
Bulletin of Mathematical Biology (2006) 68: 1169–1211
DOI 10.1007/s11538-006-9131-7

ORIGINAL ARTICLE

Polarization and Movement of Keratocytes: A Multiscale
Modelling Approach

Athanasius F. M. Maréea,∗, Alexandra Jilkineb, Adriana Dawesb,
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Abstract Eukariotic cell motility is a complex phenomenon, in which the cy-
toskeleton and its major constituent, actin, play an essential role. Actin forms
polymers of long, stiff filaments that are cross-linked into an anisotropic network
inside a thin sheet-like cellular protrusion, the lamellipod. At the leading edge of
this structure, polymerization of actin filaments creates the force that pushes out
the membrane and leads to translocation of a motile cell. Dynamics of the actin
network account for changes in cell shape, crawling motion and turning of the cell
in response to external cues. Regulating the dynamics of the cytoskeleton, and
playing a central role in signal transduction in the cell, are Cdc42, Rac and Rho
(GTPases of the rho family, collectively known as the small G-proteins) and the
actin nucleating complex, Arp2/3.

In this paper, we use a multiscale modelling approach in a 2D model of a motile
cell. We describe the mutual interactions of the small G-proteins, and their ef-
fects on capping and side-branching of actin filaments. We incorporate the push-
ing exerted by oriented actin filament ends on the cell edge, and a Rho-dependent
contraction force. Combining these biochemical and mechanical aspects, we inves-
tigate the dynamics of a model epidermal fish keratocyte through in silico exper-
iments. Our model gives insight into how, in response to some cue, a cell can po-
larize, form a leading edge, and move; concomitantly it explains how a keratocyte
cell can maintain its shape and polarity, even after removal of the initial stimulus,
and how it can change direction quickly in response to changes in its environment.
We show that establishment of polarity stems from interactions of Cdc42, Rac and
Rho, while maintenance and robustness of polarity is due to the rapid cytosolic
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diffusion of the inactive (GDI-bound) forms of the small G-proteins. Our model
produces a cell shape that closely resembles the keratocytes and correct speeds
for biologically reasonable parameter values. Movies of the simulations can be ob-
tained from http://theory.bio.uu.nl/stan/keratocyte.

Keywords Mathematical model · Cellular Potts Model · 2D cell motility
model · Actin cytoskeleton · Small G-proteins · Cdc42 Rac Rho · Chemotaxis

Lee A. Segel (2001): “. . . A simulation of a developing organism must
represent the motion of a large number of interacting cells. Like other
materials, cells respect the laws of physics. Each cell is not only driven
by external forces but also generates internal forces by assembling and
disassembling an ephemeral cytoskeleton under the direction of vari-
ous controlling chemicals. A further complication is that although cell
shape depends on the resultant of all of the forces, the forces them-
selves depend on the shape . . . ”

1. Introduction

Cell motility plays an important role in embryonic development, immune surveil-
lance, wound healing, and many other cellular functions. As demonstrated by
the opening quotation, Lee Segel realized that the outstanding complexity in the
movement of cells is partly due to feedbacks at all levels. Following his chain of
thought, our aim is to show that these feedbacks indeed exist between the cy-
toskeleton, the chemical signals controlling it and the cell shape; moreover, we
will argue that this entanglement is essential for cell motility. Given the empiri-
cal information collected throughout the years at each specific level, the time is
ripe to integrate these levels into a single modelling framework with multi-level
interactions.

After many decades (Abercrombie, 1980) and many cell types studied (neurons
(Krewson et al., 1994; Neely and Nicholls, 1995); neutrophils (Ehrengruber et al.,
1996; Takubo and Tatsumi, 1997); fibroblasts (Wells et al., 1998; Kole et al., 2005);
etc.), we still do not understand how cells can polarize and then accurately and
robustly regulate their motion in response to environmental cues. Our paper ad-
dresses these questions, by acknowledging that the factors that give rise to regu-
lated cell motion are distributed over multiple spatial and temporal levels. Two
aspects of our approach should be emphasized here. First, in order to include mul-
tiple levels without obscuring the underlying mechanism responsible for cell motil-
ity phenomena, we have to use a concise description. This means that we focus on
the essential biological agents and their interactions, necessarily leaving out many
specific details. Second, by assembling these essential pieces and showing that they
can already account for the complex biologically relevant behaviour, we aim to
prove that these constitute a sufficient set of “minimal biological requirements”
for cell motility behaviour.
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Fig. 1 Interactions and feedbacks between the small G-proteins and their effects on the actin
cytoskeleton included in this paper. Intermediate steps that are not explicitly modelled are given
in brackets. The small G-protein interaction scheme is based on Giniger (2002).

1.1. Actin cytoskeleton

The dominant force in front-edge protrusion of a motile cell is the actin cytoskele-
ton (Cramer et al., 1994; Abraham et al., 1999). Actin filaments have two distinct
ends, with different affinities for monomers. The “barbed” (or plus) ends favour
actin monomer addition, and (in the absence of physical impediments such as a
membrane) ordinarily grow rapidly, given cytoplasmic levels of free monomeric
actin. Barbed ends of actin filaments are generally oriented towards the leading
edge of the cell (Svitkina et al., 1997; Pollard and Borisy, 2003); they provide the
polymerization force that pushes the membrane outwards. The “pointed” (or mi-
nus) ends of actin filaments are generally concentrated further back into the cell,
where actin disassembly dominates over assembly. (Actin filament growth at the
front and loss at the back is called “treadmilling”: the filaments are largely sta-
tionary save for very slow retrograde flow.) Together, these actin filaments are
networked and cross-linked to form a mesh that gives the cell its characteristic
shape and structure.

The actin filament network is dynamic, undergoing remodelling and constantly
extending or retracting, based on signals received by the cell from its surround-
ings: an external gradient, e.g. of a chemoattractant, processed and integrated in-
ternally in a motile cell and transduced to its cytoskeleton, eventually determines
the direction of cell movement (Haugh et al., 2000; Funamoto et al., 2002). Signal
transduction pathways transmit signals from membrane-bound receptors to ‘cen-
tral nodes’, including the small G-proteins, Cdc42, Rac, and Rho (also called the
“rho family proteins”) (Meili and Firtel, 2003). Their activity, in turn, impinges
directly on the actin dynamics (see Fig. 1), regulating and fine-tuning the polymer-
ization, disassembly, and nucleation of filaments, as well as capping and uncapping
of actin filament barbed ends.

A paradigm system for actin-based cell motility is the fish epidermal kerato-
cyte (Svitkina and Borisy, 1999; Ream et al., 2003), a cell that moves smoothly,
(with speed circa 0.25 µm/s (Laurent et al., 2005)) while retaining a typical cres-
cent shape. This mode of cell motion is not restricted to keratocytes, as other
cell lineages can present this behaviour as well (see Discussion). Remarkably,
even well-prepared fragments of a keratocyte, lacking nuclei and organelles, can,
given a transient mechanical stimulus, initiate and sustain such ‘gliding’ motility
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(Verkhovsky et al., 1999). Although not all details of the biochemistry are known,
this robustness makes the keratocyte-shape an ideal subject of modelling studies
(Grimm et al., 2003; Rubinstein et al., 2005). The common aspects of actin-based
protrusion suggest that the mechanisms underlying cell motility share some uni-
versal properties, and this will be of interest in our paper.

At the front of the cell is a thin sheet-like structure called the lamellipod (see
Fig. 3). This structure is known to be rich in actin, the major cytoskeletal con-
stituent, and largely devoid of organelles (Steinmetz et al., 1997; Cameron et al.,
2001). The front edge of the cell is continuously projected forward, while the rear
is retracted. In contrast to other motile cells, keratocyte adhesion to the substrate
is relatively uniform (Lee and Jacobson, 1997).

We pose the following questions:

1. Can the interactions of the regulatory small G-proteins and actin explain how a
cell polarizes and then retains its polarity?

2. How can cell polarization spontaneously lead to the formation of a leading edge
and a trailing edge, and how can this give rise to cell movement?

3. Can a model based on these interactions explain how a cell maintains a regular
shape as it moves?

4. Are these interactions sufficient to explain how a cell could respond to new
external cues by turning and moving in a new direction?

5. Does a qualitative model of this sort work within the range of biologically rea-
sonable parameter values?

6. Is it able to account for typical cell speeds, time and length scales?

We first introduce the reader to the known roles, distributions, and dynamics of
the small G-proteins that are used in our model, and then formalize how we imple-
ment these dynamics in the model. We further develop this subject by introducing
actin dynamics and cell protrusion, with their interactions and feedbacks. While
describing the spatial model formalism, the combination of proteins and filaments
with cell-shape and forces exerted on the membrane will become clear. We then
analyze how the model behaves under a set of realistic parameter values gleaned
from the literature. Finally, we subject the model to “in silico” experiments which
we compare to “in vitro/in vivo” observations.

1.2. Small G-proteins

1.2.1. Role of Rho GTPases in cell motility
The rho family small G-proteins, Rac, Rho and Cdc42, control many cellular func-
tions, including rates of actin filament polymerization, capping, and branching.
Cdc42 is considered to be a central regulator of polarity in cells from such di-
verse organisms as humans and yeast (Etienne-Manneville, 2004); Rac is required
for protrusive activity, lamellipodia and membrane ruffles; and Rho is necessary
for the formation of stress fibers (actin–myosin filament bundles), formation and
maintenance of focal adhesion complexes (integrin containing junctions that con-
nect the stress fibers to the extracellular matrix), and contraction of the cell body.
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The small G-proteins are molecular switches that cycle between inactive (GDP-
bound) and active (GTP-bound) forms, and between the cytosol and the cell
membrane (Takai et al., 2001). These two coupled cycles are regulated by
three classes of proteins: GEFs (GDP/GTP exchange factors), GAPs (GTPase-
activating proteins), and GDIs (GDP dissociation inhibitors). Dissociation of GDP
from the GDP-bound form of a small G-protein is stimulated by GEFs. Hydrolysis
of GTP to GDP is stimulated by various GAPs. The third class, GDIs, inhibit the
dissociation of GDP and maintain the small G-proteins in an inactive form. The
small G-proteins are only soluble in the cytosol when they are in a complex with
GDI.

Active Rac and Cdc42 both stimulate actin polymerization by activating the
actin-related protein, Arp2/3 complex (Higgs and Pollard, 2000; Ridley, 2001b).
(The Rac pathway is via the WAVE protein complex, whereas Cdc42 interacts
with WASp and N-WASp.) Once activated by any of these, Arp2/3 complexes as-
sociate with existing filaments to form branches (at angles of 70◦) with new barbed
ends (Amann and Pollard, 2001). When a quiescent cell is exposed to an exter-
nal signal (e.g. a chemoattractant), Arp2/3 activation leads to massive nucleation
of new barbed ends at the leading edge of the lamellipod (Redmond and Zig-
mond, 1993; Mullins et al., 1997; Mullins et al., 1998; Zebda et al., 2000; Suetsugu
et al., 2002). Rac also upregulates the membrane phospholipid PIP2, known to pro-
tect actin barbed ends from capping. Cells can respond to a wide range of inputs,
e.g. chemotactic signals, physical stress, and cell–cell contacts. These signals are
transduced by different families of receptors that eventually recruit and activate a
Cdc42-GEF (Etienne-Manneville, 2004). Consequently, Cdc42 acts as a “hub” in
the small G-protein interaction network, through which information essential for
cell orientation is funnelled.

Many insights about the specific roles of the small G-proteins have been ob-
tained by studies using either dominant negative or constitutively active forms.
Interestingly, what has been observed is that reduction or prevention of nor-
mal motility follows from both constitutively active or dominant negative expres-
sion of any one of these proteins (concerning Cdc42: Allen et al., 1998; Etienne-
Manneville, 2004; Rac: Hall, 1998; Nobes and Hall, 1999; Firtel and Chung, 2000;
Ridley, 2001a; Tsuji et al., 2002; Meili and Firtel, 2003; Rho: Kaibuchi et al., 1999;
Nobes and Hall, 1999). This highlights the importance of the functional interaction
of all three small G-proteins for cell motility, as opposed to an independent, direct
effect of each one of them on the movement.

1.2.2. Spatial localization and crosstalk of Rho GTPases
Biochemical evidence, summarised here, points to spatial localization and
crosstalk between the small G-proteins. Kraynov et al. (2000) found that in mi-
grating Swiss 3T3 fibroblasts, active Rac forms a gradient from front to back (and
highest at the leading edge, at the sites of actin polymerization). Cdc42 also ac-
cumulates at the leading edge of a stimulated cell (Ridley, 2001b; Wittmann and
Waterman-Storer, 2001; Falet et al., 2002). Following the kinetics of Cdc42 activa-
tion during individual protrusions, Nalbant et al. (2004) found a close correlation
between extension and retraction of a lamellipod and the rise and fall of Cdc42
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activation. In contrast, active Rho is predominantly found at trailing edge of mov-
ing cells (Xu et al., 2003), its levels being inversely correlated to the levels of ac-
tive Rac in many types of cells (Caron, 2003). For this reason, it is believed that,
in migrating cells, active Rho forms a gradient inverse to that of Rac and Cdc42
(Raftopoulou and Hall, 2004).

Ridley et al. (1992) gave the first report of the crosstalk of small G-proteins: they
found that Rac is needed for Rho-mediated stress fibre formation and concluded
that Rac activates Rho (see also Nobes and Hall, 1995). While Cdc42-injected cells
give rise to Rac-dependent morphological changes, such as lamellipodia, Rac-null
cells injected with Cdc42 do not exhibit lamellipodia - this is consistent with Cdc42
or its effectors activating Rac (Nobes and Hall, 1995). Cdc42 can lead to activa-
tion of Rac by allosteric regulation of a Rac-GEF, Cool-2 (Baird et al., 2005).
Thus, currently the general picture is that Cdc42 activates Rac, which activates
Rho (Matozaki et al., 2000). Evidence of mutual inhibition between Cdc42/Rac
and Rho has also been found (Van Leeuwen et al., 1997; Sander et al., 1999; Firtel
and Chung, 2000; Jiménez et al., 2000; Zondag et al., 2000; Caron, 2003).

2. Modelling polarity and cell protrusion

We here assemble a multi-level model for the roles of small G-proteins and actin
cytoskeleton in cell motility. At the lowest molecular level, we use PDEs to de-
scribe the spatio-temporal kinetics of the small G-proteins within the cell. Next, we
represent the assembly and disassembly of oriented actin filament density, and its
regulation in the cell by small G-proteins. Finally, we use a lattice-based approach
to describe the cell as a whole, focusing on its shape, membrane fluctuations, po-
larity and velocity. As these levels are inextricably linked, a multilevel modelling
approach, such as this, is essential to understanding the emergent dynamics that
arise.

We first explain the motivation and derivation of the underlying dynamics of the
small G-protein crosstalk, and how these are to be interpreted within the spatial
context of the model cell. In Section 2.3, we discuss the importance of orientation
and directionality of the actin network in the protrusion of the cell. Finally, we
explain the spatial modelling approach, based on the Cellular Potts Model (CPM),
in Section 2.4.

Our aim is to assemble a (minimal set of) biologically plausible interactions con-
sistent with polarization of a cell. To avoid later confusion, we note the working
definitions of the following terms that will be used in describing model behaviour:
bistability will here denote the existence of two stable equilibria in the ODE ver-
sion of the model. By spatial bistability we mean that a spatial variant of the model
exhibits zones of stable size, through which more or less constant concentration
values are maintained. (In general, a given domain could contain multiple zones
presenting two possible functional outcomes, determined by which proteins are
dominant.) Polarity is used to denote spatial bistability with exactly two zones,
where the spatial segregation can be associated with a unique front and a back.
We will later show that spatial bistability can be obtained in parameter regimes
that are not associated with bistability of the ODEs.
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Fig. 2 Molecular details of the small G-protein dynamics. The small G-proteins are activated
and deactivated through GEFs and GAPs. The active, GTP-bound forms of the small G-proteins
elevate or suppress each other’s activity by changing the activity of the GEFs.

2.1. Rac, Rho and Cdc42 interactions

To describe the small G-protein interactions we follow the scheme presented by
Giniger (2002), shown in Fig. 1, which is consistent with the biomolecular ex-
periments outlined in Section 1.2.2. Due to the current lack of detailed knowl-
edge on small G-protein crosstalk in keratocytes, and for the sake of being
concise, we keep to this minimal set of well-established interactions that is con-
sistently reoccurring throughout the many cell types studied. Recently, Sakumura
et al. (2005) added variation to this underlying motif (adding an inhibition of
Rac by Rho, and autoactivation of Rac), as well as a set of perturbations (delet-
ing each of the interactions), to study possible oscillatory dynamics of these pro-
teins in neuronal axon guidance. This exemplifies how one can further build upon
this “core” description; a survey of the literature and detailed analysis of vari-
ous possibilities appears in Jilkine, 2005, and Jilkine et al., 2006. Here, however,
we seek to understand what these basic interactions are able to generate on their
own.

The molecular interactions on which the model is based are depicted in Fig. 2;
its derivation follows the same line as presented by Sakumura et al. (2005). We
keep track of the small G-proteins Cdc42, Rac, and Rho that are active (on the
membrane) or inactive (both on membrane and in cytosol, bound to GDI). C,
R, and ρ are defined as active, GTP-bound, Cdc42, Rac and Rho, respectively,
while Ci , Ri , and ρi are their inactive, GDP-bound, forms. All the variables are
expressed in units of [µM]. The fact that keratocyte fragments are also capable of
manifesting similar movement is one indication that production and breakdown of
small G-proteins does not play a role. Therefore, only the cycling between active
and inactive forms needs to be considered. The essential process of activation and
deactivation through GEFs and GAPs is described as

∂G
∂t

= k+
GGEFGGi − k−

GGAPGG + Dm�G with G = C, R, ρ, (1)
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where k+
G and k−

G represent the kinetic rates of activation and inactivation, while
Dm represents the diffusion rate of the small G-proteins along the membrane, here
taken to be the same for all three, based on their comparable molecular weight
and structure. For constant total (active plus inactive) small G-protein, whose av-
erage level we define as Gtot = (1/area)

∫
(G + Gi ) dA, and for constant levels of

the GAPs and GEFs in the absence of crosstalk (GEF∗
G and GAP∗

G), the above
equation can be rewritten (by suitable redefinition of constants) as

∂G
∂t

= IG(Gi/Gtot) − dGG + Dm�G, (2)

where IG = k+
GGEF∗

GGtot is a basal rate of GEF-mediated activation; and dG =
k−

GGAP∗
G represents the basal inactivation rate mediated by GAPs; Gi/Gtot is a

(dimensionless) local level of inactive small G-protein, scaled relative to the total
amount of the given protein distributed in a well-mixed system. Thus, given the
form of Eq. (2), the parameters IG and dG represent the basal activation and inac-
tivation rates of a given small G-protein in the absence of the interactions with the
others.

By now, molecular pathways have been determined for several specific examples
of crosstalk between small G-proteins. From these, it has become clear that the ac-
tivated form of these proteins elevate or suppress each other’s activity by changing
the activity of the GEFs or GAPs, either directly, or via a small cascade (Burridge
and Wennerberg, 2004). Based on these findings, the crosstalk in our model is me-
diated by GEFs. This is similar to assumptions in Sakumura et al. (2005), who
modelled these interactions through a combination of GAPs and GEFs; they used
Michaelis-Menten saturating terms, which we choose to keep linear for the ac-
tivation and sigmoidal for the inhibition (see below). Due to this (in)activation
of GEFs by the small G-proteins, the level of GEFs is no longer constant: We
describe the upregulation of Rac by Cdc42 and Rho by Rac through a linear in-
crease in GEF activation (see Fig. 2). Using basic QSS assumptions for the GEFs
(which leads to GEFG = GEF∗

G + kG′ G′), the activating crosstalk interactions
become

∂G
∂t

= (IG + αG′ G′)(Gi/Gtot) − dGG + Dm�G, with G = R, ρ; G′ = C, R,

(3)

where αG′ describes the effect of the small G-proteins on activation of the GEFs
(αG′ = k+

GkG′ Gtot).
For the description of the inhibiting interactions, we first observe that coupled

inverted behaviour (flipping) is displayed by Cdc42 and Rho. We therefore use the
toggle-switch model, derived by Gardner et al. (2000) for a similar biological sys-
tem, to describe the mutual inhibition between Cdc42 and Rho, i.e. our model has
terms representing cooperative inhibition of GEFs. We will show that cooperativ-
ity is essential for establishing a stable and strong spatial segregation. However,
it is important to realize that a toggle switch by itself is not sufficient to explain
sustained polarity.
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The rate of reduced activation of protein G under the influence of protein G′ is
then

IG

(
1 − (G′)n

βn
G′ + (G′)n

)
= IG

1 + (G′/βG′ )n
.

Hence, to describe the inhibitory interactions, we write

∂G
∂t

= IG

1 + (G′/βG′ )n
(Gi/Gtot) − dGG + Dm�G, with G = C, ρ; G′ = ρ, C,

(4)

where βG′ is the level of small G-protein that leads to a half-maximal inhibition of
the GEFs; n describes the level of cooperativity.

Taken together, the above considerations lead to the set of equations for active
GTP-bound Cdc42, Rac and Rho:

∂C
∂t

= IC

1 + (ρ/βρ)n (Ci/Ctot) − dCC + Dm�C, (5)

∂ R
∂t

= (IR + αCC) (Ri/Rtot) − dRR + Dm�R, (6)

∂ρ

∂t
= (Iρ + αRR)

1 + (C/βC)n (ρi/ρtot) − dρρ + Dm�ρ. (7)

We will later refer to the kinetic terms in these equations as fC(C, ρ, Ci ), fR(C,

R, Ri ), fρ(C, R, ρ, ρi ) (or simply as fC, fR, fρ).
An observation we made in constructing the model is that the relatively rapidly

diffusing inactive forms of the small G-proteins (distributed in both membrane and
cytosol) play an important role in spatial bistability. By simple bookkeeping, each
inactive form of the small G-proteins satisfies an equation of the form

∂Gi

∂t
= − fG + Dmc�Gi where G = C, R, ρ. (8)

To derive this aggregate equation for the inactive small G-proteins, there are two
scaling aspects to note. First, Gi is the total of both inactive membrane bound
(Gm) and cytosolic (Gc) small G-protein. Obviously, molecules in a membrane
and contained within the cell volume come in different concentration dimensions,
leading us to quantify these values together in the following manner: taking a
2D description of the cell (and assuming constant thickness throughout, see be-
low), we consider all the variables as effective mean concentrations within a ver-
tical column though the cell (see Fig. 3). Such an approach is straightforward:
we know both the number of molecules contained within the vertical column
and the column’s volume (hexagonal base times column’s height), hence the ef-
fective mean concentration. This approach holds an experimentally intuitive in-
terpretation, for it is as if one slices a cell and counts all the specific molecules
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Fig. 3 Schematic diagram to explain our model of a moving keratocyte. The top view (2D pro-
jection of the cell onto the substrate) is discretized using a hexagonal lattice. Concentrations at
positions (x, y) are the total concentrations contained in columns of height dz, projected on hexag-
onal sites of area da. (For simplification, we assume a constant thickness in the vertical direction.)
Insets: Top right: the possible actin filament orientations, �m, m = 1 . . . 6, defined in the model;
Centre right: the density of barbed ends B�m and filaments F�m at angle �m (e.g. for m = 1), at
any site (x, y) in the cell interior; Bottom right: barbed end and filament density, and pushing
barbed ends P�m at any site along the edge of the cell, at angle �m (e.g. for m = 5). Note that the
model does not specify any leading edge a priori. The shape of the cell, and its leading edge and
trailing edge arise spontaneously by self-organization in the simulations.

contained in this cell fragment with known volume (usually, however, this is done
on a coarser per cell basis (Michaelson et al., 2001)). Because the lamellipod con-
stitutes a major part of the cell, and given its approximately constant thickness,
we ignore the nucleus-region which bulges up (its effective volume that permits
small G-protein diffusion, however, being largely reduced due to the presence
of organelles), and describe the cell as having constant height determined by the
lamellipod.

Second, Dmc is the effective diffusion rate of the inactive form, resulting from
diffusion of the protein in both the membrane and the cytosol. The amount of
cytosolic small G-protein, Gc, will vary due to exchange with the membrane,

∂Gc

∂t
= koffGm − konGc + Dc�Gi where G = C, R, ρ, (9)
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with koff and kon representing the rates of the molecule detaching from, and be-
ing incorporated into the membrane; Dc is the diffusion rate in the cytosol. Re-
call that only the inactive form can detach from the membrane. (Due to the way
the molecules of both forms are counted within the same column, as explained
above, the dimensionality is already taken care of, i.e. koff and kon both carry units
[time]−1). It has been observed that the switching between both states is very rapid
(Sako et al., 2000), allowing us to assume Gc to be in QSS. From Eq. (9), it then
follows that a fraction kon/(kon + koff) of Gi is membrane-bound, and a fraction
koff/(kon + koff) is in the cytosol. Hence, the effective diffusion rate Dmc is given by

Dmc = kon

kon + koff
Dm + koff

kon + koff
Dc. (10)

The value of the diffusion coefficient Dmc should thus be in some range between
the upper limit established by free diffusion of small G-proteins in the cytosol and
the lower limit given by the membrane-bound diffusion, which is 10 to 100-fold
lower.

All the concentration variables described above, i.e. C, R, ρ, Ci , Ri , ρi , depict
proteins confined to the cell. We therefore have to use Von Neumann (or echo)
boundary conditions along the edge of the cell.

2.2. Arp2/3 dynamics

We next model the concentration, A, of activated Arp2/3 complex, by the equation

∂ A
∂t

= µCC + µRR − η(A, Ft )Ft − dAA+ DA�A, (11)

describing the activation of Arp2/3 by both Cdc42 and Rac (Ridley, 2001b) (via
WAVE protein complex, respectively WASp and N-WASp), with rates given by
µC and µR. It then will be incorporated into the actin cytoskeleton network, at a
rate that depends on both the Arp2/3 concentration and on the total amount of
actin filaments, here represented by Ft (see Eq. (16) below). Note that this process
does not depend on filament orientation. Further, Arp2/3 also decays and diffuses
(with the rates dA and DA, respectively). As above, A, is expressed in units of [µM],
is confined to the cell, and satisfies Von Neumann (or echo) boundary conditions
at the cell edge.

2.3. Actin dynamics

In our model, we keep track of actin filament density at various orientations. For
their growth, we focus on the number of ‘free’ (uncapped) barbed ends that are
able to extend. Levels of actin monomers are not considered as a limiting factor
and the turnover rate of filaments is approximated as constant, i.e. we do not here
distinguish between monomer-by-monomer depolymerization and other general
filament degradation processes, nor do we take into account ageing (ATP-to-ADP
decay) that makes the filament more prone to be broken down.
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Actin filaments form a highly connected mesh, anchored to the substrate
through focal adhesions. Because of the cross-linking of the cytoskeleton, we de-
scribe changes in actin density as being solely due to addition of monomers at
uncapped barbed ends and to overall filament breakdown. This means that we
neglect the small backward flow of cytoskeleton observed at the leading edge
(Vallotton et al., 2004). The filament orientations dictate the local direction of
extension of the cell. In keratocytes, most filaments near the leading edge point at
angles within ±70◦ of the axis of protrusion (Maly and Borisy, 2001; Verkhovsky
et al., 2003), resulting in forward translocation. Importantly, we do not impose a
pre-determined cell front or back, nor do we make any ad hoc assumptions about
local polarity information within the cell to guide the assembly of the network:
rather, our purpose is to show that the observed orientation of the network can
emerge as a natural consequence of the mechanism of protrusion.

To link the filaments to a hexagonal grid adopted for our lattice-based simula-
tions, we keep track of six possible filament orientations, at discretized angles

�m = 2πm
6

. (12)

This is a suitable description for Arp2/3 branching at ±70◦, here approximated by
60◦ angles.

We define F�m , B�m to be the density of filaments and barbed ends at angle
�m in a given position at time t . F is filament length per unit area (F has units of
[nm]/[nm]2 = [nm]−1); B is number of barbed ends per unit area (units of [nm]−2).
Introducing the hexagonal angle discretization, Eq. (12), the equations describing
growth and disassembly of filaments and extension, nucleation, and capping of
their ends are

∂ F�m

∂t
= v0 B�m − dF F�m, (13)

∂ B�m

∂t
= −∇ · (B�m

�V(�m)) + 1
2

kη (A, Ft ) (F�m−1 + F�m+1 ) − κ(R)B�m, (14)

where

�V = v0

(
cos �m

sin �m

)
. (15)

Here v0 is net polymerization speed at barbed ends (assumed constant), vB�m is
the resulting increase in filament density, and dF is the filament disassembly rate.
The first term in Eq. (14) describes the flux of barbed ends due to growth of fil-
aments oriented at angle �m; the second term describes the Arp2/3-mediated fil-
ament side-branching at a rate η(A, Ft ) that depends on effective filament length
available for Arp2/3 binding. Half of the side-branches from a filament of orienta-
tion �m±1 will then point in direction �m. k is a scaling parameter (see Section 3);
and κ(R) describes the capping rate, assumed to depend on the levels of Rac.
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The total filament and barbed end densities (summed over all orientations at a
given location) are given by

Ft =
6∑

m=1

F�m ; Bt =
6∑

m=1

B�m. (16)

Moreover, given that all dynamics are confined to the cell, barbed ends reaching
the edge of the cell will encounter resistance to motion due to the membrane. This
is described through the boundary conditions of the model. We introduce the spe-
cial class of force-bearing barbed ends, defined as P�m , the number of barbed ends
per unit edge length (in units of [nm]−1) that are actually pushing the membrane at
angle �m, at a given position and time t (see, e.g. Mogilner and Edelstein-Keshet,
2002). The rate at which barbed ends close to the membrane are promoted to this
class is the product of their density and the velocity component perpendicular to
the membrane (by classical conservation). Here they accumulate until discounted
by capping. Thus, the total number of ‘pushing barbed ends’ per unit membrane
length, oriented at angle �m, satisfies the following dynamics:

∂ P�m

∂t
= B�m

�V(�m) · n̂ − rκ(R)P�m, (17)

where n̂ is the unit vector normal to the edge. The first term has units of [nm]−2·
[nm] [s]−1 = [nm]−1[s]−1. The second term represents (Rac-dependent) capping,
assumed to be reduced by some factor r , as barbed ends in a zone close to the
edge of the cell are protected from capping (see Section 3 for estimates of this
parameter).

To complete this description, we must specify how nucleation and capping de-
pend on factors such as Arp2/3 and Rac. The following reaction scheme describes
the binding of Arp2/3 to filaments:

A+ l Ft
k1�

k−1

C
k2→ l Ft + kB. (18)

The terms l Ft and kB describe, respectively, the amount of filaments (expressed
in equivalent units of [µM]) to which one µM of Arp2/3 binds, and the number
of barbed ends generated by this binding. The scaling parameter l is introduced
because Arp2/3 and filament density have different units ([µM] vs. [nm]−1); it rep-
resents the minimum distance between branch points along an actin filament. (See
also Section 3.) Notice that in various regimes, both filament density and Arp2/3
can be limiting factors for nucleation. Hence, a simple Michaelis-Menten descrip-
tion does not suffice and a total Quasi-Steady State Approximation (tQSSA)
(Borghans et al., 1996) should be applied. Setting

Km = k−1 + k2

k1
, η0 = lk2, (19)
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the tQSSA approximation leads to a nucleation function that saturates with re-
spect to both variables:

η = η0
A

Km + A+ l Ft
. (20)

Here, η0 gives the maximum nucleation rate, and Km is a saturation constant.
Rac is known to directly activate PIP2, which then inhibits capping. We propose

the following relationship between the rate of barbed end capping, κ(R), and ac-
tive Rac:

κ(R) = κmax − κrac

(
R

KR + R

)
= κbasal + κrac

(
1

1 + R
KR

)
. (21)

Here κmax is the maximal capping rate, κrac the Rac-related reduction in capping
(and κbasal = κmax − κrac). KR is the level of Rac at which its inhibition is one-half
of its maximal inhibition.

2.4. Cell protrusion

To integrate the regulatory elements, cytoskeleton dynamics and deformations
and motion of the cell, we use the Cellular Potts Model (CPM), a spatial grid-based
formalism that allows for mesoscopic cell description (Glazier and Graner, 1993):
a cell is defined over a region, composed of multiple, in our case hexagonal, lattice
sites (see Fig. 3). The dynamics are based on the free energy minimization principle
(Landau and Lifshitz, 1976; Marion and Thornton, 1995), and generated by means
of Monte Carlo Simulations utilizing the Metropolis algorithm (Metropolis et al.,
1953). Effectively, this means that cell motion comes about from the overall min-
imization of the energy of deformation and stretching of the membrane through
stochastic fluctuations, in which the global and local forces upon a cell edge, related
to the internal structure and chemistry of the cell, are resolved (Graner, 1993).

We consider such an energy-based model to be an ideal approach to study bio-
logical cells (see also Discussion). Capturing all forces acting on a cell membrane
accurately presents forbidding technical challenges. To circumvent this, we use an
alternate approach based on Hamilton’s principle (Marion and Thornton, 1995).
This approach is used in many physical problems of classical mechanics where it is
inconvenient, or even impossible, to decompose the effects on a system into a finite
set of discrete point forces. Here we apply the formalism to describe the effects of
protrusion and contraction of the cell edge on the cell dynamics.

Because the lamellipod is very thin (≈176 nm, Abraham et al., 1999), we model
the dynamics in 2D, using the quasi-3D approach described in Section 2.1 (see also
Fig. 3). The fact that adhesion of the keratocyte to the substrate during movement
is sufficiently homogeneous to allow for constant, roughly uniform traction forces
between the cell and the substrate (Lee and Jacobson, 1997; Galbraith and Sheetz,
1999), enables us to focus on the fluctuations of the cell membrane that lead to
protrusion and retraction of the cell edge. As stated, the biological cell on the
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substrate is described as a set of lattice sites (pixels) on a hexagonal grid, sharing
the same state, σcell, while the medium surrounding it is represented by another
state, σmedium. The initial shape of the cell is round. The formation of a leading edge
emerges from the interplay between small G-protein interactions, cell contraction
and filament extensions (and is not a priori specified).

At each Monte Carlo time step (MCS), a random sampling through the lattice is
used to determine whether sites change their state into the state of one of their ran-
domly chosen neighbours. This change (denoted “copying”) corresponds to small
deformations of the membrane. During one MCS each site is considered for a pos-
sible state change once. In the classical CPM, to determine whether copying will
occur, one calculates an energy function, Hamiltonian (H),

H =
∑

JCM + λ (a − A)2
, (22)

where the sum is over neighbouring sites (up to the third order) of each pixel.
Through the Hamiltonian, the dynamics of the cell are established by minimizing
the free energy. (As a result, large expansion or compression in the cell size, as
well as large bending fluctuations of the cell membrane are avoided). In this 2D
model, H is a function of the cell area and the boundary length (corresponding
to volume and surface area in 3D). JCM is the coupling energy per boundary site
between a cell site (state σcell) and an empty adjoining site (state σmedium) (from
which the perimeter energy of the whole cell can be calculated); a is the actual cell
area, A the target area, and λ an ‘inelasticity’ constant that affects the constraint
on cell area deformation.

Given the Hamiltonian, the energy of a certain configuration can be determined,
and a ‘copying’ of a random neighbour to a site can be tested: the energies of the
two configurations, before and after copying, are compared by computing the net
change of energy, �H = Hafter − Hbefore. The ‘copying’ trial is then accepted with
probability

P =



1 if �H < −Hb,

exp
(

−�H + Hb

T

)
if �H ≥ −Hb,

(23)

where Hb represents a yield—the ability of the membrane to resist a force (Marée
and Hogeweg, 2001), and T (simulation temperature) determines the fluctuations.
The parameters T and Hb represent specific effects (to be described) in the model
formalism. In Section 3.3, we show how their values can be empirically and quanti-
tatively connected to physical aspects of biological cells. We do so by requiring that
the model correctly incorporates the relationship between the speed of membrane
protrusion and barbed end density at the membrane, based on a thermal ratchet
mechanism (Mogilner and Oster, 1996a, 2003). Equation (23) (the Metropolis
Algorithm) means that changes in state that result in lowering the energy by at
least Hb are always made, whereas other changes are made with a Boltzmann prob-
ability. If the energy were to increase much due to such a state change, that change
becomes extremely improbable.
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Our model cell is endowed with internal chemistry that alters probabilities of ex-
pansion/retraction, making some parts bulge out more easily while other parts tend
to retract. We extend the standard CPM-Hamiltonian to take this into account. To
incorporate the pushing of actin filament ends on the cell edge membrane and the
Rho-dependent contraction of parts of the cell, the Hamiltonian becomes

�H′ = �H − ∑
m Pθm + ξ (ρ − ρth) when the cell extends,

�H′ = �H + ∑
m Pθm − ξ (ρ − ρth) when the cell retracts.

(24)

Forces exerted by all barbed ends pushing against the membrane towards the
empty site, are represented by the linear shift in the Hamiltonian,

∑
Pθm . Note the

sign difference in this term where the cell protrudes (extends by one site) versus
where the cell retracts by one site (and the barbed ends then resist backward mo-
tion of the membrane). See Fig. 4(b). The last term describes Rho’s influence on
the contraction at the back of a motile cell. As incorporated in the Hamiltonian,
the effective Rho-dependent contraction forces make inward fluctuations more
likely, and outward fluctuations less likely at parts of the cell edge where Rho ex-
ceeds a certain threshold level for contraction, (i.e. when ρ > ρth). The value 1/ξ

represents the elevation in Rho concentration whose resulting contraction coun-
terbalances the force of one barbed end per nm pushing against the membrane. In
our simulations, we use the quantity �H′ in the general update scheme in place of
�H in Eq. (23). H, Hb, and T carry the same units as P, i.e. [nm]−1.

2.5. Numerical simulations

We numerically evaluate the model on a 500 × 500 hexagonal grid with wrap-
around (toroidal) boundary conditions. The characteristic length of each grid point
is scaled to 100 nm. The lattice and discretized PDEs use the same resolution. One
Monte Carlo time step corresponds to 0.1 s, and the same timestep is used to nu-
merically integrate the PDEs. Diffusion processes were integrated using an explicit
Euler method, with sufficiently small timesteps to guarantee numerical stability.
To initialize polarity (e.g. from the right to the left through the cell), a spatial
gradient in the value of IC is applied for a period corresponding to 10 s. This ini-
tialization represents the effective primary response of the cell to some external
graded stimulus. Because the effect of external chemicals generally leads to the
activation of Cdc42-GEFs (Etienne-Manneville, 2004), we incorporate the exter-
nal signal in our model directly as an increase of the value of the parameter IC . As
soon as polarity is established, we remove spatial biases, and the autonomous in-
ternal dynamics of the proteins takes over. To test the response of a polarized cell
to a new chemotactic signal, we re-establish after a 5 min interval another (much
smaller) gradient in IC , along a different orientation.

When a site at the membrane retracts (i.e. when a site previously occupied by the
cell becomes medium), all filaments and barbed ends formerly at this position get
pushed back, together with the edge of the cell. As a consequence, the filaments
pile up at adjacent sites inside the cell corresponding to their directions of orien-
tation. The barbed ends, however, now push against a newly modified interface.
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Fig. 4 Protrusion force–velocity in our model closely fits the thermal ratchet force–velocity
curve. (a) The velocity of edge protrusion, v, as a function of the number of barbed ends, b, at
the protruding edge of the cell. Thick line: the thermal ratchet relationship (Mogilner and Oster,
1996a), see Eq. (25). Thin line: our CPM-based relationship, Eq. (26), as derived in Appendix A.3.
The CPM parameter values T=0.008 nm−1 and Hb=0.046 nm−1 result in a close empirical fit of
our force–velocity curve to the thermal ratchet curve over the whole range of relevant barbed
end densities at the edge. The parameter Hb controls the sigmoidal aspect of the function, while
T determines the steepness of saturation. All other parameters are as given in Tables 2 and 3.
(b) Schematic diagram of how filaments and barbed ends are extended or retracted in our 2D
simulations when the edge of the cell moves out into an empty site, or retracts by one site.

They therefore become load-bearing (pushing) barbed ends, and are counted as
such. Similarly, as a membrane element extends, all the barbed ends that were for-
merly pushing against this membrane cease to be in direct contact with the mem-
brane, becoming ‘ordinary’ barbed ends (no longer force-bearing) within the cell.
In this way, filaments and barbed ends are not lost or generated de novo when the
membrane retracts or extends, and the build-up and release of internal forces are
directly coupled to the cytoskeleton (see Fig. 4(b)).

3. Parameter estimates

Many values of parameters used in the model can be inferred from some cell lin-
eages, but not necessarily from keratocyte data. Therefore, we have assembled
parameter estimates based on a composite set of data from various cell types. As
we later point out, the behaviour of the model is fairly robust in large regions of
parameter space around our estimates, leading to confidence in the biological rel-
evance of the results.

A summary of parameter values used in the model appears in Tables 1, 2 and
3. Details of how we calculated these estimates is given in the Appendix. Here we
provide the general scheme used in finding values of the model parameters.
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Table 1 Parameter estimates relevant to the small G-proteins and their interactions

Parameter Meaning Values Units

C∗ typical level of active Cdc42 1 µM
R∗ typical level of active Rac 3 µM
ρ∗ typical level of active Rho 1.25 µM
Ctot total level of Cdc42 2.4 µM
Rtot total level of Rac 7.5 µM
ρtot total level of Rho 3.1 µM
IC Cdc42 activation input rate 3.4 µM s−1

IR Rac activation input rate 0.5 µM s−1

Iρ Rho activation input rate 3.3 µM s−1

βρ Rho level for half-max inhibition of Cdc42 1.25 µM
βC Cdc42 level for half-max inhibition of Rho 1 µM
n Hill coefficient of Cdc42-Rho mutual inhibition response 3 –
αC Cdc42-dependent Rac activation rate 4.5 s−1

αR Rac-dependent Rho activation rate 0.3 s−1

dC , dR, dρ decay rates of activated small G-proteins 1 s−1

Dm diffusion coefficient of active small G-proteins 1 × 105 nm2 s−1

Dmc diffusion coefficient of inactive small G-proteins 1 × 107 nm2 s−1

3.1. Rac, Rho, and Cdc42 interactions

To our knowledge, the concentration of small G-proteins in keratocytes is un-
known. Michaelson et al. (2001), however, used immunoblotting to measure the
total amount of small G-proteins in fibroblasts (Cos1 cells). Using their results, we
calculated effective total concentrations, of ρtot, Rtot, and Ctot. There are large dif-
ferences in the estimates of the fraction of small G-proteins that are actually in the
GTP-bound state, ranging from 3% up to 25% for a resting cell (Boukharov and
Cohen, 1998; Benard et al., 1999; Fleming et al., 1996); with the activity level of Rac

Table 2 Parameter estimates relevant to actin dynamics

Parameter Meaning Values Units

A∗ typical Arp2/3 concentration 2 µM
F∗ typical filament density 0.278 nm−1

B∗ typical barbed end density 1.7 × 10−5 nm−2

P∗ typical edge density of barbed ends 0.05 nm−1

µC, µR Cdc42 and Rac-dependent Arp2/3 activation 0.16 s−1

dA activated Arp2/3 decay rate 0.1 s−1

DA diffusion coefficient of Arp2/3 1 × 106 nm2 s−1

η0 Arp2/3 nucleation rate 60 µM nm s−1

Km saturation constant for Arp2/3 nucleation 2 µM
l scale factor converting units of F to concentration 255 µM nm
k scale factor converting concentration to units of B 1.06 × 10−4 nm−2 µ M−1

v0 actin filament growth rate (free polymerization) 500 nm s−1

dF actin filament turnover rate 0.03 s−1

κmax barbed end capping rate 2.8 s−1

κrac max reduction of capping by Rac 2.1 s−1

KR Rac level for half-max reduction of capping 3 µM
r reduction of capping close to the edge 0.14 –
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Table 3 Parameter estimates relevant to the CPM computation

Parameter Meaning Values Units

�x grid step size 100 nm
�t Monte Carlo time step (MCS) 0.1 s
T simulation “temperature” 0.008 nm−1

Hb membrane yield 0.046 nm−1

JCM coupling energy per boundary site 7.5 × 10−4 nm−1

λ inelasticity constant 10−9 nm−3

A target area of the cell 3 × 108 nm2

ρth Rho threshold for contraction 1.25 µM
ξ effect of Rho on contraction 0.06 µM nm−1

w renormalised membrane resistance 0.05 nm−1

and Cdc42 becoming at least twice as high when the cell is stimulated (Kurokawa
et al., 2004). Based on these numbers, we here assume that during keratocyte mo-
tion, the overall fraction in the GTP-bound-state at steady state is around 40%,
leading to our estimates of C∗, R∗, and ρ∗.

The diffusion rate of the small G-proteins has not been measured, probably
because the proteins cycle on and off the membrane. However, the diffusion of
membrane-bound Ras, a small GTPase with the same molecular weight, is around
1 µm2 s−1 (Goodwin et al., 2005), while Postma and Van Haastert (2001); Postma
et al. (2004) report that the diffusion coefficient of heterotrimeric G-proteins in
the membrane is 0.1 µm2 s−1, and in the cytosol 10–50 µm2/s, i.e. two orders of
magnitude larger. We used these results to estimate the diffusion coefficients of
all forms of the small G-proteins and Arp2/3. To estimate decay rates of the small
G-proteins, we used the reported average membrane lifetime of an activated Rac
molecule (Sako et al., 2000), and the GAP-stimulated GTP hydrolysis of Rho
(Zhang and Zheng, 1998). Saturation terms and the threshold ρth were taken to be
in the same range as the typical steady-state concentrations. Based on estimated
decay rates and approximate steady-state concentrations, we inferred approxi-
mate activation rates for the small G-proteins. Finally, we used a Hill-coefficient
n = 3 for the mutually inhibiting response curves in Eqs. (5) and (7) (but see also
Section 4). Further details are given in the Appendix.

3.2. Actin dynamics

In Eq. (20), the term l Ft describes the amount of filamentous actin (expressed in
equivalent units of [µM]) to which one µM of Arp2/3 binds. We used the min-
imal distance observed between side-branches along a single filament (Mullins
et al., 1998; Svitkina and Borisy, 1999), the lamellipod thickness (Abraham et al.,
1999), and the number of monomers per unit filament length, to determine l,
which converts units of actin density into corresponding units of Arp2/3 concen-
tration. In the projected area of the lamellipod (shown as top view in Fig. 3),
we computed effective densities of actin filaments [nm−1] using the appropriate
conversions.
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Actin turnover rate and typical Arp2/3 equilibrium concentration were based
on Pollard et al. (2000), Higgs and Pollard (1999). Typical filament density was
taken from Abraham et al. (1999), which was then used to calculate maximal nu-
cleation rates and the remaining Arp2/3 parameters. The barbed end capping rate
was based on Pollard et al. (2000), with a reduction close to the cell membrane
(see, e.g. Mogilner and Edelstein-Keshet, 2002; Grimm et al., 2003).

3.3. Cell protrusion

In a thermal ratchet driven by actin polymerization (Mogilner and Oster, 1996a,
2003), the relationship between the number of barbed ends at the membrane
and the speed, v, of the lamellipodial protrusion is approximately (Mogilner and
Edelstein-Keshet, 2002)

v = v0 exp(−w/b), (25)

where v0 is the free polymerization speed, b the density of barbed ends per unit
length at the membrane, and w the renormalised membrane resistance force per
unit length (w = Fmδ/kBT, where Fm is the membrane resistance, δ the size of one
monomer, and kBT ≈ 4.1 pN nm is thermal energy). Given the contrasting natures
of the different models, a direct one-to-one correspondence between the CPM
parameters and those of this force-based equation does not exist. However, we
can link these values by deriving a comparable relationship between the effective
speed of protrusion and the density of barbed ends for our model.

In the Appendix, we use a simple one-dimensional situation similar to that con-
sidered in Mogilner and Oster (1996a); Mogilner and Edelstein-Keshet (2002),
to derive an effective force–velocity relationship for protrusion speed based on
the CPM Hamiltonian implementation (Eq. (24)) of barbed ends pushing at the
cell edge. Likewise neglecting capping and side-branching, and assuming that all
barbed ends are directed towards the cell edge, we show that the the implicit de-
scription of the mean speed of protrusion that stems from the Hamiltonian formu-
lation is

v = �x
�t

exp (−Hb/T)
(

exp
(

(1 − v/v0)b
T

)
− exp

(−(1 − v/v0)b
T

))
. (26)

While not identical to Eq. (25), this equation also describes a relationship be-
tween protrusion velocity and the number of barbed ends, but here the relation-
ship is expressed in terms of the CPM parameters T and Hb. By fitting this re-
lationship to Eq. (25) (for which the parameter values are well-established), we
can obtain the optimal values for T and Hb. With this choice of CPM parameters
(T = 0.008 nm−1; Hb = 0.046 nm−1) we obtain an excellent empirical fit between
the thermal ratchet force–velocity relationship of Eq. (25) and our effective force–
velocity relationship, Eq. (26), as shown in Fig. 4(a). (Note that the fit is close
over the whole range of biologically relevant barbed end density values, typically
observed to be in the range of 0.05–0.25 nm−1 at the lamellipod edge, Abraham
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et al., 1999; Mogilner and Edelstein-Keshet, 2002.) Accordingly, the CPM grace-
fully leads to a reasonable depiction of actin-based protrusion forces, through en-
ergy minimization: for the above values of T and Hb our model quantitatively
describes the response of the cell membrane to any possible load of pushing barbed
ends.

Other details of parameter values are described in the Appendix. Briefly, JCM

is linked to the effects of cell shape on protrusion of the edge. (At lower values
of JCM ruffles can be formed more easily, while at higher values, the cell remains
more compact.) As biological data is not available, we experimented with a range
of values, before settling on JCM = 7.5 × 10−4 nm−1. The value of λ is related to
the compressibility of the cell (through osmotic forces, etc.), but has a limited
effect on the dynamics. We choose λ = 10−9 nm−3, to keep fluctuations in cell size
within a few percent. We used the typical 2D area of spread of a moving keratocyte
(Svitkina and Borisy, 1999) to identify the target area A of 3 × 108 nm2 
 3 × 104

lattice sites, and took a round cell, with a diameter 20 µm for the initial
configuration.

4. Results

4.1. Establishment of polarity

Mutual inhibition between Rho and Cdc42 can lead to bistability: either Cdc42
is high (which leads to activation and elevation of Rac) and Rho levels are sup-
pressed, or Rho is high and Cdc42 and Rac are low. Whether bistability occurs
depends on the Hill-coefficient, n, in fC, fρ . Bistability (of the ODEs) is mathe-
matically possible only for n > 1 (Jilkine, 2005). For the biologically realistic pa-
rameter values used in this study, bistability in the temporal dynamics only occurs
for n ≥ 4, a narrower parameter range. When n = 6, the bistable region becomes
very large. Figures 5(a) and (b), show the bifurcation diagrams for the well-mixed
system in the cases n = 3 and n = 6.

A bistable regime of small G-protein dynamics, however, does not automati-
cally lead to persistent polarity in a cell. In general, a stable transition zone does
not occur at all in a spatially distributed bistable system with values at ±∞ fixed
to the distinct steady-state solutions. For example, using singular perturbation the-
ory, Nishiura (1991) showed that a travelling wave will sweep through the domain
in a 1D setting. As one or the other equilibrium takes over, no stable coexis-
tence is possible. If small G-proteins were always on the membrane, and never
released into the cytosol, (i.e. if locally the amount of inactive Cdc42 could be
described as Ci = Ctot − C), this type of transient bistability would occur in our
model. Figure 5(c) shows that when bistability does not exist, the system immedi-
ately jumps to the stable equilibrium, while Fig. 5(d) shows that with bistability,
such a travelling wave sweeps through the system, implying that polarity can only
be maintained for a limited amount of time, and is then lost. Moreover, such bista-
bility would depend strongly on the speed of cell motion and the level of external
signals: only in an extremely tight parameter range would polarity be maintained
for a reasonably long time.
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This transient behaviour changes dramatically when the rapid diffusion of the
GDI-bound small G-proteins in the cytosol (twofold faster than in the mem-
brane) is taken into account. The rapid cytosolic diffusion means that differences
in cytosolic concentrations equilibrate very rapidly. The exchange between the
membrane and the cytosol is also rapid (Sako et al., 2000). This leads to the fol-
lowing results: the activation of each of the small G-proteins, and thus its growth is
limited by the availability of the inactive form. High levels of the inactive forms in
the cytosol indicate overall low levels of activity, which means that local concentra-
tions of the inactive forms indicate global activity levels. Figures 5(e) and (f) show
that an equilibrium is rapidly established, where expansion of each of the small
G-proteins is limited by the availability of the inactive form. Moreover, due to this
global competition, the equilibrium values are actually more extreme (Figs. 5(g)
and (h)).

The triggering of chemotactic movement, in general, takes place through Cdc42
activation (Etienne-Manneville, 2004). But for a cell to retain its sensitivity to ex-
ternal signals, it is essential that an increase in Cdc42 activation would not lead
to loss of polarity to transients. Persistent polarity and motion necessitates a sta-
ble transition zone between high Cdc42 (at the front) and high Rho (at the back).
We asked how the location of this transition zone in the antagonistic gradients
of Cdc42 and Rho depends on the activation rate, IC of Cdc42. Using Rac, Rho,
and Cdc42 interactions, in a reduced 1D model of a “cell” (of typical length scale,
20 µm, with von Neumann boundary conditions), we numerically established the
location of the transition zone for values of IC between 0.0 and 50.0 µMs−1. Sur-
prisingly, spatial bistability was found not only within the region expected from
the well-mixed case (2.5 < IC < 6.5), but also extended to much higher values
(1.7 < IC < 43.4), in the spatially explicit case (Fig. 5(j)). More surprisingly, even
for a Hill-coefficient as low as n = 3 (a value inconsistent with bistability in the

Fig. 5 Analysis of the dynamics of the small G-protein module showing regimes of bistability.
Left panels: a shallow switch (Hill coefficient n = 3) in the mutual suppression between Cdc42
and Rho. Right panels: a steep switch (n = 6). Top row: Bifurcation diagrams (for a spatially
homogeneous version of Eqs. (5), (6), (7), (8), i.e. with Dm = Dmc = 0) showing the equilibrium
Cdc42 concentration as a function of the basal Cdc42 activation rate IC . (a) For n < 4 there
is no bistable region. (b) A large region of bistability is found for n = 6, with either high
levels of Cdc42 and Rac and low levels of Rho, or vice versa. (c) and (d): Space-time plots
of the same module in the spatial setting of a 1D strip, 20 µm wide, with the inactive forms
described implicitly, i.e. Ci = Ctot − C. Subpanels show active Cdc42 (left), active Rho (right),
with lightest colours for highest concentrations. In (c) the system immediately jumps to the
unique equilibrium; in (d) the high-Cdc42 equilibrium expands at a constant rate, while the
high Rho equilibrium retracts, preventing long-term differentiation between a front and a rear.
(Note three orders of magnitude difference in timescales.) (e) and (f): Space-time plots of the
model in a 1D spatial setting, with the inactive forms of the small G-proteins, and their rapid
diffusion in the cytosol, described explicitly. The dynamics equilibrate quickly, leading to a
stable front and back, for both n = 3 (e) and n = 6 (f). (g) and (h): Profile of the equilibrium
distributions of active and inactive Cdc42 and Rho. (i) and (j): The location of the border between
the Cdc42 and the Rho dominance regions (here defined as the position where C = C∗ =
1 µM) is shown, in relation to the value of IC , the basal Cdc42 activation rate. The parameter
region where spatial bistability occurs is much larger than in the well-mixed system, and only
marginally different between n = 3 (i) and n = 6 (j). All parameters are as given in Tables 1–3.
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Fig. 6 Contour plots showing cell shape and relative position at 5 min intervals. (a) A model
keratocyte at rest is typically round and essentially stationary. (b) A moving model keratocyte
takes on a crescent shape, and undergoes persistent motion. (c) The speed of the centre of mass
for the cells shown in (a) and (b). The moving cell has a nearly constant speed of 90 nm/s. (All
parameter values as in Tables 1–3.)

well-mixed case) spatial bistability changes only marginally (Fig. 5(i)). This means
that the fact that the system is very close to a cusp bifurcation can be exploited in
the spatial case: the dynamics slows down due to the bifurcation nearby, so that a
stable spatial pattern is obtained. When the system is too far away from the cusp
(e.g. at n = 2), this behaviour disappears again. In conclusion, the interactions be-
tween the small G-proteins generate a highly robust and stable polarized system, a
system that is only marginally dependent on parameters, cell size and interaction
strength.

4.2. Keratocyte cell movement

Movies of all the cell movement simulations can be obtained from
http://theory.bio.uu.nl/stan/keratocyte.

When we run the full model with the biologically based parameter values and
all variables initiated at their typical levels (Tables 1, 2 and 3), with an initially
unpolarized cell, we do not obtain spontaneous polarization without initially ap-
plying a external signal. This is in agreement with the experimental observations of
Verkhovsky et al. (1999). Figure 6(a) shows a contour-plot of the model keratocyte
when no initial external stimulus is applied. Because the cell does not sponta-
neously polarize, neither leading nor trailing edge is formed. Consequently, with-
out extension and retraction coupled to specific parts of the cell, the cell remains
more or less fixed in space, and no motion occurs. Moreover, without any internal
pattern formation taking place, the cell shape is round, consistent with the minimal
energy configuration. This agrees with the observation that non-polarized station-
ary keratocyte fragments are symmetrically circular (Verkhovsky et al., 1999) and
represents a “control” for our model.

If a gradient in Cdc42 signalling is applied during the first 10 s (100 MCS), the cell
rapidly polarizes, and, after removal of the signal, stabilizes with a front (high Rac
and Cdc42) and a back (high Rho) (Fig. 6(b)). At the front, activation of Arp2/3
and prevention of capping leads to rapid filament extension and side-branching,
causing the formation of a broad, smooth leading edge. Contraction in the back
due to Rho leads to a ruffled trailing edge. Once the cell has established this shape,
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it moves at a speed of 90 nm/s, i.e. 5.4 µm/min (Fig. 6(c)). This is in the range of
speeds of real moving keratocytes, although higher speeds have been observed.
This somewhat lower speed is partly a consequence of the relatively low value
of v0 used here, as taken from Mogilner and Edelstein-Keshet (2002). (This is in
good agreement in light of the fact that no a posteriori fitting was done to pa-
rameters of the simulations to mimic observed cell motility.) The crescent shape
of the moving keratocyte is stable over a long timespan, and the speed of mo-
tion is more or less constant. Moreover, the direction of motion is highly persis-
tent, but on a longer timescale (of hours), the track smoothly deviates and the
orientation becomes uncorrelated to its original value. With the addition of even
very small variations in, for example, the Cdc42 GEFs activation rate, IC (which
mediates external signals), cell turning behaviour occurs (see Section 4.4). Thus,
in a more realistic, noisy environment, we expect that the persistence length of
the cell motion would be shorter. (Note that the values of IC that change the ori-
entation of the moving cell are not sufficient to polarize the initial, unpolarized
cell).

Motion of the model cell results from a fine balance between extension at the
leading edge and retraction at the trailing edge. Because at this stage we could not
relate the Rho induced contraction parameter, ξ , to experimental measurements,
we determined its effect by numerical experiments. (See cell shape and dynamics in
Fig. 7). When there is little or no contraction at the back (e.g. ξ ≤ 0.01 µM nm−1),
the cell does not initiate translocation. However, its immobile shape is unstable,
and, due to internal filament forces and polarization, the cell rotates around itself.
At higher values of ξ (e.g. 0.02 ≤ ξ ≤ 0.04), the cell is able to move slowly, but
the motion can be highly irregular, interspersed with sudden turns. At yet higher
values (0.05 ≤ ξ ≤ 0.07) motion becomes very regular, and the cell achieves the
typical keratocyte shape. Further increasing ξ , however, makes contraction too
dominant, leading to triangular-shaped cells.

4.3. Internal architecture of the cell

Figure 8 shows the concentration profiles of the small G-proteins and Arp2/3. A
sharp transition zone separating the front and back is clearly seen. Due to general
curvature effects, a contour separating these regions is always a smooth curve.
As rapid diffusion of the inactive small G-proteins in the cytosol stabilizes both
zones, the sizes of these regions remain more or less constant, even when the cell
is moving (or turning) rapidly. Consequently, the demarcation line moves forward
at the same speed as the cell protrusion speed.

As the cell moves forward, the filament mesh gradually ‘shifts’ into the region
where most barbed ends are capped, Arp2/3 is depleted, and where, consequently,
breakdown dominates. Figure 9(a–c) show that barbed ends peak very close to the
leading edge, and that the highest filament density is attained a few microns behind
the edge, slowly dropping rearwards. Maximal filament density is on same order
as in real keratocytes (up to a factor 2). Our predicted higher values are due to low
capping rates in the simulated lamellipod wherever Rac is high and to our omission
of ‘ageing’ and increased severing of filaments away from the leading edge.
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Fig. 7 Contour plots showing cell shape and relative position at 5 min intervals for a range of
values of the contractility parameter, 0 ≤ ξ ≤ 8 (in units of 10−2 µM nm−1), from top to bottom.
In each row, darker colours represent earlier times. Note that for an excessively high value, such as
ξ = 8, the cell becomes triangular, and the direction of its motion becomes unstable. (Parameter
values as in Tables 1–3.)

For actual protrusion of the cell, the orientations of the filaments and barbed
ends are much more important than their density. We did not assume any depen-
dence on orientation for the processes of capping, polymerization, side-branching
and severing. Even so, during the motion of our model keratocyte, we obtain a
highly structured leading edge. In Fig. 9(d) and (e) we use a colour coding to
depict orientation, density and isotropy of the filaments and barbed ends within
the cell, while the histograms of Fig. 9(f) show the gross orientation within 1 µm
of the leading edge. The figures clearly show that in a broad region behind the
leading edge, most filaments and barbed ends subtend angles within ±60◦ of
the edge. This generates a strong, directed force that ‘pushes’ the edge forward
(contrary to the case where filaments and barbed ends point in random direc-
tions). The development of this correct orientation can be understood as follows:
Only the barbed ends pointing in the right direction will stay inside the protected
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Fig. 8 Typical distributions of the small G-proteins and Arp2/3 inside the cell during motion. (a)
Cdc42, (b) Rac, (c) Rho, showing relative concentrations inside the cell, from low (dark) to high
(light) values. (d) Arp2/3 concentration. (e) Concentration profiles along a cross-section through
the centre of the cell, from the trailing edge to the leading edge of the polarized cell.

region (with low capping and high nucleation) when they extend. All others will
be left outside, to be capped and eliminated; see Maly and Borisy (2001) for a
similar conclusion. Moreover, as daughter side-branches are formed at angles of
±60◦, some of these still point in the right direction by “inheritance”. Both pro-
cesses, together, lead to an orientation profile that is very comparable to the
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Fig. 9 Actin filament and barbed end distributions inside a moving simulated cell. Top row: Rel-
ative densities of (a) barbed ends and (b) filaments. (c) Barbed end and filament density profiles
along a horizontal cross-section through the centre of the cell. Bottom row: Orientation–density
profile of the barbed ends (d) and filaments (e). The colour represents the local mean orientation

(the angle of the resultant vector of the sum of all barbed ends, i.e. arccos( (
∑

m
−→
B�)·n̂

| ∑m
−→
B�| )). Colour

wheel coding depicts directions, e.g. “red=East”, “green=NorthWest”, “blue=SouthWest”, etc.,
through the full range of compass directions in a clockwise manner. The intensity (i.e. from black
to red, etc.) depicts total magnitude of the density, i.e.

∑
m |−→B�|. The saturation of the colours (i.e.

from white via pastel colours to red, etc.) depicts the isotropy of the barbed end orientation, i.e.
| ∑m

−→
B�|∑

m |−→B�| . (f) Orientation profile within the first 1 µm from the established leading edge. Filaments

and barbed ends mainly point at an orientation within ±60◦ of the leading edge.

experimental situation. However, because we discretized angles into six possi-
ble orientations, our resolution limits our ability to study the precise details of
the preferred orientation. (For example, we cannot explain the dominant angu-
lar preference around ±30◦; but see Mogilner and Oster, 1996a; Maly and Borisy,
2001.)
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Fig. 10 Contour plots showing the relative position over time of a simulated chemotactic cell in
a range of gradients, 10−5 ≤ IC ≤ 10−7 (in units of µMs−1nm−1) at 5 min intervals within each
run. (Value of IC indicated next to each run. Darker colours represent earlier time points.) Even
very small gradients in the level of Cdc42 signalling cause cells to rapidly reorient towards the
gradient: when the variation in IC , taken over the whole cell, is smaller than 1% (corresponding
to a gradient of 10−6 µM s−1 nm−1 in a cell of 30 µm), the cell still displays chemotactic behaviour.
Inset: Details of the rapid turning of one cell in a 10% gradient at 30 s time steps. The cell rotates
by 90 degrees over a 3 min interval. (Parameter values as in Tables 1–3).

4.4. Responses to external signals

When an external signal is imposed on the moving cell, we observe a rapid re-
organization, in which the internal structure adapts, leading the cell to turn, and
re-orient along the direction of the new signal. Figure 10 shows how shallow gra-
dients in IC , applied in a direction orthogonal to the cell’s trajectory, suffice to
provoke rapid turning, within minutes. The signal can be very weak: the smallest
IC gradient which causes the cell to turn within a reasonable time (under 30 min),
is 10−6 µM s−1 nm−1, though lower values are still able to trigger a significant de-
viation towards the gradient. This gradient magnitude corresponds to 0.03 µM s−1



1198 Bulletin of Mathematical Biology (2006) 68: 1169–1211

across a 30 µm cell, i.e. as low as 1% over the whole diameter of the cell (and even
smaller when the cell turns).

An emergent phenomenon seen here is that polarization (i.e. the spatially
bistable state) sensitizes the cell. This can be explained as follows: While the cell
is moving forward steadily, the total area dominated by each antagonist (Cdc42
vs. Rho) is roughly constant, and the border zone between their regions of domi-
nance moves at the same speed as the leading edge. However, small differences in
the local ‘competition’ between the equilibria can locally change the speed of prop-
agation of the border zone. For example, if Cdc42 activation, IC , is slightly higher
at a certain location, it will reduce the speed of propagation of the Rho interface.
However, rapid cytosolic diffusion of the inactive forms of the small G-proteins as-
sures that the area of dominance of, for example, Rho is roughly conserved. This
long-ranged effect makes the Rho-front at the opposite side of the cell move faster,
to compensate for a local loss of area. Thus, a small increase in IC at one flank not
only inhibits the propagation of the Rho interface there, but also enhances this
same propagation at the opposite flank. This causes an increase of curvature of
the interface: since diffusion smooths out sharp local discontinuities, the interface
as a whole remains smooth and starts to rotate. Thus, the polarity of the cell, de-
fined by the relative positions of Cdc42 and Rho regions of dominance, rotates as
well. Actin dynamics respond to the new situation, leading to motion in a new di-
rection. The specific manner in which the cell is polarized sets up the cell’s ability
to efficiently integrate and ‘communicate’ external information along the whole
membrane, generating the rapid and directed responses with high sensitivity.

According to Parent and Devreotes (1999), theories to explain chemotaxis
(e.g. in Dictyostelium discoideum) should account for high sensitivity (to gradi-
ents as low as 2%), accuracy, directional sensing independent of motion, and also
independent of the actin cytoskeleton. They suggested that the signal for directed
motion resides upstream of actin regulators, and hypothesised that the small G-
proteins play a key role. Our mechanism is in correspondence with all these obser-
vations.

5. Discussion

Lee A. Segel (2001): “. . . the goal of theoretical biologists should be to “com-
pute an organism.” This has now been done by Marée and Hogeweg (2001).
The necessity of refining and generalizing the calculations and the impor-
tance of linking changing gene expression with cell movement means that
this achievement is not the beginning of the end but rather the end of the
beginning.”

The above (and earlier) quote of Lee Segel, to whom this article is dedicated, are
taken from his commentary on a model for cellular dynamics during culmination
of the cellular slime mould. In summarizing the Cellular Potts Model formalism
in this commentary, he emphasizes its strength and convenience, particularly in
view of the level of complexity presented by cells. At the same time, he points to
the role of this type of modelling in opening doors to integration of biological
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information, and challenges us to link experimental knowledge from multiple-
levels into a “computable organism”. Our “organism” here is the keratocyte cell.

In recent years, contributions to the cell motility puzzle have been made in ex-
perimental research on the actin cytoskeleton, the small G-proteins, and many
other factors. Assembling these pieces of the puzzle reveals a picture of compli-
cated interactions, regulations and feedbacks at, and between, many different lev-
els of organization. Formalizing this intricate web of knowledge into mathemat-
ical language allows one to integrate levels of organization, connect the pieces,
and bridge gaps. It also leads to better understanding of the control processes re-
lated to polarity, locomotion, response to external signals, and other aspects of cell
motility.

Previous theoretical work has focused on detailed models of specific processes.
These include the thermal ratchet model for polymerization-dependent force
(Mogilner and Oster, 1996a,b, 2003), filament side-branching (Carlsson, 2001,
2003), and filament-turnover (Mogilner and Edelstein-Keshet, 2002; Grimm et al.,
2003). An overarching recent objective has been to start combining diverse aspects
of cell motility into a framework of a spatial cell. Lauffenburger (1989), DiMilla
et al. (1991), Gracheva and Othmer (2004) have studied one-dimensional cross-
sections with predefined polarity, to analyse the role of cell–substrate adhesion,
cytoskeleton force generation and actin–myosin. Introducing forces involved with
protrusion and retraction together with filament-turnover, Bottino et al. (2002),
Rubinstein et al. (2005) have developed 2D descriptions of a crawling nematode
sperm cell and a lamellipod, respectively. Both models have convincingly revealed
important aspects of cell motility. However, as it was not within the scope of their
work to unravel the underlying regulation of the filament-turnover and cell po-
larity establishment, they introduced a predefined front and back (associated with
specific properties) in their model cells.

Our goal here was to combine such modules into a keratocyte without assuming
any predefined spatial information, nor specific functions associated to different
regions of the cell. To achieve this, we incorporated the actin cytoskeleton in a
spatial context, bridged to ‘one level down’ (regulation by the small G-proteins),
and ‘one level up’ (the mesoscopic description of the cell). Our model makes the
interactions between these levels explicit. Its predictions lead to insights on many
aspects of cell motility: speed, shape, polarity, reorientation, sensitivity and robust-
ness. We explicitly opted for a model structure in which terms and parameters can
be directly linked to experimental observables. Our model was run with biologi-
cally relevant parameter values, which allowed us to compare quantitatively model
and experimental observables. The results turned out to be both qualitatively and
quantitatively comparable.

5.1. Cell shape and speed

The simulated cell shape has a high degree of resemblance to that of a moving
keratocyte. It also manifests similar constant motion, at comparable speeds. One
of the outputs of our model is, indeed, the cell velocity (a quantity that arises from
the integration of all levels of the model); another is the distribution of small G-
proteins over the cell. Other qualitatively correct aspects that emerged were the
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distribution of filament orientations and the stable shape of the cell. What confers
value to these simulation results, is that they emerged from realistic known param-
eters without fitting. This is largely due to the multilevel structure of the model and
its feedbacks, and is linked to the robustness discussed further on.

To be able to include distinct levels of organization within one model, it was,
in certain aspects, necessary to loosen the precision of some observables. It is im-
portant to keep in mind where exactly simplifications have been made (and also
what complexity arises from combining these levels). For example, a continuous
description of all possible angles of filament orientation was sacrificed (and re-
placed by hexagonal angle discretization) to attain a mesoscopic simulation of the
cell, but with that shortcut we gained a description of cell dynamics and cell shape
detail that can be compared to empirical observations. One of our important con-
siderations was to preserve as faithful a spatial description as possible of cell char-
acteristics such as shape and motion. We have seen here that spatial influences are
important beyond a mere descriptive role, i.e. that they are fundamental in the in-
ner workings of the mechanisms underlying polarity and gradient sensing: the way
that processes at distinct levels are coupled is intimately linked with spatial distri-
butions of signals, central controlling module of small G-proteins, and cytoskeletal
dynamics.

This leads us to the question of why we adopted the given spatial formalism of
the CPM for this study. Invariably, any choice implies simplifications of certain
aspects of reality. Some approaches in the literature have been based on a more
explicit description of effective forces, as for example, in Rubinstein et al. (2005).
Importantly, one should realize that such “true forces” are also approximations,
made by representing a continuum of forces by some small number of springs and
dashpots. In each case, it is essential to understand the power and limitations of the
approximations made. Generally, the force-based approach relies on the main as-
sumption that the movement of the centre of mass of the cell, or of its subdivisions,
can be adequately described by a limited number of forces acting upon or between
them. This strategy is well suited to describing objects that undergo limited defor-
mation (or to describe the dynamics of a macroscopic object). Here, we chose to
represent different aspects of motile cells: first, the fact that they are highly de-
formable, second, that the movement of each position depends on the movement
of the rest of the cell (e.g. via turgor pressure), third, that cell membrane dynam-
ics is locally highly correlated, but only loosely correlated to centre of mass, and
fourth, that fluctuations play an important role in the nature of cell protrusion and
motility. To represent these aspects with explicit forces acting on each position of
the membrane leads to a huge proliferation of variables, forces, and effects to be
considered, and is prohibitive. We therefore opted for a statistical mechanics ap-
proach, stemming from condensed matter physics. Given the questions we pose
here, this approach is adequate. Essentially, by computing changes in a Hamilto-
nian, local forces on the periphery of the cell are described implicitly (via energy
gradients with respect to the position of each membrane element). The cell, by en-
ergetically exploring its configurational possibilities, is effectively being subjected
to forces on a microscopic level. This level of complexity would otherwise be diffi-
cult to model.
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Adhesion and traction forces between a keratocyte and the substrate on which
it crawls are relatively uniform. Therefore, we describe only the deformation of
shape that results from the protrusion and retraction of the edges of the cell.
For a description of such fluctuations, the Cellular Potts Model is ideally suitable.
CPM simulations naturally produce ruffling of the membrane with constant slight
changes in the cell form. That is, even as the cell maintains the same overall shape
and a constant global speed, it does not move as if under a simple translational
force. Real cells are highly dissipative objects (given the internal structure within a
microscopic scale): within a cell, viscosity dominates inertia1 (Graner, 1993). These
characteristics favour a description of cell motion in terms of local energy gradi-
ents. However, it would be interesting to compare the predictions of our approach
to simulation methods that integrate/simulate explicit forces.

Biological studies have revealed the importance of stochastic events in the be-
haviour of cells. (For instance, even the simple membrane fusion of a vesicle is
triggered by the binding of just a few calcium ions to a docking complex, a stochas-
tic event that results in the incorporation of a whole new membrane fragment.)
Because dynamics of a cell depend highly on fluctuations, a noteworthy feature of
the CPM is indeed its control of fluctuations through the ‘simulation temperature’
(i.e. statistical effects) within the Monte Carlo simulations. Tuning the ‘temper-
ature’ allows us to turn up or turn down the effect of stochastic fluctuations (of
possibly different origin) in the model. For example, Mombach et al. (1995) have
interpreted the CPM temperature as membrane fluctuation amplitude of cells, for
comparison with effects of the drug cytochalasin-B (a suppressor of membrane
ruffling).

5.2. Polarity

We find that the modelled cell can very rapidly and easily be polarized, after which
a very stable pattern is established. Moreover, the spatial distribution of the small
G-proteins coincides with experimental observations.

In this paper, we opted to represent the mutual interactions of small G-proteins
using a six component dynamical system (active and inactive forms of the proteins,
Cdc42, Rac, and Rho) that has bistable regimes of behaviour. We showed, how-
ever, that cell polarity occurs even outside of the bistable regime (e.g. when the Hill
coefficient is n = 3). This is an important observation, since pure bistability would
lead to spurious effects. (For example, a cell could not be at rest: either Cdc42 or
Rho would take over completely, leading to behaviour similar to a dominant posi-
tive Cdc42/Rac or Rho mutant cell.) Because our model works outside the bistable
regime, a resting stable cell is possible. Due to the spatial feedbacks, stable polar-
ity can be found in a very broad parameter regime. The concept of the “toggle
switch”, motivated by Gardner et al. (2000), is required to maintain the polarity.
This has strong implications for experimental research, since as biochemical path-

1Its equation of motion would be d�r
dt = 1

µ [−�∇E + �Fi ], where 1/µ is cell motility, �r is the position

vector of the cell, and �Fi are all possible forces acting on the cell, aside the energy field E that it
experiences (Graner, 1993).
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ways underlying the small G-proteins are elucidated (Burridge and Wennerberg,
2004), one could search for the cooperativity that we postulate as essential.

On one hand, the small G-protein module could, in principle, be expanded in the
future as more details and quantitative measurements arise. On the other hand,
it is not necessarily beneficial to include all experimental information linked to
cell motility at once: such strategy would obscure underlying principles by over-
whelming us with details too quickly. The highly stable polarity is an example of
complex behaviour resulting from few (experimentally) well-understood elements
(i.e. an ‘emergent property’ of the dynamics). By limiting our model to the above
well-established key players and processes we have demonstrated what these in-
teractions can already generate, what they can explain, and in what way they are
incomplete.

Other theoretical explanations for polarity have been proposed (such as based
on Turing diffusion-driven instability or involving upstream phosphoinositides,
see, e.g. Meinhardt, 2003; Narang, 2006; Levchenko and Iglesias, 2002; Gamba
et al., 2005). Such mechanisms should have to be subjected to the same scrutiny
as ours. That is, one should ask of any competing theoretical mechanism, applied
to whole cell movement simulations, whether it can, together with other known
facts used here (a) give rise to stable shape and polarization in a 2D (or 3D) mov-
ing cell, (b) do so within the biologically relevant range of known parameter values
for actin dynamics, (c) account for the sensitivity of the cell to new stimuli, and (d)
predict reasonable mesoscopic outputs, such as cell speed and actin densities.

In our opinion, a mechanism based on Turing diffusion-driven instability would
not easily replace ours here. First, time-scales involved for a Turing pattern to
be established are too large, leading to much slower cell dynamics and responses
to external stimuli. Second, Turing pattern depends greatly on spatial size: the
behaviour of small fragments of keratocyte would be expected to differ greatly
from that of larger (whole) cells. Finally, even if it were possible to somehow avoid
these problems, there is still the technical issue that a Turing system requires very
different rates of diffusion (e.g. for activator and inhibitor), while the small G-
proteins have very similar molecular weights, and hence similar rates of diffusion,
thus not satisfying Turing conditions.

Levchenko and Iglesias (2002), Gamba et al. (2005) have focused on the up-
stream processes which seem to be involved in polarization and gradient sensing.
(One aspect of this process is the redistribution of proteins such as PTEN and PI3K
that govern the regulation of phosphoinositides, a module that is upstream of the
small G-proteins, and not treated here directly.) It would be very interesting to
extend our model with a module to further describe these interactions, so to infer
what additional behaviour this would generate (see Dawes and Edelstein-Keshet,
2006).

5.3. Cell reorientation

Once polarized, cells present the capacity of reorientating to external cues; this
even occurs for gradients as small as 1% over the cell diameter. Besides this great
sensitivity, the response time observed is extremely quick: within 3 min the cell
has completed a right-angle turn, still maintaining its polarity. We emphasize, that
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in our model, cell turning is completely self-generating: we do not have to intro-
duce any other artificial “rule” beyond the essential molecular scheme described
herein. Therefore, we have to see the reorientation behaviour, as emerging from
the feedbacks and feedforwards between the multiple levels of organization.

Note that Sakumura et al. (2005) present basic core interactions that are equiv-
alent to ours, with a number of small extensions. Yet, their model does not gener-
ate phenomena such as gradient sensing (see Fig. 5c in their paper; in their case,
turning behaviour is only possible through some step-wise winner-takes-direction
method). This is due to the absence of diffusion of the small G-proteins in their
effectively well-mixed systems. This illustrates that coupling between the different
levels (spatial and temporal, proteins and cell) is essential to successfully unravel
underlying principles.

Our proposed mechanism could be tested, for it clearly indicates that rota-
tion of the Cdc42/Rho border zone inside the cell prompts cell turning to a
new external cue. It would be interesting to experimentally verify or falsify this
prediction.

5.4. Robustness

A curious underlying aspect that we have observed in diverse simulations is ro-
bustness at a number of distinct levels: (i) robustness of parameters: a broad range
of parameters is capable of generating the global behaviours, seen most clearly
in robustness of the polarization; (ii) robustness in cell shape: cells undergo rapid
responses to strong external cues while approximately conserving their shape,
and then immediately recover their basic shape; (iii) robustness in reorientation
sensitivity: the simulated cell is equally sensitive to signals of different absolute
values (up to a 50-fold variation) as long as the gradient is similar. Moreover, a
small gradient is sufficient; (iv) robustness to noise and stochasticity: a very orderly
process takes place within the cell, despite the apparent frantic wiggling of the cell
membrane and the translocation of the entire cell. Such robustness is specific for
the mechanism of polarity proposed here. It is of utmost importance that a model
for cell polarity can handle naturally occurring fluctuations. In contrast to all the
above, the model shows no robustness for deletions of elements in the model
structure itself. This could often be more difficult to show by experiments, for a
high level of redundancy is generally observed in real cells.

Not all cells behave like keratocytes even though the core of their underly-
ing machinery seems to be largely the same. A large diversity of forms and dy-
namics characterises the repertoire of cells (for example, yeast, Dictyostelium,
neutrophils, and neuron growth cones). This leads to the question of how these
diverse phenotypes are generated, and what are common or disparate underly-
ing aspects of the mechanism. Experimental observations further increase the
relevance of such questions: Fashena et al. (2002) showed that keratocyte-like
movements occur in MCF7 breast adenocarcinoma cells overexpressing HEF1 (a
cas-family protein), with the formation of a large leading lamellipod, enhanced
ruffling and pronounced trailing edge. Similar observations were made in hu-
man microvascular endothelial cell line, HMEC-1 (Kiosses et al., 1999; Fischer
et al., 2003). More surprisingly, Asano et al. (2004) reported that the deletion of a
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single gene, amiB, from Dictyostelium cells, transforms this typically amoeboid cell
to a crescent-shaped keratocyte-like cell with persistent movement and higher ve-
locity. These results suggest that the basic keratocyte motility might be more gen-
eral, with features in common with other cell types. Because our model was able
to explain how a lamellipod is formed and how polarization is maintained, a future
goal now would be to address what are the relevant differences causing the ob-
served spectrum of cell motility repertoires. The discussion about robustness fur-
ther suggests that we are now working with a minimal core mechanism for cell mo-
tion, and that small extensions could bring us to other cell movement modes. This
is yet another way of validating our model, through further in silico experiments.
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Appendix

A.1 Parameter estimates of Rac, Rho, and Cdc42 interactions

According to Michaelson et al. (2001) (using immunoblotting in Cos1 cells), the
total amount of small G-proteins is 34, 82, and 26 ng/106 cells, for ρ, R, and C re-
spectively. Based on the molecular weight of the small G-proteins (21 kDa, which
is 3.49 × 10−11 ng), and approximating cells as 10 µm diameter spheres, this corre-
sponds, respectively, to 1.86, 4.49, and 1.42 times 103 molecules/µm3. Using Avo-
gadro’s number (6.02 × 1023) it follows that 1 µM equals 602 molecules/µm3, and
therefore the effective total concentrations, i.e. ρtot, Rtot, and Ctot, are 3.1, 7.5, and
2.4 µM. Based on estimates of the fraction of small G-proteins in the GTP-bound
state (3% up to 25% for a resting cell) (Boukharov and Cohen, 1998; Benard et al.,
1999; Fleming et al., 1996) and the doubling of Rac and Cdc42 activity upon stimu-
lation (Kurokawa et al., 2004), we took the overall fraction in the GTP-bound-state
at steady state to be around 40% (i.e. C∗ 
 1; R∗ 
 3; ρ∗ 
 1.25 µM).

We based diffusion coefficients on the estimate for Ras (1 µm2s−1) (Goodwin
et al., 2005), and on estimates for heterotrimeric G-proteins in the membrane
(0.1 µm2 s−1) and cytosol (10–50 µm2 s−1) (Postma and Van Haastert, 2001; Postma
et al., 2004). We used Dm = 1×105nm2 s−1; and Dmc = 1×107 nm2 s−1. For the
Arp2/3 complex, which has a much larger molecular weight (200 kDa, (Mullins
et al., 1997)), we use DA = 1×106 nm2 s−1.

The average membrane lifetime of an activated Rac molecule is 2 s (Sako et al.,
2000), giving a decay rate of 0.5 s−1. GAP-stimulated GTP hydrolysis of Rho has
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been measured as 1.5 s−1 (Zhang and Zheng, 1998), so we took decay rates of
the small G-proteins to be dC = dR = dρ = 1s−1. We further assumed that all sat-
uration terms are in the same range as the typical steady-state concentrations,
i.e. βρ = ρ∗; βC = C∗; KR = R∗; and Km = A∗. By similar reasoning, we also take
ρth = ρ∗. Based on estimated decay rates and approximate steady-state concentra-
tions, we inferred approximate activation rates for the small G-proteins, obtaining,
IC = 3.4 µMs−1; IR + 1.0αC = 5.0 µMs−1; and Iρ + 3.0αR = 4.2 µMs−1. In our sim-
ulations, we use IR = 0.5 µMs−1; αC = 4.5 s−1; Iρ = 3.3 µMs−1; and αR = 0.3 s−1, to
describe a strong dependency of Rac on Cdc42, and a weaker dependency of Rho
on Rac. Finally, the Hill-coefficient of the mutually inhibiting response curves in
Eqs. (5) and (7), is n = 3 (see Section 4).

A.2 Parameter estimates of actin dynamics

l Ft in Eq. (20) is the amount of filamentous actin (in monomer units) to which
1 µM of Arp2/3 binds. A minimal distance of about 37 nm (13.7 monomers) has
been observed between side-branches along a single filament (Mullins et al., 1998;
Svitkina and Borisy, 1999). Thus, Arp2/3 binds to actin roughly in the ratio of 1
Arp2/3 complex per 13.7 monomers (i.e. 1 µM A binds to 13.7 µM Ft in terms of
“monomer equivalents”).

In the equations for actin dynamics, we represented filament density in length
per unit area (i.e. Ft is expressed in [nm]/[nm]2 = [nm]−1), and this has to be con-
verted to Arp2/3 concentration units of [µM]. From the fact that 1 µM of actin
equals 6.02 × 10−7 monomers/nm3, and that the lamellipod is typically 176 nm
thick (Abraham et al., 1999), it follows that in the projected area of the lamel-
lipod (shown as top view in Fig. 3), 1 µM of actin corresponds to 1.06 × 10−4

monomers/nm2. Since one monomer corresponds to 2.7 nm of filament, this is
equivalent to 2.86 × 10−4 nm−1. Restated the other way around, 1 nm−1 filament
corresponds to 1/(2.86 × 10−4) = 3.49 × 103 µM. Thus, an appropriate scale factor
that accomplishes the conversion is l = 3.49 × 103/13.7 = 255 µM nm.

In the same way, when Arp2/3 binds to the filaments, a concentration of
A= 1 µM generates 1.06 × 10−4 barbed ends/nm2, which means that k in scheme
(18) and Eq. (14) equals 1.06 × 10−4 nm−2 µM−1. A typical highest filament den-
sity within a keratocyte is F∗ = 0.278 nm−1 (Abraham et al., 1999), while a typ-
ical fast actin filament turnover has a half-life of 23 s, i.e. dF = 0.03 s−1 (Pollard
et al., 2000). At the position with the highest filament density, the polymeriza-
tion must be balancing the decay. Hence, using Eq. (13) with v0 = 500 nm−1, F∗ =
0.278 nm−1, and dF = 0.03 s−1, it can be derived that, locally, B∗ = 1.7 × 10−5.
Since capping is a very rapid process, Eq. (14) can be assumed to be in QSS.
Ignoring the flux-term, this gives an estimation of the barbed end nucleation
rate, kηF∗ = 5 × 10−5 nm−2 s−1, from which follows that η = 1.6 µM nm s−1. A typ-
ical Arp2/3 equilibrium concentration is A∗ = 2 µM (Higgs and Pollard, 1999).
Using Eq. (20) and the values η = 1.6 µM nm s−1; A∗ = 2 µM; Km = 2 µM; l =
255 µM nm; and F∗ = 0.278 nm−1, an expected maximum nucleation rate can be
derived of η0 = 60 µM nm s−1. These value can be used in Eq. (11) to derive that
µCC∗ + µRR∗ − 2dA = 0.44. We therefore choose µC = µR = 0.16 s−1, and a small
non-specific decay of dA = 0.1 s−1.
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The barbed end capping rate is roughly 2.8 s−1 (Pollard et al., 2000), and is re-
duced to a quarter of this value by the action of PIP2 (Huang et al., 1999; Pollard
et al., 2000). We therefore use κbasal = 0.7 s−1 and κrac = 2.1 s−1, which gives a maxi-
mum capping rate, κmax, of 2.8 s−1. The reduction of capping close to the membrane
(the rate being 0.1 s−1 at the membrane according to Grimm et al. (2003); Mogilner
and Edelstein-Keshet (2002)) suggests that in Eq. (17) r = 0.14, which leads to a
slowest capping rate at the (leading) edge of 0.1 s−1.

A.3 Parameter estimates and derivation of edge protrusion

To derive the empirical relationship between barbed end density and protrusion
speed shown in Fig. 4(a), we consider a simple one-dimensional (1D) case, which
corresponds to a cell boundary that is flat, rather than curved. We assume that
there is no capping or side-branching, and that all barbed ends are directed to-
wards the cell edge. In our model, barbed ends either extend at their maximal
polymerization speed (v0 in Eqs. (14) and (25)), if they are away from the edge,
or they do not extend at all, when pushing against the edge. Now, suppose that
a fraction f of the barbed end population b have not yet reached the cell edge,
whereas a fraction (1 − f ) is actively pushing against the membrane at the edge.
The mean values of �H′ involved in extending and retracting of the cell are given
by Eq. (24); and, assuming that �H′ ≥ −Hb (a reasonable constraint to prevent
perpetual extension of the cell), the probabilities of the cell to extend, respectively
retract, are, as given by Eq. (23),

Pextend = exp
(−Hb − (1 − f )b

T

)
; Pretract = exp

(−Hb + (1 − f )b
T

)
, (A.1)

which simply means that the (1 − f ) pushing population favours extension
(Pextend) and disfavours retraction (Pretract). The effective speed of cell protrusion
is thus

v = �x
�t

(Pextend − Pretract)

= �x
�t

exp
(
− Hb

T

) (
exp

(
(1 − f )b

T

)
− exp

(−(1 − f )b
T

))
, (A.2)

where �x and �t are the space- and timestep corresponding to one MCS. In our
model the mean speed of all barbed ends (i.e. of both extending and stalled b) is
given by

f b × v0 + (1 − f )b × 0
b

= f v0. (A.3)

If barbed ends extend faster than the mean protrusion rate, the fraction f not yet
at the edge starts to decrease, which leads to a reduction in the mean speed of
the barbed ends; concurrently the fraction of barbed ends that are pushing starts
to increase, raising the protrusion speed of the cell. The opposite is true when
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the barbed ends extend at a slower rate. Consequently, the fraction f of barbed
ends that are not pushing against the edge and the cell protrusion speed reach
an equilibrium, at which f v0 = v, or, equivalently, f = v/v0. Combining this with
Eq. (A.2), leads to the desired result,

v = �x
�t

exp (−Hb/T)
(

exp
(

(1 − v/v0)b
T

)
− exp

(−(1 − v/v0)b
T

))
. (A.4)

We used the following observations to select parameter values. For fast mov-
ing keratocytes, v0 lies between 300 and 3000 nm s−1 (Pollard et al., 2000); as
in Mogilner and Edelstein-Keshet (2002), we here use 500 nm s−1. w has been
estimated in Mogilner and Edelstein-Keshet (2002) to be 0.05 nm−1. According
to Abraham et al. (1999); Mogilner and Edelstein-Keshet (2002), the density of
barbed ends at the edge of the protruding lamellipod are 0.05–0.25 nm−1. The val-
ues T = 0.008 nm−1; Hb = 0.046 nm−1 were selected by fitting Eq. (A.4) to Eq. (25),
as shown in Fig. 4(a). We have not yet found a way to determine JCM directly
from experimental data, since this value is linked to the effects of cell shape on
protrusion of the edge, which has, until now, received little attention. We used
JCM = 7.5 × 10−4 nm−1 after some trials. The compressibility parameter, λ has a
limited effect on the dynamics; the value λ = 10−9 nm−3, keeps cell size fluctua-
tions reasonable. The total projected area of a moving keratocyte is around 30 µm
by 10 µm (Svitkina and Borisy, 1999), leading to our choice of target area A of
3 × 108nm2 
 3 × 104 lattice sites.
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