective 
behaviour - Low vs high traffic networks 

In trodu c t ion  

By following a chemical trail deposited by their sisters, ants are able to move in a 
coordinated way as a group. The chemical marker, called a pheromone is a volatile 
substance painted on the path of the moving ant. As the substance diffuses into the 
air, it creates a corridor of scent to which other ants will respond and orient (Bossert 
and Wilson 1963). Receptors on the two antennae of an ant can sense pheromone, 
and by a comparison of left and right levels, prompt the ant to turn onto a trail 
it encounters. There is a keen but finite tolerance in the pheromone receptors, and 
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errors such as losing a trail, or turning towards the direction of decreasing pheromone 
OCCUr. 

At the level of the society, coordinated response to a threat by predators, collec- 
tive effort to feed the colony, and organized migratory movements are essential to 
survival. Yet, the coordination of the movements of thousands of individuals is not 
governed by leaders or central decision makers. Rather, the organized behaviour 
is the outcome of a collective behaviour that has been called "self-organization" 
(Camazine 1991, Aron et al. 1989, 1990; Beckers et al. 1989, 1990; Calenbuhr and 
Deneubourg 1989, 1990; Deneubourg et al. 1989, 1990; Pasteels et al. 1987a, b, c 
and numerous references therein.) The model in this paper explores how self- 
organized systems of trails can change and respond to changes in the needs of 
the society or the enviroumental influences it faces: for example, at times, a diffuse 
network of trails serves to efficiently cover a wide area over which the population 
searches for food. At other times, mass migration to relocate to a new nest, or 
tight columns to exploit a recently discovered food source are required, see Fig. 1. 
(See, for example, Hrlldobler and Wilson 1990, and references therein.) The way 
that the population adapts to these extremes, and the way this is achieved by slight 
alterations in individual responses are the subject of this paper. 

The main thesis of this paper is that properties and behaviours at the level of 
the individual, together with appropriate interactions between the individuals and 
their trails can account for the plasticity of trail networks and their function. The 
specific properties of individuals that enter into the model are the rates of secretion 
and evaporation of pheromone or other marker, the fidelity of followers (i.e., their 
probability of  tracking the path per unit time or distance), and the attraction of the 
trails towards other individuals. (These parameters are, in principle, experimentally 
measurable; some values are obtainable from the literature.) The model characterizes 
the complex spatio-temporal evolution of trail networks by a gross attribute, the 
density of traffic (ratio of followers to trail length). Other work on this subject (e.g. 
Watmough 1992) deals with a fuller spatio-temporal model. 

The paper is organized as follows: Section 1 contains background motivation. In 
Sect. 2 the model is derived, and assumptions are explained and justified in detail. 
In Sect. 3 the behaviour of the model is analyzed. Implications and a discussion 
follow in Sects. 4 and 5. 

1 Motivation 

While this paper is concerned with a mathematical model, the research on this prob- 
lem began with a set of simulations written in C by Bard Ermentrout, and modified 
from cellular automata depicting motion of cells. (Edelstein-Keshet and Ermentrout 
1990, Ermentrout and Edelstein-Keshet 1993). Positions of individual "ants" and the 
strength of their trails are represented by pixels, and simple rules governing the mo- 
tion and the interaction of individuals with the trails postulated. Initially, "ants" are 
"released" randomly in an arena, and allowed to move in arbitrary initial directions. 
The parameters governing their motion, the strength of their interaction, etc. can 
be varied, and the resulting animated population swarming is observed. In recent 
simulations written by James Watmough (now a graduate student with the author 
at UBC), ants are "released" from a single point, "the nest" and allowed to wan- 
der over a rectangular area with periodic boundary conditions. It is thus possible to 
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follow the spatial organization both in a totally random initial configuration, and in 
one in which all individuals start at the same point. We report on these simulations 
in a separate paper. 

By experimenting with these simulations, it becomes evident that slight changes 
in initial conditions, or slight changes in certain key parameters result in different 
possible outcomes: Either (a) the network of trails, composed mainly of weak, short- 
lasting paths changes continuously, with no order or persistent structure, or (b) a 
few relatively stable and strong trails emerge, with most of the traffic exclusively 
along these trails. However, it is difficult to understand exactly how the changes in 
group behaviour depend on parameters from simulations alone. This motivated our 
trying to understand the phenomenon by considering a mathematical model. 

Natural ant colonies also display fascinating trail configurations. Sketches of 
trail networks of ant swarms in Schneirla (1971), Rettenmeyer (1963), Raignier 
and van Boven (1955), demonstrate variations in the structure and density (see 
Figure 1). These variations are correlated with the function of the trails. Exploration 
trails appear to densely cover an area, with fine lace-like networks, whereas trunk 
trails from a nest to a food source, or migratory routes are much more direct, less 
frequently branched, and capable of carrying a much greater volume of traffic. The 
investigation of these naturally occurring trail networks provides a challenge: to 
try to understand how these form, and what governs adaptation from one type of 
network to another. 

Ultimately, one can pose questions about the way that the behaviour of the social 
organism has evolved. Since we have already argued that the ability of the popula- 
tion to switch between one type of network and another is an essential adaptation 
to the resource distribution, the changes in the colony, in the environment, and in 
the tasks and problems to be solved, it is reasonable to assume that colonies with 
the ability to adapt their organization to these needs have a selective advantage, 
and hence should be selected for by evolution. The model we present below should 
allow us to investigate what features of the individual could have evolved through 
natural selection to lead to plasticity in the behaviour of the population. 

2 A model for trail-following behaviour 

Many different modelling approaches are possible in describing trail networks and 
movement patterns of organisms following these. We review some of the pre- 
existing theoretical and experimental work in Sect.5. Briefly, the Brussels group 
(Denenbourg, Pasteels, Aron, and Goss) have investigated binary choices made by 
ants among branches of an artificial system of bridges. They have also pioneered 
simulations showing swarming behaviour. Others (Calenbuhr and Deneubourg) deal 
with the individual responses to pheromone, or the rate of secretion and evaporation 
of the active space surrounding a trail (Bossert and Wilson). 

In this paper, the aim is to analyze the transitions between trunk trails and 
solitary foraging. The model is kept purposely simple in an attempt to reveal some 
of the important mechanisms of the collective behaviour. It is felt that including 
many fine details of the biology, or treating a complex spatio-temporal model should 
be attempted only after some initial understanding of simpler models is achieved. 
We define the following variables and parameters with corresponding dimensions 
(d -- distance, A -- area, t = time) 

T(t) =total length of trails per unit area at time t [dA-1], 
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L(t) 
F(t) 
N 

F 
a 

= total number of explorers per unit area at time t [#A-l], 
=total  number of trail-followers per unit area at time t [#A-l], 
= total number of individuals per unit area=L + F [#A-l], 
= speed of motion of an individual [d t - l ] ,  
= rate of decay of trail pheromone [t-l],  
= rate of trail reinforcement by a single follower [d t - l ] ,  
=rate  of losing a trail [t-l],  
= rate of recruitment to a trail [d t - l ] .  

It is advantageous to define T(t) as length-density, rather than number-density 
of trails. Trail networks contain many intersecting trails, leading to ambiguity in 
identifying and counting individual trails. The total length of trails inside a region 
of unit area can be unambiguously defined and measured (e.g. by digitizing and 
numerically integrating the length of  trail segments). A similar approach has been 
used by the author in modelling density of branches in a colony of fungi and other 
branched networks (See Edelstein 1982, Edelstein-Keshet and Ermentrout 1989). 

For the purpose of the model we consider only two types of individuals, those 
who are exploring (L(t)) and those following pre-existing trails (F(t)). Parameters 
are assumed to be positive constants. Eventually we will be concerned with vari- 
ations of the parameters (typical of changes in the environmental conditions, for 
example). The equations of  the model are derived below. 

2. a Trail behind a single individual 

Bossert and Wilson (1963) characterized the length of a "scent corridor" behind a 
single ant. This length is the distance between the point at which the fresh trail is 
being deposited, and the fade-out point, at which it is no longer perceptible. When 
the ant first starts to move and deposit a trail, the length of trail will gradually 
increase until it reaches this finite length, at which the rate of deposition at the 
leading portion just balances the rate of fading at the rear. For this reason, the 
length of trail secreted by a single ant will be described by the equation: 

dT 
- -  = v - F T .  (1) 
dt 

Here v is the length deposited per unit time, equivalent to the walking speed of an 
ant laying a fresh trail, and FT is the decay rate per unit time). The two terms in 
this equation balance when T-v/F. The trail behind a single ant will be called a 
simple trail, and its length will be represented by the quantity 

d~ -= v/F= the length of a simple trail. 

Bossert and Wilson (1963) calculated that this length is roughly 28 em for the ant 
Solenopsis saevissima, based on diffusion of the pheromone. 

2. b Trails formed by N individuals 

When there are many individuals, we distinguish between those that are making 
fresh trails, L(t),  and those following trails F(t). Both types are assumed to secrete 
trail-marker, whether to lengthen or to reinforce the trails. The distance associated 
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with followers on a trail would in general be shorter than the length of a simple 
trail, since otherwise the "chain of individuals" on the trail (a term suggested by 
Calenbuhr 1990) would be broken by fade-out points between them. We allow for 
the possibility that individuals of type F or L may thus contribute differently to trail 
length. The equation proposed for the total length of trails due to these is: 

dT 
- -  = v L  + a F  - F T .  (2) 
dt 

The parameter a has the same dimensions as v, i.e, [dt-l], and the dimensionless 
ratio a/v represents the relative contributions to lengthening the trail by followers 
and explorers. Equation (2) is an approximation which does not incorporate the 
chemical level of the pheromone on the trails. In the Appendix to this paper we 
discuss the connection between this phenomenological equation and a material bal- 
ance of pheromone concentration. 

Though Eq.(2) is approximate, it provides a useful characterization of the trail 
network. In particular, it is consistent with the idea that the trails will have a 
different total length when the foragers are moving as individuals, versus trails 
formed through coordinated following. Indeed, from (2) we note that at equilibrium 
(dT/dt = 0), if most individuals are exploring, (L ~ N and F ~ 0), then the total 
trail density is 

T = Nv/F = Nds. 

However, if most individuals are on trails (F ~ N, L ~ O) then the total length of 
the trails is 

T = N a / r  = Nd z 

where we have defined the distance 

df = a/F=average distance between followers on a trail. 

For a typical example, Wilson (1971) states that 10-20 workers of the ant 
Carnponotus paria follow single file behind one leader, with a distance of separation 
5-10 cm. The ratio F/a represents the mean density of followers per unit length of 
trail. Further, our previous remark implies that df < ds since followers are closer 
to each other than the fade-out distance. 

When a trail network is first created, the number of followers and explorers will 
fluctuate, since some followers will lose the trail whereas some "lost" ants will be 
attracted to the trail. Mass action kinetics, representing "binding" and "unbinding" 
to trails are used to model this exchange, leading to: 

dF 
- e F +  e L T ,  (3) 

dt 

dL 
m dt cF - o:LT . (4) 

The dimensions of the parameter e are Area per unit time per unit distance, 
[At-Id-~],  or simply [d t- l ] .  The parameter e is the rate that followers lose the 
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trail, and has dimensions of [t-l].  We observe that the quantity N = L + F =  total 
population density is conserved by the above equations. Therefore, we can eliminate 
one variable, for example L, from the equations. The reduced model that results is 
then: 

dT 
d--[ = v(N - F) + aF - FT , (5.a) 

dF 
- e F  + c~(N - g ) v .  (5.b) 

dt 

Equation (5.a, b) can be studied with standard qualitative methods. If all the pa- 
rameters defined above are constant, there is a single stable steady state, in which 
a fixed proportion of individuals are following trails. This basic model is not very 
interesting, and cannot account for any behavioral transitions. However, as we shall 
see below, a minor but important modification of the model leads to much more 
interesting and versatile behaviour. 

2. c Strength of  the trails 

Since ants are a social organism, it is reasonable to expect that the probability of 
finding and/or staying on the trails would increase as ants are "recruited" by their 
sisters. Recruitment can take place in different ways. We have already discussed 
the effect of chemical messages; it is known that the intensity of response to a 
trail marker depends on chemical strength of the pheromone. When there are many 
followers reinforcing a system of trails, the level of pheromone marker on the trails 
increases, so that more individuals are attracted to the trails. However, possibly 
a second type of  recruitment is direct antennal contact between ants; those on a 
promising route reinforce each other's tendency to stay on the trail, or persuade 
newcomers to join in. In both types of recruitment, presence of followers enhances 
the probability that new individuals will be recruited, or that current followers will 
remain on the trails. 

In a desire to keep the model fairly simple, the detailed distribution of pheromone 
along the trails is not described. Rather, we use a gross indicator of trail strength, 
the density of  traffic, defined as the ratio of  followers to a unit length of  trail. 
By the above comments, it is reasonable to suppose that when this ratio is high, 
the trails become more attractive. (The higher the density of followers along a unit 
of trail, the greater the number of opportunities for communicating the message to 
follow the trail.) We loosely define "the trail strength", S(t), by: 

S(t)=strength of  the trail network = F(t)/T(t) =density of followers per unit 

length of trail (traffic density). 

The variable S can be used as an indication of the level of  coordinated movement 
versus exploratory movement in the population: Observe that when all individuals 
are explorers, L = N, F =0, so that S =0 (We shall call this a weak trail network). 
When the whole population is following trails, L =0, F = N, T = aN/F so S = F/a 
(This will be a network of maximal strength, and will be called a strong trail 
network). Note that even though the average distance between followers on a trail, 
df is a function of fixed parameters, the above defined variable S = F/T, which 
has dimensions of (1/distance between followers) is not fixed; S is an average 
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taken over all trails, including simple fresh trails that have no followers on them, 
while df is the average separation distance between followers on a single trail on 
which they are walking. In the Appendix, we show that under certain assumptions, 
S(t) is approximately equivalent to the pheromonal strength of the trails, but this is 
not an essential assumption of the model. 

The trail strength S could influence several parameters in the model, such as the 
rate of reinforcement of a trail by a follower, a, the likelihood that a follower loses 
a trail, e, as well as the attractivity of a trail to lost ants, c~. (The other parameters 
defined in the model are not likely influenced). It is possible to exhaustively deal 
with each of these possibilities, but many of them are essentially equivalent. We 
shall explore the consequences of one particular assumption, namely that followers 
have increased fidelity (decreased drop-off rate, ~) when the traffic density is high. 

2. d Individuals fol low stronger trails more faithfully 

It is reasonable to assume that the stronger the trail, the lower is the likelihood that 
a follower will lose it. We suppose that the loss rate, ~, is a decreasing function of 
trail strength, for example 

E(S) = E exp ( - b S )  = E exp ( - b F / T ) .  (6) 

where E is the rate of losing the trail by a follower in the absence of the group 
recruitment effect (i.e. when the trail is a weak one, S = 0) and b is a parameter 
that governs how rapidly this rate decreases as the strength of the trail increases. 

By using this assumption in Eqs. (5) we obtain a modified model incorporating 
"trail strength" as follows: 

dT 
dt v(N F)  + aF - F T  , (7.a) 

dF b F 
dt - .EFe-  ~ + cffN - F ) T .  (7.b) 

It is of interest to determine how the length of the trails and the fraction of the 
population moving along these trails evolves over time from a variety of initial 
conditions, and under different values of the parameters. Analysis of this model is 
carried out in the next section. 

3 Analysis of the model 

3.a Reduction to dimensionless f o rm  

To put the equations in dimensionless form we define the dimensionless variables 
T*, L*, F*, t*, as follows: 

T = T*Nds = T*Nv/F 

L = L * N  

F = F * N  

t = t*(1/F) 

S = F /T  : (F*/T*)(F/v) .  
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Thus trail length is scaled so that a maximum value of 1 corresponds to the total 
lengths of simple trails behind N solitary individuals (the maximal possible length of 
trails sustained by a population of N ants), densities of followers and lost individuals 
are scaled in units of the total population N, and time is scaled in units of the 
pheromonal  half-life 1/F, the time it takes a trail to evaporate to 1/2 its original 
length. The dimensionless trail strength S would be zero when all the ants are 
explorers (F =0), whereas it would attain a maximal value of via > 1 when all the 
ants are following each other at the usual inter-follower distance on the trails. By 
substituting these expressions into Eqs.(7a, b), rearranging, and then dropping the 
*'s, we obtain: 

dT 
= (1 - F )  + A ' F  - T ,  (8.a) 

dF r -B' F 
dt -- E Fe  r + ~'(1 - F ) T .  (8.b) 

where the new dimensionless parameters are: 

A~ = a B~ bF Ep E c~ I c~vN 
1~ • F '  F 2 (9) 

A ~ is the ratio of length of a simple trail (behind a single ant) to the trail length 
associated with a follower, and is typically less than 1, by previous arguments. B ~ 
is the natural logarithm of the ratio of maximal to actual drop off rates (E/e) when 
the average traffic density is one follower per length ds of the trail (This is an 
intermediate strength of trails which would occur when part of the population is 
exploring and part is closely spaced followers). For example, when B ~ =4, a follower 
stays on the trail 55 times longer than it would were it not being recruited to the 
trail by the other traffic (because E/¢ = e4--54.6) The dimensionless parameter E ~ 
is the ratio of trail half life to the half life of a follower on a weak trail, and could 
take on a wide range of values depending on the type of pheromone, the species 
of ant and the conditions. Here we assume that trails are more long-lived than the 
average time spent on the trail by a follower who is not being actively recruited. 
The parameter ~r represents the probability that a single ant would be recruited to 
a trail network whose total density is Nds during the trail half life, and could also 
vary between extremes. 

By arguments given above, we expect that values of the new dimensionless 
variables in these equations are restricted to the following ranges: 

0 < T < I ,  

0 < L < I ,  

0 < F < I ,  

O < S < v /a .  

In Sect. 3.c we analyze the behaviour of Eqs. (8a, b). It will be shown that the 
above model has bi-stable behaviour under a certain set of conditions, and that it 
can describe behavioral transitions. 

To understand what the model predicts, we need to appreciate the qualitative ef- 
fects of the dimensionless parameters, for example through phase plane analysis. 
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One difficulty in the analysis stems from the fact that the locus of points satisfying 
dF/dt =0 (i.e. the nullcline of Eq. (8.b)) is determined by a transcendental equa- 
tion. This makes it hard to analyze the shape of this curve, how the shape varies 
with the parameters, and where intersections with the locus dT/dt = 0 occur. These 
properties can be investigated numerically. However, a greater insight about how 
parameter variations cause bistability is obtained by first looking at a reduced model 
whose behaviour is more elementary to analyze. Although analyzing "a model of 
the model" may seem frivolous, in fact the process of reducing a model to simple 
limiting case for initial analysis is a standard technique in applied mathematics. We 
draw the reader's attention to a classic paper by Ludwig et al. (1978) in which this 
strategy is used. 

3.b Approximating the model by a sinole equation for  trail strength 

Using the definition S = F/T, it follows that 

dS F dT 1 dF 
dt T 2 dt + T d t '  (10) 

which, by substitution of the equations for dT/dt and dF/dt results in 

dS _ _  C S  2 + S - E' Se -B' s + D (11) 
dt 

where C and D are: 

C = ( 1 - 1 + A  ~),  D = e ( 1 - F ) .  

Even though the quantities C and D are not actually constants, C can be roughly 
approximated by A t, and D is some small positive quantity when the population is 
mostly followers. 

Equation (11) is easily seen to have bistable behaviour. We can locate the 
positions and determine the number of steady states of this equation (viewed as 
an equation in S with slowly varying coefficients) by investigating intersections of 
curves of the form Y = D + S - C S  2 (a parabola opening down) and Y = U S e  -B's. 
(A curve with a single hump and a long tail), as shown in Fig. 2. it is possible to 
have one, two, or three intersections. Three intersections occur provided that (a) the 
hump of the exponential curve is higher than the peak of the parabola (e.g. if U 
is large) (b) the decay of the exponential is rapid so that its curve dips below the 
parabola and intersects it again twice to the right of the hump (e.g. if B ~ is large). 
When three intersections do occur, as shown in Fig. 2(a), one finds that the two 
extremes (low S and high S) are stable, while the middle value is not. Thus the 
system will evolve to either strong or weak trails, depending on the initial value of 
S. 

One advantage of first understanding eq. (11) is that we can thereby classify the 
bistability of the trail-following model as one representative of a broader category 
of bistable models. The population of budworm in the paper of Ludwig, Jones and 
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Fig. 1. Stages in formation of a swarm include 
(a) random exploratory motion, (b) formation of 
a heavy-traffic trunk trail and a fan-shaped area 
of exploration. The black dot represents a nest. 
The model in this paper suggests that variations 
in the density of the traffic, or in the type of trails 
can result from small changes in the parameters 
that characterize the behaviour of individuals. Af- 
ter Raignier and van Boven (1955) 
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Fig. 2. The behaviour of the reduced model for 
trail-strength (11) can be understood in terms of the 
intersections of the two curves shown here. When 

, S the parabola intersects the humped curve three times " , d  
0 0.2 0.4 0.6 o ~  1 (a), there will be three steady states. The two ex- 

\ treme states (low and high) represent stable weak and 
strong trails. Other possible configurations in which 
only strong (b) or only weak (c) trails are formed 

Hol l ing  (1978) has a s imilar  bistable behav iour  (due to intersect ion o f  a straight 
line wi th  a humped  curve  as above).  
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3. c Analysis of the full model equations 

Returning to the full model eqs. (8.a, b) we note that nullclines are 

dT 
- -  z - -  - -  dt 0" 1 (1 A ' )F -  T O, (12.a) 

dF E'Fe -e'F = ~'(1 - F ) .  (12.b) 
- ~ = 0 '  T 

Thus the nullcline dT/dt =0 given by Eq. (12.a) is a straight line with slope 
- ( 1 - A  I) and T axis intercept T = I .  Since A~=a/v  < 1 the slope of this 
line is negative. The nullcline dF/dt =0 given by Eq. (12.b) is transcendental, as 
previously mentioned. We note that when F approaches 1, the left hand side of 
Eq. (12.b) approaches 0, and so must the fight hand side. This can happen only if T 
approaches 0 (so that S = FIT becomes large, forcing Uexp (-B~S) to zero.) Thus, 
T approaches zero as F approaches 1. Other details of this shape are best handled 
by graphing techniques. For example, the software PhasePlane (G.B. Ermentrout) 
was used to generate a sequence of nulMine configurations as the parameters U,  
and B ~ are varied. Changing ~ has the same effect as changing 1/U, simply affect- 
ing the relative sizes of the linear and exponential terms. The effects of changing 
U and B ~ are shown in Fig. 3. The curve has an s-shape, with one smooth hump, 
and the possibility of a sharp "knee" close to the origin as the value of E ~ increases 
(Fig. 3(a)) or equivalently as the value of ~ decreases. B' causes the height of the 
hump to increase or decrease,as shown in Fig. 4(b), without greatly changing the 
other features of the curve. 

These variations in the shape of the dF/dt =0 nullcline influence the number of 
intersections and the locations of intersections that are made with the straight line 
dT/dt =0. It is possible to obtain one, two, or three intersections. Three extreme 
possibilities are shown in Fig. 4: In Fig. 4(a) there are three intersections, and thus 
three steady states of the system (8.a, b). In Figs 4(b), and 4(c), there is a single 
intersection, but its position differs from one case to the other. The case of two 
intersections is of marginal interest here, occurring as a fleeting transition between 
the other cases. (See Appendix 2 for bifurcation diagram). 

The phase plane behaviour of these cases (analyzed with PhasePlane) is shown 
in Fig. 5, corresponding to the three nullcline configurations shown in Fig. 4. The 
evolution of the length of trails T, on the horizontal axis, and the number of fol- 
lowers, F,  on the vertical axis is given for a number of possible starting values. 
The final values of F and T depend on the initial values in case (a), but in cases 
(b) and (c), all initial values lead to the same final result. The analysis of stability 
properties of the steady states is given in the appendix to this paper. 

3.d Interpretation of the phase plane diagrams 

To interpret the meaning of the phase plane diagrams recall that the ratio S = F/T 
is low near the T axis (where F is small) and high close to the F axis (where T is 
small). Thus, on the TF planes shown in Figs. 4 and 5, each steady state represent 
a whole network of trails whose average strength S depends on the position of 
the steady state. Points close to the T axis (i.e. having low values of F)  represent 
weak networks, whose degree of coordinated following is low. For example, Fig. 
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Fig.3. The nullcline dF/dt = 0 (12.b), whose shape resembles the numeral "2" changes as the 
parameters E / and B / are changed. In a, as E t increases, the curve gets a hump and a kink, 
forming up to 3 interesections with the straight nullcline dT/dt =0. In b, increasing B / enlarges 
the hump portion of the curve, thus also influencing the number of intersections with the dT/dt =0 
nullcline. Note for certain values, e.g. near U=2.6  in (a) and near B~=I in (b), small parameter 
changes lead to dramatic differences, i.e. bifurcations. Plots generated with PhasePlane (G. B. 
Ermentrout) with parameter values A / =0.1, g =0.3. In (a) B / =4.0. In (b) E ~ =6.0 

5(b) shows evolution towards a steady state representing a "weak" trail network, on 
which relatively few individuals are followers. Points close to the F axis (having 
low values o f  T) represent coordinated movement ,  i.e. a heavy traffic "strong" trails 
network. (An example is Fig. 5(c)). In Fig. 5(a), there are two stable steady states, 
one for weak and one for strong trails. Each o f  the stable steady states has a certain 
basin o f  attraction (i.e. set o f  (F, T) values which are drawn to it), and the sizes 
and shapes o f  these basins depends on the parameters in the equations. 
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Fig. 4. Three possible configurations of  the nullcline dF/dt = 0  showing how it could interesect the 
nullcline dT/dt = 0  (12.a ,b) so as to produce a three steady states, or only one steady state (in b 
and e. The strength of  trails is proportional to the ratio of FIT (follower traffic density along the 
trails). Therefore in (b) the steady state represents weak trails. In (c) the steady state represents 
strong trails. Produced with PhasePlane (G. B. Ermentrout) with A r =0.1, a~ =0.3. In (a) B ~ =4.0 
and E r =6.0. In (b) B ~ =0.7 and E ~ =6.0,  In (c) B t =4.0 and E ~ =2.5 
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Fig. 5. Phase plane plots of (12.a, b) corresponding to the cases shown in Figs. 4a, b, c. In a 
there is bi-stable behaviour, in which the strength of the trails can either build up to a stable 
high level, or decrease to a stable weak level. In cases b and e only one of the two trail types 
is possible. Changes in the tendency of individuals to stray off trails, and in the sensitivity to 
pheromone concentration can lead to transitions between the above three situations. Plots produced 
by PhasePlane, with parameters as in Fig. 4 
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Even though only the proportion of followers is plotted here, we interpret each 
curve on these phase plane diagrams as a time course of trail-following since 
L ----1-F (in dimensionless variables) is known once F is known. Taking Fig. 5(b), 
we see that under all starting conditions, followers decline. As they stray off the 
trails, a greater percentage of the population becomes exploratory or "lost". Eventu- 
ally only a small proportion of the population are following trails, and the trails are 
quite long, and hence weak. In case 5(c), the opposite occurs: exploratory ants that 
encounter the trails are able to follow them faithfully and increase their strength. 
Eventually all explorers are absorbed and the trails fill with traffic, becoming strong 
trails. In case 5(a), the outcome depends on the initial distribution of explorers, fol- 
lowers, and trails. Where the trails are very long, or where the density of followers 
is too low to keep up the trail strength, a weak network will result. But where there 
are followers and shorter trails, a strong "trunk trail" will be formed. 

Examples of trunk trails that eventually lead to a region of exploration can be 
seen in the branching trails of army ants drawn by Rettenmeyer (1963). Typically, 
the first or second branch points in the network may lead to a highly branched region 
with a fine lace-like appearance of minute tributaries. Because each bifurcation in 
the network can reduce the traffic density on the branches to 50% of the parent trail, 
the border between attraction to the "strong" steady state and the "weak" steady 
state (e.g. in case of Fig. 6) may be crossed suddenly. This would explain why the 
transition between tnmk trails and exploratory region may be fairly sharp, rather 
than a gradual bifurcation of increasing order. 

Under distinct parameter values, the model leads to one of the three possible 
qualitative outcomes shown in Fig. 5. As parameter values change, transitions will 
take place between one case and another. How these transitions occur is of particular 
relevance to the question of adaptation of the population to its environment. We 
discuss the findings and the implications in the next section. 

3.e How the population adapts to meet its needs 

The model makes several predictions about the plasticity of population behaviour. 
To understand transitions that might occur we consider the effects of varying the 
parameters in the model. 

A typical example is illustrated by the transitions shown in Fig. 5. The transition 
from case (a) to (e) is accomplished by varying U,  the maximal rate of straying off 
a trail. From Fig. 3(a) one sees that a relatively small change in U ,  from U=2.5  
to U =  2.7 brings about a sharp change in nullcline configuration: for U =  2.5 
the nullclines intersect only once (close to F- - l ) ,  but for U = 2.7 two additional 
intersections exist. The change from 2.5 to 2.7 leads to a transition from exclusively 
strong trails to trails that can be either strong or weak. The same transition occurs 
if the parameter c~ ~ is varied (in the opposite direction). 

The transition from Fig. 5(a) to (b) occurs by changing B t, the degree of sen- 
sitivity to trail strength. From Fig. 3(b) we see that when B ~ < 1.0, the nullclines 
intersect only once, close to T =1. Thus, low values of B ~ correspond to a state 
in which only weak networks can be formed. As B ~ increases slightly, the hump 
grows, and two new intersections are formed. Thus, a relatively small change in B ~ 
gives rise to a switch between strong and weak networks. 
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Fig. 6. Behaviour of  an altemate model in which attraction to the trails, rather than tendency to lose 
trails depends on trail strength. Equations (14a, b) with parameter values A ~ =0.5, were simulated. 
The nullcline of  Eq. (14.b) includes the horizontal T axis and the loop-like curve, a Variations in 
the value of  a' cause two steady states to appear when a~ approaches 2.0. (k=0.35) b Variations in 
k have a similar effect (a / =2.0) e phase plane behaviour with ~ / = 2 . 0  and k=0.35. Three steady 
states occur. The stable ones represent all weak trails (on the T axis) and a network with some 
followers (in the 1st quadrant) 
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Since E ~ = ElF, and E is the rate of losing a trail, any change in the individual 
that causes it to lose the trail more frequently, (for example an increased tendency 
for making random turns) would cause a transition to weak trails. B~= bF/v 
is proportional to b which represents the increase in the fidelity of followers per 
unit increase in trail strength. This parameter could be linked to the degree of 
responsiveness of the pheromone receptors on the antennae of an ant, since, as we 
have argued (see appendix) increase in S can be associated with an increase in 
pheromone on trails. Alternately, b could represent the responsiveness of an ant 
to recruitment via antermal contact with sisters who are following trails. Under 
conditions of high recruitability (b large), the population will form strong trails. 

Dependence on total population size, N appears only in the dimensionless quan- 
tity e~ = evN/F 2. We have already noted that increasing el is equivalent to decreas- 
ing E t, an effect that promotes strong trails to be formed. This is to be expected 
since in a large population opportunities for contacts between individuals are more 
numerous, so that signals for recruitment can be reinforced to a greater extent. It 
is well-recognized in many theories for self-organizing systems that increasing the 
size of the population will result in an increase in self-organizing properties of the 
society (e.g., see papers by Deneubourg). 

As previously noted, for a given set of conditions, the fraction of the population 
on trails will attain a balance with the fraction of explorers. However, changes 
in conditions will bring about changes in this balance. It is reasonable to expect 
that environmental influences can affect the values of parameters discussed above. 
For example, the presence of a centralized food source might increase the rate of 
antennal signalling, recruiting ants to a single trail leading to the food. On the 
other hand, the presence of diffuse scattered resources might lead to an increase in 
the random turning rate of individuals, causing them to fall off tnmk routes, and 
establish exploratory "weak" networks. We can thus understand differences between 
species of ants, or between a given species operating under different conditions 
in the context of this model: the same basic rules may apply, but under different 
conditions the population behaviour will differ. 

We can also understand the changes in a single population that might take place 
over the course of a day or a season. The model predicts that gradual variations in 
the parameters over time can lead to dramatic transitions in behaviour. This means 
that a tendency to form a strong or a weak trail network may change suddenly as 
parameter threshold values are crossed. Thus, though the environment may change 
gradually, for example at sunset when light and temperature values decline, the 
population may undergo abrupt changes in behaviour. Following the terminology 
of dynamical systems it is convenient to refer to such transitions as "behavioural 
bifurcations". 

The above comments suggest one further deduction, albeit a speculative one, 
about the evolution of trail-following in social organisms. If  a colony profits by 
being able to make transitions in its behaviour rapidly, or in a highly sensitive way, 
(for example, in response to immediate threats to its existence) it stands to reason 
that a selective advantage would be gained by operating close to the parameter 
thresholds that we have characterized above. Thus, one would speculate that evo- 
lution would drive societies of trail-followers to gradually gain the characteristics 
that place them close to behavioral bifurcations. 
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3 . f  Trail strenoth modulates attraction to trails 

We have so far considered only one possibility, namely that the rate of trail loss 
drops as the strength of the trail increases. Another possibility is that the attraction 
of exploratory ants to the trails is a function of trail strength. In Figure 6 we 
investigate this possibility, and assume that the attraction of exploratory ants to 
trails increases sigrnoidally with the strength of the trail, i.e. 

S 2 
~(S) = ~ ' - -  (13) 

k + S  2 • 

The maximal attraction to trails is ~' and k is a constant governing the steepness of 
the response to increasing trail strength. A sigmoidal response depicts a cooperative 
effect, similar to one encountered in chemical kinetics; the "binding" of one individ- 
ual to the trail enhances the probability that others will bind. If  we use the above 
dependence on trail strength in place of the previous assumption, we get equations 
of the form 

dT 
- -  = (1  - F )  + A ' F  - T ,  ( 1 4 . a )  
dt 

dF _ E ' F  + ~' (F)2 -- F ) T  (14.b) 
at 

Similar analysis can be carried out on Eqs. (14.a, b), as shown in Fig. 6(a), (b), 
and (c). As before, it is found that the number of steady states, the positions of 
these states, and thus the trail-forming properties of the population will depend on 
the range of the parameters. Figure 6(a), (b) show configurations of the nullclines 
of Eqs. (14.a) and (14.b) and the way that the dF/dt=O nullcline changes as the 
parameters c~' and k vary. It is found that for low values of e' or high values of k, 
only one steady state occurs at F =0, T =1, i.e. representing a population in which 
all individuals are randomly exploring and all trails are simple trails behind these 
solitary explorers. When e' is larger, or when k is small, the possibility of forming 
stronger trails also exists, as shown in Fig. 6(c). 

This example suggests that a variety of assumptions about how individuals re- 
spond to trail strength can lead to bistable behaviour, or to the ability to switch 
between weak and strong trails. The variations lead to slightly different versions of 
this response. For example, in the case of variable attraction to the trails, formation 
of strong trails alone does not occur. The reason is that followers always have some 
fixed probability of losing the trails: the population can never be composed entirely 
of followers. 

3.9 Other assumptions about sensitivity to trail strength 

Two different assumptions about how individuals respond to trail strength have been 
explored in Sect. 2.d and 3.f. We have incorporated each of these assumptions into 
the basic trail-following model in order to explore the consequences of each one 
individually. In principle, some combination of these responses may be present. 

It is also conceivable that other parameters that have been assumed constant 
might vary depending on strength of trails. For example, the reinforcement of the 
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trails by followers a, or the walking speed v may depend on pheromonal concen- 
tration (as reported, for example by Deneubourg et al.). If individuals secrete a 
variable mixture of trail pheromones, it is even conceivable that F, the trail decay 
rate changes, as the mixture of trail marker changes, and this too, could depend on 
the trail strength. 

It is possible to consider a model in which many possible combinations of 
such assumptions are tested. Some of these models have more exotic behaviours, 
with a possibility of multiple steady states, indicative of many possible stable trail 
networks of varying strengths. It is not the aim of this paper to deal exhaustively 
with such cases, but merely to document the possible importance of simple responses 
to trail strength. Rather than consider in detail a long list of possible combinations, it 
would seem appropriate to pick a single species of ant, determine experimentally the 
sensitivity of parameters to recruitment signals (such as pheromonal concentration, 
or number of antennal contacts with other ants) and then further modify and explore 
the model based on the biological findings. 

4 Discussion 

Although this paper focuses on the example of trail-following in ants, the adapta- 
tion of chemical communication for the purpose of coordinating group movement is 
widespread in the animal kingdom. In the social insects, trail markers are used in ex- 
ploring and charting routes in a new territory, as well as for mass migration from one 
nest site to another. (Able 1980, H611dobler and Wilson 1990). Trail-following also 
occurs in social bacteria such as Myxobacteria, in larvae and caterpillars (Howard 
and Flinn 1990, Roessingh 1990, Deneubourg et al. 1990, Fabr6 1979), and mol- 
luscs (Focardi and Santini 1990, Foeardi et al. 1985, Tankersley 1990, Wells and 
Buckley 1972, Chelazzi et al. 1990). Some mammals, particularly ungulates, have 
scent glands on their lower legs and feet. Photographs of elk, caribou, wildebeest, 
and many other migratory or territorial mammals will often reveal a distinct set of 
trails along which migration takes place. (Able 1980, Estes 1991). The variety of 
species and conditions in which trail-following occurs suggests that this social be- 
haviour has evolved under the pressure of natural selection in circumstances where 
group cohesion or coordinated group movement is desirable. It is reasonable to be- 
lieve that ability to adapt to the environment should thus be "hardwired" into the 
components of the system. The model in this paper suggests how the responses 
of individuals to each other, or to chemical markers can result in adaptable group 
behaviour. 

To place the model into the context of previous theoretical work, we review 
some of the recent literature. Among the first to explore the notion of olfactory 
(chemical) communication in ants was Wilson (1962a, b). The seminal paper by 
Bossert and Wilson (1963) laid a foundation for careful analysis of the properties 
of scent trails, by combining experimental work on the chemical marker of the ant 
Solenopsis saevissima with a model for diffusion and evaporation of the trail. They 
thus characterized the length and width of the "active space" surrounding the track 
of the ant. Sadly, this beautiful paper has not been followed up with investigations 
of other markers or other species of ants. 

Particularly notable is the Brussels groups of investigators (Deneubourg, Pasteels, 
Goss, Aron, and Calenbuhr) who have pioneered the notion of collective behaviour 
and self-organization in ants. They have studied trail-following in a combined theo- 



322 L. Edelstein-Keshet 

retical, experimental, and numerical treatment. In their papers (Pasteels et al. 1987a, 
1987b, 1987c; Goss, et al. 1989, Aron et al. in Alt 1990) locations of nests or food 
sites and bridges connecting them have been studied. It is shown experimentally 
that the traffic pattern changes, selecting some bridges or routes at the expense of 
others. Models for the number of ants and the level of pheromone on each bridge 
are formulated and analyzed. It is found that usually one route or one bridge is 
favoured. 

Some of the assumptions of these Brussels models are similar to those used in 
the basic model in this paper. However, the goals of the models differ. I focus on 
global patterns of behaviour and on the plasticity of this behaviour under variations 
of parameters. These aspects have not been fully explored in the previous literature. 

Simulations of spatial patterns and swarming behaviour appear in Deneubourg 
et al. (1989, 1990), Franks and Bossert (1989) (Army Ant raiding swarms) and 
Aron et al. (1990). In some of these simulations the deposition and evaporation 
of pheromone influences the local direction and speed of motion of the ants. A 
detailed discussion of the role of parameters in determining the properties of the 
networks, the branching patterns, or the speed of propagation has not been given 
in this literature. Watmough (1992) has addressed these questions by analyzing a 
continuum model for swarming and by simulating the patterns of behaviour using 
a cellular automata model of ants emerging from a nest, depositing and following 
trails. 

Another point worth noting is the absence in this paper of explicit locations or 
distribution of food sources. It has been suggested recently by Franks et al. (1992) 
that differences in food distribution could account for differences in the appear- 
ance of trail-networks of a variety of ant species. The model presented here does 
not contradict this assertion, but rather supports it by revealing how parameters 
associated with the response of individuals to the environment (including food dis- 
tribution) can influence the pattern of trails. One could speculate that when food is 
densely distributed, ants tend to decrease their affinity for trunk trails, for example, 
by increasing the rate of random turning as they encounter particles of food. This 
would then cause a transition to a diffuse network of trails suitable for covering a 
broad area and exploiting the available food. This hypothesis, or variants thereof 
are experimentally testable. 

We have already remarked that all the parameters appearing in the model could, 
in principle, depend on the environment, the species, and the immediate needs of 
the colony. (This includes ~ the rate of attraction to a trail, e the rate of losing a 
trail, b the sensitivity' to pheromone concentration, v, the velocity of trail-layers, F 
the rate of decay of pheromone, and N the total size of the population participating 
in the activity.) 

The model in this paper is among the simplest descriptions for the de novo 
evolution of a network of trails (in the absence of bridges or other constraints) in 
which only temporal, and no spatial variation is considered. It suggests that there are 
several different ways in which a sensitivity to the strength of the trail-marker or to 
the traffic density on trails would imply an ability to switch between trail-networks 
suited for different needs. Two examples, in which the ability to follow a trail or 
the attraction to a trail are strength-dependent have here been studied in detail. 
The basic equations of the model (5.a, b) are amenable to testing a variety of other 
reasonable assUmptions, and could serve as a tool for teasing apart several competing 
hypotheses. An attractive feature of the model is that it is based on experimentally 
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measurable parameter values pertaining to individual behaviour. A drawback of this 
model is that it can only give some global view of the extent to which trails have 
become organized, without predicting any details about the geometry, spatial extent, 
or interconnections of the trails. To this end, we have studied a spatial variant of 
the model and performed simulations showing actual evolutions of trail-patterns. 
These topics are dealt with in companion papers. 

Appendix 1 Relation of trail strength, trail length, and pheromone level 

The trail length equation (2) can be derived by considering pheromonal de- 
position and evaporation, under a set of simplifying assumptions set forth below. 
Assume that individuals secrete droplets of fixed concentration pheromone at the 
rates: 

Further 

~b = number of droplets deposited by a follower per unit time, 

# = number of droplets deposited by a solitary ant per unit time. 

define 

C(t) = concentration of pheromone per unit area (= #drops/area), 

Z(t) = amount pheromone per unit length trail (= #drops/length), 

O(t) = C(t)/Z(t) = average length of trail per unit area. 

(Remark: O(t) is the length of trails in the given unit region that would be formed 
if the droplets are stnmg out in a linear arrangement with an average distribution 
of S droplets per unit length.) A balance for C(t) would be 

dC/dt = [secretion rate] - [evaporation rate]. 

We now make the following simplifying assumptions: (1) The walking speeds and 
rates of secretion of droplets by ants are constant. (2) The pheromone evaporates 
into the environment which is assumed to be an infinite sink (whose pheromonal 
concentration Co will be assumed to be zero) (3) Evaporation is equivalent to decay 
in the number of droplets per unit area at a rate proportional to {C(t) - Co} (i.e. 
for modelling evaporation, C(t) represents a chemical concentration). 

Then the equation for C(t) is 

dC 
d--t- = #L + ~ F  - 7(C - Co). 

Where F(t) and L(t) are followers and solitary ants per unit area as before. The 
reason for formulating the equation in terms of C(t) is that the term for evaporation 
makes most sense in terms of a concentration difference, and the meaning of C(t) 
is closest to that of a true concentration. Now setting Co = 0 and substituting 

C(t) = O(t)X(t) 

t into the above equation, one obtains 

a(zo) _ sao ode 
--~ + d t =  #L + OF - 7ZO. (A.1) 

This equation demonstrates that deposition of pheromone can cause trails to elongate 
(increase O) or to attain a higher net pheromonal level per unit length (increase S) 
or both. We now consider the following limiting cases: 
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(1) X = So =constant; (The solitary ants are depositing pheromone on unmarked 
ground, and the followers are replacing droplets that have evaporated from trails, 
but not significantly increasing the number of droplets on a given length of trail). 
Then letting T(t)  = O(t), substituting into (A1) and dividing by So yields: 

dt 

where we have defined 

dT  
--dr = vL + aF - 7T 

(A.2) 

~ =  - -  a = - - .  

So So 

Under this limiting case, we obtain the trail-length Eq. (2). 
(2) O = To =constant; (The ants are mostly walking over old trails and rein- 

forcing the pheromonal marker, and there are few explorers L ~ 0). Then letting 
S(t) = S (t), substituting O = To into (A.2), setting L = 0 and dividing by To yields 

- -  = 

dt 

(A.3) 
dS 
- -  = 

dt q~F vS .  

Here (4~ = (a/To). In this limiting case the strength of the trails (in the meaning 
used in the model) coincides with the chemical level of pheromone along the trails) 
since at equilibrium (when dS/dt = 0), S(t) would be proportional to FIT.  (As 
mentioned previously, the ratio of FIT  represents a true pheromonal strength only 
in this limiting case. In general it is~an average taken over all trails, including weak 
ones, and is consequently lower than the chemical strength of any one given strong 
trail). 

Appendix 2 Analysis of model eqs. (8.a, b) 

We first investigate the number and stability properties of steady states to Eqs. 
(8.a, b). Typically, there are three steady states, with the middle one an unstable 
saddle point, as we shall show below. However, bifurcations leading to the disap- 
pearance of the saddle point with one of the other steady states occur as a parameter 
such as B ~ is varied. 

To discuss stability in the case of three equilibria, We define the function 

= E' ---B'F H ( T , F )  - Fe + e~(1 - F ) T .  (A.4) 

Then the nullcline of Eq. (8.b) is the curve H(T ,F)=O in the TF plane. By implicit 
differentiation, it follows that the slope of this curve is 

dd~ H=0 _ HT 
m =  O F  " 
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Fig. 7. Stability properties of the three equilibria can 
be deduced from signs of the slope m of the nullcline 
dF/dt = H(F, T) =0 and from the sign of the quantity 
Hr which is positive below the line S = FIT = lIB ~ 
and positive above it. See Table 1 for details 

Stability of the steady states of Eqs. (8.a, b) are determined from the Jacobian, 

J =  Hr  ~ r  (A.5) 
m 

where subscripts indicate partial differentiation with respect to the variable T, and 
where we have set HF = - H r / m  in the fourth entry. We now observe that 

Trace(J) = - 1  Hr  D e t ( J ) = H r ( l + l _ A , )  
m 

By assumptions in the model, the quantity 1 - A  / is always positive, since A ~ < 1. 
Stability thus depends on the sign of Hr  and the sign and magnitude of m. An 
elementary calculation reveals that at steady state, 

HT = I [-B'S(E'Fe-BIs) + e'(1 - F)T] , 
I 

g r  = e'(1 -- f ) (1  - B'S) .  

Since F___< 1, the sign of Hr  is positive for S < lIB ~ and negative for S > 1/Bq 
This splits the FT plane into two triangular regions, separated by the line S = 
FIT = (1/B~). (See Fig. 7) Above the line, HT is negative, and below the line it is 
positive. We consider a configuration shown in Fig. 7. The table below establishes 
the sign pattern of the quantities Hr  and the nullcline slope m for each of the three 
intersections (steady states 1, 2, and 3) It can be seen from the effective signs of the 
determinant and the Jacobian that the middle intersection is a saddle point, while 
the two extreme ones are stable nodes or spirals. (Remarks: in steady state 3, m is 
a small negative number since F cannot increase above F = 1. The sign of Trace 
(J) is not applicable (NA) in case (2) since the negative determinant always results 
in saddle point behaviour). 

The basins of attraction of the stable steady states can be found by plotting the 
stable manifold of the saddle point. A typical example is shown in Fig. 8. The grey 
region is the basin of attraction of the weak trail steady state (at the lower right 
corner). The white region is the basin of attraction of the strong trail steady state, 
at the upper left. 

The bifurcation diagram for Eqs. (8.a, b) shown in Fig. 9 was produced by 
Gerda de Vries using the simulation program AUTO. Here B ~ is the bifurcation 
parameter. The number and stability properties of the steady states can be seen as 
a function of the value of f t .  It is evident that two saddle-node bifurcations occur, 
one for B t increasing from 0, and for B ~ decreasing from 5 (See figure legends for 
exact values of the parameters used.) 
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Table 1. Stability properties of the steady states 

State Hr m Trace(J) Det(J) Stability 

(1) + + - + Stable 
(2) - + NA - Saddle 
(3) + Stable 
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Fig. 8. The unstable manifold of the saddle point sub- 
divides the TF plane into basins of attraction of the 
two equilibria. Starting values below this separatrix 
(shaded) will evolve to the lower steady state, whereas 
those above the separatrix will be attracted by the up- 
per steady state 

1- 
T 

0.8- 

0.6- 

0.1- 

0.2- 

0 
0 

Ant bifurcations 

(2) s 
(4) 

B" 

Fig. 9. Bifurcation diagram of (8a, b) 
produced by Gerda de Vries using the 
simulation package AUTO. The equa- 
tions were simulated using the follow- 
ing values of the parameters: A t =0.1, 
E ~ =2.6, ~ =0.3. The bifurcation param- 
eter was B t. The regions marked 
along this curve indicate (,4) two real 
negative eigenvalues (stable node), (B)  
complex eigenvalues with negative real 
parts (stable spiral), (C) two real, nega- 
tive eigenvalues, (D) two real eigenval- 
ues of opposite signs (saddle point) (E) 
Two real negative eigenvalues. The val- 
ues of B I at the transition points are: (1) 
0.9817 (2) 1.798, (3) 3.746, (4) 4.0838. 
The vertical axis is the steady state(s) 
value of T 
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