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Abstract. We explore several hypotheses for the swarming behaviour in
locusts, with a goal of understanding how swarm cohesion can be maintained
by the huge population of insects (up to 109 individuals) over long distances
(up to thousands of miles) and long periods of time (over a week). The
mathematical models that correspond to such hypotheses are generally partial
differential equations that can be analysed for travelling wave solutions. The
nature of a swarm (and the fact that it contains a finite number of individuals)
mandates that we seek travelling band (pulse) solutions. However, most
biologically reasonable models fail to produce such ideal behaviour unless
unusual and unrealistic assumptions are made. The failure of such models,
general difficulties encountered with similar models of other migratory phe-
nomena, and possible approaches to alleviate these problems are described
and discussed.
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1 Introduction

Social aggregations such as swarms, herds, schools, and flocks are known to
have profound consequences for basic ecological processes such as predation,
reproduction, and disease transmission. The effects of sociality, its associated
evolutionary costs and benefits, and the mechanics of how social groups
assemble and operate in nature are the subjects of a large body of biological
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and mathematical literature. However, social interactions are inherently diffi-
cult to approach experimentally, so our knowledge of how organisms interact
in social groups is incomplete. Furthermore, from a theoretical perspective,
social interactions involve highly non-linear interactions between numerous
individuals. Making tractable mathematical descriptions of these behaviours
raises profound and interesting theoretical challenges.

We are particularly interested in exploring the phenomenon of locust
plagues. Locusts are known for their remarkable and devastating swarms, and
their ability to migrate over long distances as a single coherent unit. The
internal motions of the individuals in the swarm are not completely under-
stood, but it appears that under many circumstances, there is continual
interchange between locusts resting on the ground and those flying overhead.
How this swarm forms, and under what conditions it can migrate are interest-
ing problems in their own right. Here we mostly concern ourselves with the
forces that hold the swarm together once it is formed. We ask what types of
interactions account for a cohesive band despite the prevalence of random
effects that would tend to cause dispersal. To move as a unit, without the
‘‘pressure’’ of a population wave sustaining migration from some source,
means that both a sharp wave front and wave back must be explained. We will
argue that describing this aspect of swarming is more challenging than
describing the propagation of moving fronts.

2 Mathematical background

The bibliography for continuum models of population movement, migration,
and spatial distribution and spread is a rich one. In this paper we cannot hope
to survey the full extent of contributions to this vast field. However, a few
preparatory words about the current status of this field are in order.

Travelling waves are defined as solutions to partial differential equations
which have fixed shape and move at a constant speed. One of the attractive
tools for finding such solutions in a system of suitably small dimension, is
phase plane analysis. The equations of the model are transformed to ordinary
differential equations by switching to a moving coordinate system z"x!ct
where c is the wave speed, and bounded solutions with the appropriate
behaviour at z"$R are sought. Travelling fronts are then described by
heteroclinic trajectories in the appropriate phase plane. Travelling bands,
which in this paper will be used interchangeably with travelling pulses, are
represented by homoclinic trajectories based at the origin1. This method is
described in detail in standard texts such as Edelstein-Keshet (1988) and
Murray (1989), and is particularly simple when the dimension of the reduced
model is 2.

—————
1 In some cases, but not in this paper, heteroclinic trajectories which start and end on one of
the two axes can also describe travelling bands, see, in particular (Odell, 1980)
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Perhaps best known to mathematical biologists working on ecologically-
related modelling are the ‘‘waves of invasion’’ that depict the geographical
spread of a population. The work of Skellam (1951), based in part on Fisher
(1937), fits into this category. These models describe events on the timescale of
many generations of a given organism, and the dominant force leading to
spatial spread is a non-zero birth rate that locally increases crowding, causing
individuals to ‘‘spill over’’ to adjoining regions by random migration. Such
models lead to travelling front solutions: the rear of the wave represents space
that has already been colonized, while in front of the wave is ‘‘virgin territory’’.
The number of organisms in the population grows as the front propagates
into new regions. It is important to note the distinction between these
population invasions, in which the number of individuals is not conserved,
and the migration, swarming, flocking, or schooling that takes place when
a group of organisms moves from one place to another.

Perhaps one of the best understood and most frequently cited examples of
a travelling wave is a solution to Fisher’s Equation, based on the work of
Fisher (1937) on the spread of an advantageous gene in a population.2
A review of the work on this equation, its travelling wave solutions and a good
survey of spatio-temporal models and patterns can be found in Murray (1989).
Akira Okubo3 contributed greatly to the appreciation of diffusion and spatial
variation in ecological settings (Okubo, 1980). Many other contributions in
the literature have been concerned with spatially nonuniform patterns of
distributions (Cohen and Murray, 1981; Bertsch et al., 1984; Bertsch, 1985).
More specific treatments of the issue of migration, waves of pursuit, and
spatial spread and spreading waves of infestation have also appeared (Aoki,
1987; Dunbar, 1983; Conley and Fife, 1982; Ludwig et al., 1979).

How to connect the motion of the individual with the motion of the group
as a whole is a fundamental problem. Contributions by (Alt, 1980; Othmer
et al., 1988; Grunbaum, 1994) describe the details of motion, and how these
translate to population-level statements in partial differential equations. See
also Grunbaum (1997) (in press) for a recent example of this type. On the
microscopic scale, are models that link the motion of the organism to some
external influence such as nutrient or food. It is important to note that the
presence of an external gradient (such as nutrient, attractant, or other influ-
ence) introduces asymmetry that can have a very important effect. This is the
case in models for travelling bands of chemotactic bacteria (Keller and Odell,
1975, Odell and Keller, 1976; Keller and Segel, 1971) summarized in the
review by Odell (1980). It does not seem, however, to be true in the problem at
hand, since locusts can continue to move as a coherent swarm in the absence
of food or apparent external gradient. On the macroscopic scale, the problem
of a herd grazing on grass was presented by (Gueron and Liron, 1989), in
a model essentially identical to that of bacterial chemotaxis. In these cases, the

—————
2This paper was published at an unfortunate period in hisotry when Eugenics was in vogue
3Who, sadly, passed away in 1996 at the age of 70
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timescale of interest is much shorter than the reproduction time of the
organisms. Thus, the type of solutions of interest are, roughly speaking, those
with a constant number of organisms. This means that, rather than fronts, one
must look for travelling bands, and as we shall see, this imposes some
interesting and challenging constraints on the possible behaviour.

The issue of conditions under which a population such as the nutrient-
seeking bacteria (or ‘‘grass’’ seeking ‘‘herd’’) can move as a band has been
discussed at length in the above papers and others. One of the main realiz-
ations, explained elegantly by Odell (1980), is that certain effects that allow the
front of the wave to propagate forward — for example random diffusive flux -
must be counterbalanced at the rear of the wave to prevent broadening or
‘‘sloughing off’’ of tardy individuals that fall behind. Generally, in models in
which organisms move up a gradient of food density, the front of the wave of
migration ‘‘senses’’ a sizable gradient, while in the rear, where the food has
been largely consumed, and where the gradient is much more shallow, some
unusual and biologically suspect assumptions must be made in order to
ensure that the migrating band can sustain its shape. These assumptions — for
example that chemotactic sensitivity gets infinitely sharp as the food dimin-
ishes, or that food consumption drops sharply — with an infinite slope — at low
food density demonstrate that it is a non-trivial process to find conditions for
a traveling band to exist. The stability of such a travelling wave solution to the
original system of PDE’s (Gueron and Liron, 1989; Nagai and Ikeda, 1991) is
neither easy to investigate nor generally guaranteed for arbitrary perturba-
tions. Indeed, (Nagai and Ikeda, 1991) showed that travelling waves in the
Keller—Segel—Odell chemotaxis system are linearly unstable to certain ‘‘phys-
ically relevant’’ perturbations (decaying to zero at the front and the back of the
wave).

Travelling pulse solutions occur ubiquitously in models in physiology
which depict propagation of electrical signals in the heart, in nerve axons, and
in other excitable tissue. A summary of some of the mathematical features of
such systems is given by Ermentrout and Rinzel (1981). Since these are easily
obtained in the Fitzhugh—Nagumo equation and other excitable analogues, it
would seem an ‘‘easy matter’’ to ‘‘cook up’’ examples of travelling pulses in
biology. However, surprisingly, this turns out not to be the case in situations
in which (unlike the nerve-conduction case) the ‘‘signal’’ being propagated is
strictly positive — as is the case with organism density.

3 Biological background

3.1 General information about locusts

We briefly review some of what is known about African migratory locusts.
These locusts have two distinct phases, solitary and gregarious. In the solitary
phase, individual locusts are asocial and avoid each other. However, when
a transition to gregariousness is triggered, individuals become strongly social
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and form dense, long-lived migratory aggregations: ‘‘hopper bands’’ in non-
flying juveniles; ‘‘swarms’’ in flying adults (Kennedy, 1951; Uvarov, 1928).
Flying swarms of migratory locusts travel hundreds or thousands of kilo-
meters, over a period of many days in a down-wind direction.

Swarms are distinct and recognizable, maintaining integrity for many
days, over great distances (Ellis, 1953). Movement is directed and roughly
constant in speed for periods much longer than the time scales that character-
ize movements of individuals. These observations are reflected in the assump-
tions in our modeling approach, namely that we can approximate the dynam-
ics of these aggregations as one-dimensional processes, in which individuals
fall into one of two categories, moving and non-moving. Locusts undergoing
sustained migratory movements typically travel in very large swarms with
a ‘‘rolling’’ structure (Albrecht, 1967) depicted schematically in Fig. 1. While
swarm structure retains an approximately constant shape and size as it moves.
Individuals within the swarm actually cycle through a sequence of behaviours:
(i) flying towards the leading edge of the swarm (usually downwind);
(ii) settling on the ground, mostly when they reach the front of the swarm;
(iii) eating and resting until overtaken by the trailing edge of the swarm; and
(iv) taking off and ascending to altitude, whereupon the cycle begins again.
Locusts flying overhead are thought to ‘‘excite’’ their counterparts on the
ground and cause massive take-offs. (This scenario will lead to the first
hypothesis for swarm cohesion that we explore below.) The swarm ‘‘rolls’’ as it
moves, with individuals at altitude moving faster than the swarm as a whole
and settled individuals moving little or not at all. Typically, swarming locusts
are estimated to spend approximately 20—40% of their time in flight (Rainey,
1989; Ellis, 1953).

3.2 Specific facts and typical parameter values

Locust swarms are notorious for their astronomical size, both in their linear
dimensions and in the numbers of individuals. According to Waloff 1972),
rolling swarms have a length on the order of 1 km (see Fig. 1). However, large
swarms (which might consist of a number of ‘‘rolling’’ sub-units) are frequently
observed to have cross-sectional areas of 10—100 km2 or more. Observations
of very large swarms, for example, 6]5 km viewed from the side, have been
recorded (Rainey, 1989). Locust airspeed is typically in the range of 12 km/hr
with a maximum of 23 km/hr observed. Daily swarm movements and distan-
ces covered are often in the range of 5—50 km. However, locusts can sustain
flight continuously for days on end, travelling as a swarm much as three
thousand miles (when blown over the ocean, for example). This is a telling
observation, for it implies that, unlike bacterial chemotaxis, or herd grazing,
the swarm can persist even when there is no nutrient gradient to provide a driving
force for migration. The wind plays a dominant role in determining the
direction of migration. The literature contains many anecdotes: A swarm with
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Fig. 1. A schematic dia-
gram showing the ‘‘rolling
structure’’ of a typical
swarm of the locust Schis-
tocerca. According to
(Waloff, 1972), the zone of
Settlement is roughly
500 m long, the Interior
Zone in which sporadic
take-off and landing occurs
is roughly 1900 m long, and
the Take-off Zone is rough-
ly 300 m long. See also (Al-
brecht, 1967) for a more
detailed picture, showing
directions of motion in
various parts of the swarm

an area of roughly 60 km2, described by (Rainey, 1989), maintained cohesion
while travelling 370 km over a period of 9 days.

The number of individuals in a typical swarm may be up to 107!109
(Rainey, 1989). Densities of airborne locusts are commonly in the range of
0.001—0.5 locusts m~3, with a median of 0.025 m~3. This corresponds to
a spacing of roughly 2—4 m between neighbors. A typical swarm would lead to
a density of 50 locusts m~2 for settled locusts on the ground, and as many in
the column of air directly above this area (this is called the local ‘‘area
density’’) (Rainey, 1989).

Locust flight is subject to random dispersal effects due to atmospheric
turbulence, and due to the stochasticity of the flight mechanism itself. It is of
interest, particularly from the modelling standpoint, to estimate the magni-
tudes of such random effects. Diffusion models for insect dispersal are helpful
(Okubo, 1980; Helland, 1983). However typical coefficients for diffusion are
not given in these references. We can estimate the magnitude of the dispersal
coefficient from indirect information. For example, atmospheric turbulence
would lead to the approximate doubling of the diameter of a cloud of inert
particles in a period of about 6 hrs (Rainey, 1989) if the cloud was initially the
size of a typical locust swarm. This suggests that the dispersal rate of insects
due to atmospheric turbulence can be of the order of D+30 km2hr~1. If, on
the other hand, we use the basic flight speed of the locust, v"15 km hr~1 and
assume that the insects make random turns roughly once per minute, we
arrive at D+v2/2j+2 km2 hr~1 (Othmer et al., 1988). Some intermediate
figure between these two is probably more accurate.

4 Model 1: flying and resting locusts

Our first attempt at modelling a locust swarm was motivated by descriptions
of so-called rolling swarms given above (Albrecht, 1967; Waloff, 1972). The
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model swarm is described as a continual exchange between flying locusts and
those on the ground. The idea that locusts flying overhead ‘‘excite’’ others to
take off leads to the first hypothesis:

f Hypothesis 1: Interactions between locusts in the air and those on the
ground account for the structure and cohesiveness of the swarm.

To test this hyposthesis, we consider a model for the densities of flying F (x, t)
and stationary S (x, t) locusts with exchange-type kinetics. In this and other
models we assume a one-dimensional geometry4. We assume that the rates of
landing and take-off, may depend on locust densities.

4.1 Glossary of symbols

F(x, t) density of flying individuals at x, t,
S(x, t) density of standing individuals at x, t,
R(S, F) rate of take-off,
G(S, F) rate of landing,
D rate of random motion of locusts while airborne,
º locust flying velocity (wind drift#active flying).

4.2 Equations for simple exchange between sky and ground (model 1)

Locusts have very limited mobility on the ground. Thus, it makes sense, as
a first approximation, to consider ground locusts as spatially fixed compared
with their flying counterparts and we later explore the consequences of
including ground mobility. Consider the model

LS

Lt
"!R(S, F )S#G (S, F )F , (1)

LF

Lt
"DF

xx
!ºF

x
#R(S, F )S!G (S, F )F . (2)

The equation for flying locusts includes random motion, drift with the
wind, and active flying. We will also initially assume that flight speed and rate
of random motion, º, D are constants, and only later explore the conse-
quences of dropping this assumption. We ask whether the above model, with
judicious choices of the interaction functions R(S, F ), G(S, F ), can support
travelling wave solutions moving at some speed c. By previous remarks, we are
specifically interested in travelling band solutions for which the total number of

—————
4Locust swarms generally form and migrate under wind conditions. The direction of the
wind determines the direction of migration, and thus essentially reduces a multi-dimen-
sional spatial problem to 1D
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individuals is finite. In the model, conditions on the density functions F and
S are that they remain bounded and positive everywhere. Further, for travel-
ling pulses, the two functions should vanish far ahead of and far behind the
band of locusts, i.e. F, SP0 for xP$R. The functions R (S, F ) and G(S, F )
are at this point unspecified, except that they are nonnegative. Both carry
dimensions of [t~1].

5 Travelling wave solutions in Model 1

We begin by transforming the two equations into the travelling wave coordi-
nate z"x!ct where c is a constant wave speed. The dot above a variable
denotes differentiation with respect to the wave variable, z. When this trans-
formation is made we arrive at the equations

!cSQ "!R(S, F )S#G(S, F )F , (3)

!cFQ "DF® !ºFQ #R(S, F )S!G(S, F )F . (4)

These equations are equivalent to a system of three first order equations, but
we can reduce the dimensionality as follows: Adding the two equations leads
to

!c(FQ #SQ )"DF® !ºFQ . (5)

Integrating once from !R to z gives

!c(F#S)"D (FQ !FQ D
~=

)!º (F!F D
~=

) . (6)

This implies that

DFQ "!cS#(º!c)F#Constant , (7)

where the constant comes from the integration step. The system of equations,
in moving coordinates thus reduces to the set of two ordinary differential
equations,

!cSQ "!R(S, F )S#G(S, F )F , (8)

DFQ "!cS#(º!c)F#Constant . (9)

These equations can be studied by phase-plane methods. However the details
of the solutions (and the value of the arbitrary constant) will depend on
auxilliary conditions which we number and explain below. We contrast the
auxilliary conditions in the case of travelling front and travelling bands. The
possible set of relevant Conditions for travelling fronts/bands include:

1. lim
z?=

F, SP0;

2. lim
z?~=

F, SP0;

3. F, S70 for all z;
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The conditions above mean that: (1) there are no individuals far ‘‘ahead’’
of the wave, (2) there are no individuals far ‘‘behind’’ the wave, and (3) the
densities are non-negative.

5.1 Necessary conditions for travelling front solutions (Model 1)

Travelling front solutions satisfy only Conditions 1 and 3 and are thus
represented by a heteroclinic trajectory, connecting distinct fixed points in the
SF phase plane, one of which is the origin. The trajectory must be contained
entirely in the positive quadrant of the SF-plane by assumption (3). For such
a solution to exist,

f The origin (F"S"0) must be either a saddle point or a stable node, i.e. it
must have one negative real eigenvalue, j~ to obtain the first property
above.

f The eigenvector corresponding to j~ must be directed into the first quad-
rant of the state space. (Otherwise the connection to the origin would
require that F or S take on negative values, which is not permissible for
population densities.)

f There must be at least one other equilibrium in the positive quadrant of the
SF-plane which can be either a saddle, an unstable node, or an unstable
spiral. (The location of this equilibrium essentially represents the densities
of F, S far behind the wave front.)

5.2 Necessary conditions for travelling band solutions (Model 1)

Travelling band (or pulse) solutions satisfy Conditions 1, 2 and 3 and are
represented by a homoclinic trajectory contained entirely in the positive
quadrant of the SF-plane, starting and ending at the origin. For such a solu-
tion to exist,

f The origin (F"S"0) must be a saddle point of the system so that the
trajectory can both leave and enter this fixed point. Thus, the origin must
have one positive and one negative eigenvalue (unless it is degenerate).

f The corresponding eigenvectors cannot be directed into quadrants II
and IV of the state space, since we restrict our attention to non-negative
solutions.

f Both the F and S nullclines must pass through quadrant I since both F and
S have maxima in this quadrant.

In the next sections we demonstrate that if the first condition is satisfied,
then the second condition is necessarily violated. That is, if a pulse solution
exists, then it is not everywhere non-negative and will not be a biological
representation of the swarm.
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Fig. 2. For a travelling band (pulse) solution to exist, we must demonstrate a homoclinic
trajectory in the SF phase plane. This implies that the origin must be a saddle point whose
eigenvectors have the configuration shown in the circled inset. The F and S nullclines must
pass through the first quadrant. (In the nondegenerate case, there is also an equilibrium in
the first quadrant, though it is not essential to assume that this equilibrium exists.)

5.3 Analysis of the travelling wave equations (Model 1)

We now use the assumptions

lim
z?~=

F"0; lim
z?~=

FQ "0 . (10)

These assumptions follow from the fact that F and S are assumed to decay to
zero at the back of the wave. The constant of integration is thus zero, and the
system of equations, in moving coordinates is

!cSQ "!R(S, F )S#G(S, F )F , (11)

DFQ "!cS#(º!c)F . (12)

We now examine the behaviour of this system of equations with the particular
aim of elucidating whether a homoclinic trajectory based at the origin can
exist under any reasonable further assumptions.

Observe that the nullclines of the system consist of the curves

0"!R(S, F )S#G(S, F )F , (13)

0"!cS#(º!c)F . (14)

The F nullcline given by equation (14) must pass through the first quadrant,
which implies that its slope is positive, i.e., ((º!c)/c)'0. Assuming, without
loss of generality, that º'0, i.e. that the direction of the wind is towards the
positive x axis, this constraint can be written as

0(c(º .

Conclusion: If a travelling wave of any type exists, its speed must be slower than
the wind speed. This follows from the fact that locusts spend time exchanging
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between ground and sky, and this would makes the swarm as a whole move
forward more slowly than if they were simply carried forward by the wind.
Comment: This has been observed and noted biologically (Albrecht, 1967).

For ease of manipulation, we can rewrite the differential equations in
a dimensionless formulation. Although this is not essential, it leads to a parti-
cularly simple form of equation (22).

sR"RI (s, f )s!GI (s, f ) f , (15)

fR"!s#f , (16)
where

s"S , (17)

f"
º!c

c
F , (18)

L
Lf

"

D

(º!c)

L
Lz

, (19)

RI (s, f )"
D

c (º!c)
R (S(s), F ( f )) , (20)

GI (s, f )"
D

(º!c)2
G(S(s), F( f )) . (21)

The dot above a variable now signifies differentiation with respect to the
dimensionless wave coordinate, f (zeta). Linearizing the system about the fixed
point f"s"0 yields

A
sR
fQ B"A

RI
0

!GI
0

!1 1 B A
s

f B#2 (22)

where the parameters RI
0
"RI (0, 0)70 and GI

0
"GI (0, 0)70 represent the

magnitudes of the interaction terms at the fixed point (0, 0). (These are
equivalent to landing and takeoff rates when the locust density is very low.
They are, by definition, non-negative quantities.) The eigenvalues of this linear
system are

jB"

1

2
(1#RI

0
$J#RI

0
)2!4(RI

0
!GI

0
) ) . (23)

Since RI
0

is positive, so is 1#RI
0
. It is clear that the situation RI

0
!GI

0
'0

cannot be consistent with travelling waves of any form, since then, both
eigenvalues obtained with the above expression are positive, and the origin is
unstable, and thus would not admit the approach of a trajectory from some
other fixed point. This is inappropriate for both travelling fronts and travel-
ling pulses, as discussed above. We must therefore assume the following
necessary condition for travelling wave solutions:

RI
0
6GI

0
. (24)
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If we express this condition in terms of the original (dimension-carrying)
functions for take-off and landing, we find that this inequality is equivalent to

A
R

0
º

(G
0
#R

0
)B6c (25)

This inequality has the following meaning: the quantity on the left hand side
is the average velocity of the locusts in low density regions. (The ratio
R

0
/(G

0
#R

0
) is the relative number of locusts flying with velocity º.) If this

inequality is not satisfied, it means that locusts far ahead of the swarm would
fly faster than the rest of the swarm. This implies that a wave of any type (front
or band) would have a minimum wave speed. (Recall that, by previous results,
we have already found a maximum wavespeed, i.e. c(º.)

When this condition is satisfied, we have (RI
0
!GI

0
)60 and the origin is

a saddle point (or possibly degenerate). Existence of a saddle point at the
origin is certainly one of the conditions for the occurrence of travelling pulse
solutions, and it is consistent with travelling front solutions. However, as will
be shown below, the other criteria for pulse solutions cannot be satisfied.

5.4 Proof that no travelling pulse solutions can exist in Model 1

To see this, note that by the second requirement, to have a non-negative pulse
solution, both eigenvectors at the origin must be directed into the first (and
third) quadrants. The eigenvectors of the system are

mB"A
1!jB

1 B . (26)

For the case of a saddle point, j`'1#RI
0
71 and j~60. In the non-

degenerate case, (RI
0
9GI

0
) the stable eigenvector, corresponding to j~, points

into quadrants I and III and the unstable eigenvector, corresponding to
j` points into quadrants II and IV, in violation of one of the conditions of
Sect. 6.2. Thus, any homoclinic trajectory with the origin as its fixed point will
have to dip into a part of the phase plane where either F or S are negative.
This means that we must reject any such solution as non-biological when we
are considering population densities.

A few other special cases can be considered: if RI
0
"GI

0
90 then the

eigenvector corresponding to j` points into quadrant II as before, and the
results are the same. If RI

0
"GI

0
"0 then our analysis does not rule out

a homoclinic trajectory and further work is needed.
The above results demonstrate that in all but possibly the degenerate case,

f Local interactions of flying and standing locusts and simple diffusion-
convection of flying locusts cannot account for a coherent swarm that
migrates as a travelling band.

f Hypothesis 1, as it stands, cannot be sustained.
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6 Model 2: motion depends on local density

With the failure of the first hypothesis, we considered the possibility that the
constant diffusion and drift were oversimplifications, and this led us to explore
a second hypothesis:

f Hypothesis 2: Locusts respond to local swarm density variation by chang-
ing their rate of random or directed motion. Such changes in flight speed
account for the cohesion of the swarm.

To explore this hypothesis, we included aggregative terms in the original
model equations. Such terms would depict tendency for locusts to cluster,
tendency to adjust motion in response to crowding or thinning at the swarm
edge, etc. Terms for the motion of the flyers are now functions of density.
More terms are included than strictly necessary for the locust swarm: for
example, flying locusts probably do not adjust motion in response to the
variations of ground locust density. However, we can explore a fully general
model at little further computational cost. Such a general system might have
the form:

LS

Lt
"!R(S, F )S#G(S, F )F , (27)

LF

Lt
"

L
Lx

(D (S, F )F
x
!E(S, F )FS

x
!º (S, F )F )R (S, F )S!G(S, F )F . (28)

D(S, F ) represents random motion of flying locusts in response to gradients of
other flyers, E (S, F ) represents a response of the flying locusts to gradients of
the stationary locusts. The term º (F, S) is the locust flight speed as a function
of the local densities of locusts. These terms are general enough to include
a variety of possible effects, and we do not assume that they are necessarily
positive for all S, F values.

Equations (28) may have weak solutions. However, since we are interested
only in smooth solutions, we will not consider this possibility in detail here. It
is a simple matter to investigate how the addition of these terms influences our
previous conclusions, and the analysis is identical to the previous case for the
first few steps. In the travelling wave coordinate system, after adding the two
equations and integrating as before, we will get the new system

!cSQ "!R(S, F )S#G (S, F )F , (29)

!c (F#S)"D (S, F )FQ !E (S, F )FSQ !º(S, F )F . (30)

As before, the ability to find a pulse hinges on behaviour at the origin, and we
try for a saddle point at (0,0) with appropriate eigenvectors so that a homo-
clinic trajectory can be constructed. We find, however that linearization of the
above system at the origin leads to the exact same set of ODE’s with the
diffusion rate D(0, 0) and speed u"º (0, 0). The fact that º, D are functions,
rather than constants is thus irrelevant. Indeed, only the behaviour of these
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functions ‘‘at the low density’’ limit (as, for example at the back or the front of
the wave) enters into the analysis here. Thus the new terms in the model do
not help to eliminate the problem at the origin. The results are therefore
identical, with mere redefinition of the ‘‘constants’’. (Again, a possible excep-
tion exists in a degenerate case which occurs if DP0 as FP0. This may be
biologically interesting and deserves further work.) We make the following
conclusions:

f In the simple Flying-Standing locust exchange model, taxis, non-linear
drift, and non-linear diffusion of flying locusts fails to account for a coher-
ent swarm.

f Hypothesis 2 is not supported by the analysis.

7 Models 2@: slow motion of locusts on ground

Motion of locusts on the ground is very slight compared to that of the flying
locusts, and we have ignored it in the previous model. However, a danger
exists in leaving off higher derivative terms in any differential equation as the
behaviour of its solutions may be corrupted (Odell, 1980). To ensure that this
problem does not contaminate our results, we explored a version of the model
in which the locusts on the ground are also moving, but at a much slower rate.
This leads, under the travelling wave coordinates, to a higher dimensional
system and we felt it wise to check if the problems constructing a travelling
pulse solution could thereby be circumvented. The equations we studied were:

LS

Lt
"

L
Lx

(A (S, F)S
x
!B (S, F )SF

x
)!R (S, F )S#G (S, F )F , (31)

LF

Lt
"

L
Lx

(D (S, F )F
x
!E (S, F )FS

x
!º (S, F )F )#R(S, F )S!G(S, F )F .

(32)

The motility, A (S, F ), is small, and the advection of the stationary locusts
is either small or zero.

These equations can be analyzed as before, but the calculations are more
tedious. We show most of these steps in the appendix to this paper. The
analysis hinges on the fact that eigenvalues of a dimensionless version of this
system are roots of the cubic equation

ej3#(a!e)j2!(a#RI #eGI )j#(RI !aGI )"0 . (33)

Where the (dimensionless) parameters are a"c/(º!c), e"A/D, RI "RD/
(º!c)2, GI "GD/(º!c)2 and all functions are evaluated at (¹, F, S)"
(0, 0, 0).

By investigating the forms of the eigenvectors and eigenvalues at the origin
(see Appendix) we obtain a set of conditions described below: Denoting j

1
as

the leading unstable eigenvalue, and j
2

as the leading stable eigenvalue, the
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restrictions are

0(j
1
(1 ,

!a/e(j
2
(0 .

(34)

The remaining eigenvalue must be either unstable and less than j
1

in
magnitude, or stable and greater than j

2
in magnitude. However, a simple

renumbering can allow the conditions

!a/e(j
2
(0(j

1
(1

j
3
(j

1
.

(35)

In summary, necessary conditions for a travelling wave pulse are that equa-
tion (33) have three real solutions and that these solutions satisfy (35).

For e"0, the system reduces to the two dimensional system. Thus, for
small e, the system is a singular perturbation from the two dimensional
system analyzed previously (for stationary locusts on the ground). Two of the
eigenvalues are close to the eigenvalues of the 2D system, and the third
eigenvalue is

j="!a/e!RI /a#O(e) . (36)

Since j=(!a/e, the remaining two eigenvalues must satisfy the condi-
tions of equation (34). However, a simple perturbation analysis of equation
(33) shows that these conditions are not met if e;1. Specifically, the largest
positive eigenvalue, j

1
, will be larger than 1 for sufficiently small e. Hence no

travelling bands will occur. Further work is necessary to determine a useful
bound on e. In conclusion, this adjustment of the model (which significantly
increases the complexity of its analysis) does not change the previous
predictions.

8 Model 3: density dependent turning

We explored a third hypothesis for the swarm cohesiveness following a sug-
gestion in the locust literature:

f Hypothesis 3: ‘‘Swarms maintain cohesion because individuals or groups
which fly out beyond their perimeter change their orientations and head
back into the swarm’’. (Waloff, 1962)

Waloff ’s statement suggests a different approach based on the idea that
locusts are continually turning back and flying into the swarm, or turning in
response to local density. To explore this idea, we dropped the assumption
that interactions with the ground are essential and focused on the flying
locusts alone. We subdivide the flying locusts into those moving Ahead,
A(x, t), and those moving Back, B(x, t), each moving at the same basic flight
speed, v. We assumed that the turning rates r

ab
, r

ba
could depend on local

density conditions. This idea leads to a model essentially identical to one for
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Myxobacteria described by (Pfistner 1989; Alt, 1987). The equations we
explored were:

LA

Lt
"!(v#w)

LA

Lx
!r

ab
A#r

ba
B , (37)

LB

Lt
"(v!w)

LB

Lx
!r

ba
B#r

ab
A . (38)

Where r
ab
"r

ab
(A, B), r

ba
"r

ba
(A, B) are functions of the densities. The wind

speed, w is explicitly included, and assumed constant. These equations are
known to lead to the Telegrapher’s equation, see for example, (Othmer et al.,
1988). In a moving coordinate system, the resulting ordinary differential
equations are,

(v#w!c)
dA

dz
"!r

ab
A#r

ba
B , (39)

(v!w#c)
dB

dz
"!r

ab
A#r

ba
B . (40)

Subtracting the two equations eliminates the kinetic terms, leading to

(v#w!c)
dA

dz
!(v!w#c)

dB

dz
"0 . (41)

Integrating once and using the boundary conditions (i.e no individuals far
ahead or far behing the wave) results in

(v#w!c) A!(v!w#c)B"0 . (42)

which implies that the densities of individuals moving Ahead and Back are
proportional everywhere. We can therefore eliminate one variable, for
example B, by substituting the expression

B"

(v#w!c)

(v!w#c)
A (43)

into the appropriate terms in the equation for A. This means that the system of
equations reduces to a single equation, which has the basic form

dA

dz
"Af (A) , (44)

where f (A) is some expression involving the original turning rates, r
ab

, r
ba

but
depending only on A. It is well known that such a one-dimensional equation
cannot support a solution that represents a pulse because of its low
dimensionality. A smooth transition between two distinct equilibria (i.e. fixed
points of Af (A)) is possible, but not a transition that starts and ends at A"0.
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A travelling front, but not a pulse could occur in such a model5. We
conclude that

f Turning back and flying into the swarm might work to create a swarm
front, but not a travelling band. Thus, contrary to (Waloff, 1962), this would
not lead to a cohesive swarm, since it does not include a mechanism for
keeping the back of the wave with the rest of the group.

f Hypothesis 3 is not supported by the analysis.

9 Nonlocal models

We explored a final hypothesis for the swarming behaviour,

f Hypothesis 4: The interactions that maintain swarm cohesion are not just
local: locusts use visual stimuli (and other signals) to integrate and respond
to swarm density over some extended distance (not just at a single point). In
this way they can adjust speed to keep up with the swarm, leading to swarm
cohesion.

While this hypothesis is based on biologically realistic assumptions, explor-
ing it mathematically leads to a fundamentally different type of model which is
considerably more challenging to analyse. An example of this type of model
appeared in Mogilner (1995), Mogilner and Gueron (1997) to explain swarm-
ing phenomena in bacteria. In this model, the velocity of an individual was
assumed to adjust itself according to some weighted average density of the
swarm around the given individual. See also (Kawasaki, 1978; Alt, 1985).
A typical equation for the motion of the swarmers in this type of model is

LF

Lt
"D

L2F
Lx2

!

L
Lx

((w#v)F ) , (45)

where w is some superimposed drift (such as wind velocity), and where the
active motion of the organisms depends on the organism density according to
a convolution:

v"K*F"P
=

~=

K (x!x@)F(x@)dx@ . (46)

Both repulsive and attractive influences due to nearby organisms can be
included in the kernel. A typical symmetric form for such a kernel might be

K"x A
A

a2
e~(x@a)2!

B

b2
e~(x@b)2B , (47)

—————
5We remark that it is imple, though not biologically interesting, to get two diverging pulses,
simply by setting r

ab
"r

ba
"0 in this system, obtaining two uncoupled ‘‘one-way’’ wave

equations
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where the magnitudes of A and B represent, respectively the induced speed per
unit density caused by attraction and repulsion, and where a and b represent
the spatial extent of these influence. In the original Mogilner model, an odd
kernel similar to the above was used. The effect is to make front and back
symmetric so that a uniform density at any level will have no effect on the
swarming interactions (K*F"0 for F constant).

A similar model (but with w"0 and with a different interpretation) was
analyzed in detail by (Mogilner et al., 1996) with particular emphasis on
peak-like behaviour of solutions when the diffusion constant, D, is very small.
A result that carries over to moving coordinates z"x!ct is that in the case
of small diffusion, D"e, using a perturbation expansion, one finds peak-like
behaviour which, to leading order, has the form

F (z)"exp A!
(!K@ (0)N)

2e
z2B , (48)

where

N"P
=

~=

F (s)ds . (49)

Using the form for the kernel given in equation (47), the derivative K@ (0) is

K@ (0),
A

a2
!

B

b2
. (50)

This means that the width of the peak, to leading order is predicted to be:

¸"e1@2 N~1@2 A
B

b2
!

A

a2B
~1@2

. (51)

This result must be interpreted with caution, since it is a leading order result
only. It seems to imply that a peak-like solution would exist under a moving
coordinate system, and it appears that a restriction of the sort

A

a2
(

B

b2
(52)

has to be imposed. However, numerical simulations do not support this latter
restriction, and indeed, it appears that the leading order behaviour is limited
in its predictive ability. Further, the result does not lead to conclusions about
the stability of the peak nor about the existence of a travelling pulse of fixed
shape.

It is also possible to explore some of the consequences of the model by
looking at aggregate properties such as the center of mass or the width of the
swarm. This can be done to some extent directly from equation (45), and we
show a few steps in this direction in an appendix to this paper. We can further
use the detailed form of the kernel to draw more detailed conclusions in
certain limiting cases. For example, the small swarm approximation holds
whenever the spatial size of the swarm is small compared to the interaction
distances a, b. The results in this limiting case give additional confirmation to
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equation (51) (see Appendix). This suggests that formally, the effect of certain
terms associated with the kernel is to counterbalance the effect of diffusion.
However, because the moment equations involve higher moments yet, a defin-
itive analysis is hampered by the possibility that infinite sums may fail to
converge. Furthermore, locust swarms are generally much larger than the
range of interactions of individuals, and so these results, while interesting for
small swarms, may tell us very little about locusts.

While the analysis of the nonlocal equations for swarming locusts is of
limited scope in this paper, we point the reader to a recent investigation by
Mogilner and Edelstein-Keshet (1997) in which a simple caricature of a swarm
with non-local interactions is described and analysed in much greater detail.

9.1 Numerical simulations: nonlocal model

We incorporated the ideas of nonlocal swarming interactions in the original
version of the model to generate the system of equations shown below

The system of equations we investigated was

S
t
"!RS#GF , (53)

F
t
"DF

xx
!

L
Lx

((w#K* F)F )#RS!GF , (54)

where w is wind speed and the swarming velocity is given by the above
convolution with the slightly modified kernel,

K"

x

N
0
A

A

a2
e~(x@a)2!

B

b2
e~(x@b)2B . (55)

N
0

is a reference density. In this form, the parameters are more easily
interpretable since now A, B have units of velocity. It is thus easier to assign
values to the parameters directly. The constant N

0
does not change the

behaviour of the model: it simply rescales the units. This system of equations
was solved numerically using the method of lines and a first order backward
difference algorithm for the time-stepping. In all simulations, 240 gridpoints
and a time step of dt"0.05 hours was used. Periodic boundary conditions
were used to avoid numerical difficulties. The convolution K*F was approx-
imated using Simpson’s algorithm, and first order upwinding was used to
approximate the derivative of the convection term. Centered differencing was
used for the diffusion term. The resulting scheme is conservative and first
order in both time and space. The domain of the system is a line segment of
length ¸, and the total number of locusts is conserved. That is,

P
L

0

(F#S) dx"N (56)

where N is a positive constant. R and G and the remaining parameters are
constants in the simulations. The variables were all non-dimensionalized so
the total density was F#S"1.
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The simulation was first run without repulsion (B set to zero). Figs. 3 and
5 show how the wave develops from initial conditions. Increasing the flight
speed of the locusts produced a broader band. Figures 4 and 6 show the shape
of the apparent travelling band and the swarming velocity (the convolution
v"K*F ) as a function of position in the swarm. Note that locusts at the front
of the wave are flying back into the swarm, while the others are flying towards
the front. At some distance beyond the rear of the peak, the velocity becomes
negative. This is an artifact of the periodic boundary conditions: locusts are
being more strongly attracted to the ‘‘swarm behind them’’.

The parameter values used for the simulation runs presented here are
based loosely on parameters associated with locust swarms, as described in
Sect. 3.2. However, in order to get a pulse to form, we have used values for the
diffusivity D, and the wind velocity w that are both an order of magnitude
below realistic estimates. Although little is known about the distances over
which locusts attract or repel one another in a swarm, the values choosen for
a and b are thought to be reasonable, if possibly high.

The simulation run whose results are shown in Fig. 7 was designed to
examine the merging of nearby swarms into one swarm. The results suggest

Fig. 3. This figure shows the formation and motion of what appears to be a a travelling
pulse solution to the nonlocal model with exchange kinetics. The initial distribution, the low
pulse at the front of the figure, moves to the right and quickly forms a tighter peak. The
parameter values used were N"109 locusts, N

0
"4]108 locusts, ¸"10 km,

D"0.1 km2/hour, w"1 km/hour, A"3 km/hour, B"0, a"2 km, and b"1 km. The
units on the time axis are hours and the size of the domain (240 gridpoints) corresponds to
10 km
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Fig. 4. This figure shows the shape of the pulse at the end of the simulation of Fig. 3. The
(dimensionless) density of flying locusts and the (dimensionless) magnitude of their swarming
velocity v"K*F are shown. Periodic boundary conditions result in the fact that locusts
distributed over the first 50 gridpoints seem to be flying back towards the swarm ‘‘behind them’’

Fig. 5. The travelling pulse in this figure is much broader than the pulse of Fig. 3. The
parameter values used to produce this figure were identical to Fig. 3 except that a value of
A"1 km/hour was used here. The time units and spatial scale is identical to that of Fig. 3
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Fig. 6. This figure shows the last timestep of the travelling pulse of Fig. 5. The higher curve
is the density and the lower curve shows the velocity at different points in the swarm. Note
that the velocities in this case are much lower than for the peaked wave. However, the wave
itself is faster

that smaller swarms travel faster than larger ones. Thus a small and a large
swarm will merge if the small swarm is to the rear of the large swarm.
However, as the upper plot of Fig. 7 shows, if the smaller swarm is ahead of,
but sufficiently close to the larger swarm, it will be slowed and the two will
merge.

The simulation shown in Fig. 8 shows a swarm forming from stationary
locusts. Other than wind velocity and diffusivity, the parameter values are in
a realistic range for locusts. The distribution of flying locusts quickly forms
two pulses from the initial data and these gradually merge into a single pulse
over a time equivalent to a single day.

Simulation runs with higher wind speeds or diffusivities produced pulses
that looked qualitatively like sinusiods with a period equal to that of the
domain length. Since such functions are eigenvalues of the diffusion operator,
this suggests that the diffusion of locusts dominates over the integral term at
higher wind speeds. As these observations have not yet been explored by
analysis, the possibility exists that some of these conclusions may be asso-
ciated with numerical artifacts.

Although the model described here is able to form a peak-like propagating
solution, running the model for longer times reveals that the peak tends to
broaden out eventually. This is shown in Fig. 8. We find that although the
effect of the swarming term is to cause clustering and lead to formation of
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Fig. 7. The above figures show
different velocities of large and
small waves. The parameter
values used in all three figures
were N"109 locusts, N

o
"4]

108 locusts, ¸"10 km, D"0.1
km2/hour, w"1 km/hour, A"4
km/hour, B"0, a"1 km, and
b"1 km. The only differences
between the figures are the initial
conditions. In each successive
figure, the smaller pulse was
moved further ahead of the larger
pulse. Note that the smaller pulse
moves faster than the larger
pulse. In the top figure, the small-
er pulse is slowed, and merges
with the larger pulse. Whereas, in
the second figure, the simulation
starts with the smaller pulse far-
ther ahead of the larger pulse and
the two pulses do not merge. In
the final figure, the smaller pulse
catches up with the larger pulse
and the two merge. Time and
distance units are identical to
those of Fig. 3.

a pulse, it does not appear to result in a true travelling pulse in the classical
sense of this term. In general, true stable pulses were not observed in our
simulations. Further, the only possible candidates for reasonable propagating
solutions in the form of gradually widening pulses were found for low values
of both wind speed and diffusivity. (However, we have by no means fully
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Fig. 8. These figures show
simulations of the model with
replusion included in the inte-
gral term. The initial conditions
were a random distribution of
stationary locusts in the first
tenth of the domain. The para-
meter values used were N"109
locusts, N

o
"4]108 locusts,

¸"100 km, D"0.1 km2/hour,
w"0.75 km/hour, A"

12 km/hour, B"0.3 km/hour,
a"200 m, and b"100 m. The
size of the domain (240 grid-
points) corresponds to 100 km.
In the first figure, the simulation
represents 20 hours of interac-
tions. In the second figure, the
simulation is over 360 hours of
interactions. We see from the
second of these that the locust
swarm migrates down the do-
main, but that it does broaden,
i.e. it is not a true travelling
pulse

explored parameter space. The range for the parameters B, b, and a of the
kernel are not well known. Nor are the exchange rates R and G. We have
chosen values that seem reasonable. Further experimentation, both in numero
and in vivo may be called for.)

9.2 General comments about the nonlocal model

The theoretical analysis and the numerical simulations of models of this type
are at the infancy stages, and we can at best draw some preliminary con-
clusions. More work is required to understand the behaviour of such models
under various assumptions about the types of interaction terms. Results to
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date with one specific model are not promising for the following reasons:

1. The shape of the swarm obtained numerically is that of a very dense and
localized peak, unlike the shape of a locust swarm (rather uniformly dense
and wide in size).

2. Parameter values specific to locusts do not give a good fit to the numerical
model. There is difficulty in obtaining the appropriate behaviour with the
given values of wind speed and diffusivity.

3. Preliminary analysis, though tentative, suggests that the width of the peak
decreases as the number of individuals in the swarm increases (a greater
inward pull). This, like (1) is unrealistic.

Some of these difficulties may be overcome by suitable alterations to this
basic model (for example, to prevent the buildup of densities above certain
levels). A problem which is less easily corrected is the loss of individuals from
the back of the wave. Analysis of related models which include nonlinear
density dependence (Mogilner and Edelstein-Keshet, 1997) suggests that non-
local models with interactions in a more general class, fail to produce exact
travelling pulses that are globally stable to loss of individuals, but succeed in
producing quasi-stable swarms. It stands to reason that biological organisms
have a finite sensing distance and that interactions with others can at best
occur within a limited distance. This argues for the fact that all nonlocal
models will contain kernels that have either compact support or that decay
rapidly beyond a finite distance. That in turn implies that swarming terms can
work to keep group members together only within a limited distance of the
swarm edge. If we believe that diffusion-like motion persists beyond this
range, it follows that some members of the group may always fall behind and
get lost. The analysis to make these informal remarks more rigorous is
continuing.

This leads to the conclusion that:

f While long-ranged interactions can contribute to group cohesion, these
have limited ability to prevent the loss of individuals from a group. Prelimi-
nary investigation of one such model suggests that such terms cannot
account for pure travelling pulse solutions.

f Hypothesis 4, though still to be explored in fuller detail, does not appear at
this stage, to be supported by numerical results or preliminary analysis.

10 Discussion

The models for spatially propagating population phenomena have been, thus
far, of a relatively restricted set of classes. In one class are those models in
which an invasion takes place, and concomitant population growth feeds it.
All models related to the Fisher equation are of this type. In another class are
those models in which a band of organisms climbs a gradient of some
substance, such as a chemoattractant. The Keller—Segel models are of this
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latter type. It is surprising to discover that comparisons between migratory
phenomena per se and waves of invasion have rarely been made in the
literature and that discussions of travelling bands in the context of population
movement models are hard to find. The Keller—Segel models and associated
chemotactic variants were the only models of this type that we have found.
Classification of realistic population movement models that support travel-
ling band solutions (with other mechanisms, higher dimensionality, etc) seems
to be an interesting and challenging mathematical problem which merits
attention.

In this paper, we have shown that hypotheses that seemed biologically
reasonable, even those suggested by the biological experts, when incorporated
in a set of representative models, failed to produce the ideal behaviour of
a travelling band solution. These included nonlinear local as well as long-
ranged interactions, variations in the flight speed to respond to density
changes, and turning back at the edge of the swarm. It is important to note
that the presence of an external gradient (such as nutrient, attractant, or other
influence) would introduce an important asymmetry between the front and
the back of the wave, making it easier to ‘‘cook up’’ a model with travelling
band solutions. Even when a nutrient gradient is biologically reasonable,
elaborate and unrealistic assumptions about chemotactic sensitivity and food
consumption are needed to prevent organisms from being left behind in the
wake of the wave (Odell, 1980).

An important difference in many swarms or flocks of animals that move as
cohesive units is that a food source or an external gradient of some type is
neither necessary biologically, nor observable in many cases. For example, fish
schools and bird flocks maintain a tight formation as they move over con-
siderable distances, without necessarily relying on gradients or forces other
than their mutual interactions. Evidence suggests that locusts can sustain
swarm cohesion in the absence of such gradients. Explaining such phenomena
with mathematical models proves to be a challenging undertaking, because,
while interactions coupled with some random and group motion can explain
the forward propagation of a front, they are seldom enough to also explain the
‘‘catching up’’ that occurs at the back of the wave.

The failure of our model hypotheses to describe travelling bands appears
to hinge strongly on the trailing-edge dispersion that results from the advec-
tion-diffusion PDE formalism. In contrast to our difficulties in generating
a mathematical description of the coherent, rolling-swarm phenomenon, it is
easy to postulate a simple physical model that accounts for cohesion in, say,
a water droplet falling through the atmosphere or moving under some other
external wind shear. This, too, is a system composed of many units (molecules)
that diffuse and interact. But a physical model takes into account a distinct
behaviour at the surface of the drop: one assumes discontinuous physical
properties, with the interactions between individual molecules reflected at the
population level as surface tension at the interface. Even in such systems,
evaporation, absent only when the temperature is absolute zero, would tend
to lead to loss of particles.
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Although continuum models have been used often in modeling spatial
distributions of populations, one reason for their failure, in this case is that
scaling assumptions implicit in the advection-diffusion approximation are
inappropriate. Specifically, advection-diffusion equations are usually derived
from random-walk behaviours by assuming that the characteristic time- and
space-scales of individual movements are small (‘‘local’’) compared to the
‘‘global’’ scales characterizing the variation in the statistical properties of
those movements (e.g., average ‘‘run’’ length changes significantly only over
a distance of many run lengths). Typically, movement statistics change slowly
because individual behaviour is determined by responses to environmental
factors (attractants, density of conspecifics, etc.) that themselves vary slowly.
We note that in the physical model of rolling swarm dynamics, these relative
scalings are reversed: the density of water molecules changes quickly relative
to the mean free path of an individual molecule at the edge of the droplet.
It is not clear how to derive a behavioural analog of the conservative
physical forces underlying surface tension approximations (Cohen and
Murray, 1981; Ochoa, 1984). However, it seems likely to us that novel
generalizations of surface-tension type physical models will be highly
informative, as has been the case in advection-diffusion equations for
biological random walks.

An interesting philosophical point is whether one really expects to see in
nature anything like the ideal mathematical travelling pulses that have eluded
our attempts in this paper. Do we expect to find a perfect pulse or band of
locust density whose shape is fixed as it propagates? When our investigation
of locust swarms was in its initial stages, we assumed that such behaviour
would occur in a suitably derived or adapted model. However, the many
guesses and biologically motivated hypotheses proved that this optimism was
unfounded.

Interestingly, stemming from the difficulties encountered by in the Kel-
ler—Segel—Odell analysis of bacterial chemotaxis, similar philosophical issues
were raised. In the case of bacterial chemotaxis, it was remarked experi-
mentally that, on close inspection, what had been seen as a band of bacteria
does undergo subtle change, and slows down as it moves. This lead to the
suggestion that exact travelling waves can be dispensed with, and that grad-
ually slowing or broadening bands can represent the behaviour. An example
of this type of analysis with more realistic assumptions on the chemotaxis and
nutrient consumption is given in (Novick-Cohen and Segel, 1984).

In the case of locusts, the search for travelling band solutions was fuelled
by biological statements that the swarms are cohesive over many days as they
sweep through hundreds of kilometers. However, due to the gigantic size of
such swarms, good pictures (other than hand-drawn sketches) are hard to find.
One aerial photograph of a locust swarm is given on the opening pages of
Okubo’s classic (1980) book. From this photograph it appears that the shape
of a locust swarm is nowhere near as perfect as we initially surmised. Indeed,
its trailing edge is wispy and cloud-like and it is likely that many locusts are
left behind as the swarm moves. This means that we should expand the class of
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models and solutions considered to include those that broaden, as done in the
bacterial chemotaxis model.

With the difficulties of explaining migratory bands using such mathemat-
ical formalism, we have come to appreciate that new approaches are required.
For the case of locusts, the exact nature of their interactions are still not
known biologically, and the problem of modelling them accurately remains an
open one. For other aggregations such as fish schools or bird flocks where the
aggregate consists of a smaller group, we may need to reject the standard
continuum formulation (where all densities are smooth functions) in favour of
other approaches.
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Appendix

A.1 Analysis of equations (32)

The system of equations (32) is translated into travelling wave coordinates, the
two equations are added, and the result integrated to obtain

!c (S#F )"AS
z
!BSF

z
#DF

z
!EFS

z
!ºF . (57)

A second equation can be obtained by summing DS
z
#BSF

z
. This produces

an equation which is linear in S
zz

and independent of F
zz
.

!c(DS
z
#BSF

z
)"D(AS

z
)
z
!DF

z
(BS)

z
#D

z
BSF

z

!BS(EFS
z
!ºF )

z
!(D!BS) (RS!GF ) . (58)

Introducing the variable ¹"S
z

and linearizing the two previous equa-
tions about (¹, F, S)"(0, 0, 0) obtains the system

A
¹Q
FQ
SQ B"A

!c/A !G/A R/A
!A/D (º!c)/D !c/D

1 0 0 B A
¹

F
S B#O((¹#F#S)2) , (59)

where the elements of the matrix are evaluated at (¹, F, S)"(0, 0, 0). Intro-
ducing the dimensionless coordinates

f"
(º!c)

D
z , (60)

s@"
D

º!c
¹ , (61)
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f"
º!c

D
F , (62)

s"S , (63)

and neglecting second and higher order terms, the system becomes

A
sR @
fQ
sR B"A

!a/e !aGI /e RI /e
!e/a 1 !1

1 0 0 B A
s@
f
s B . (64)

The dimensionless parameters are

a"c/(º!c) , (65)

e"A/D , (66)

RI "RD/ (º!c)2 , (67)

GI "GD/(º!c)2 , (68)

where the right hand sides are evaluated at (¹, F, S)"(0, 0, 0).
The eigenvalues of the system are the roots of the cubic equation

ej3#(a!e)j2!(a#RI #eGI )j#(RI !aGI )"0 . (69)

Although the solutions can be written out explicitly, they are complex, and fail
to illuminate the situation. However, if we assume that the eigenvalues are
real, which is a minimal requirement for the existance of a pulse solution, then
the eigenvectors are of the form

m"A
j

(1#ej/a)/(1!j)
1 B . (70)

For a pulse solution, the leading stable eigenvector (pulse back) should be in
the positive octant, whereas the leading unstable eigenvector (pulse front)
should be in the octant where s@(0, f'0, and s'0. The term ‘leading’
indicates the eigenvalues with the largest (signed) value.

Denoting j
1

as the leading unstable eigenvalue, and j
2

as the leading stable
eigenvalue, the restrictions are

0(j
1
(1,

!a/e(j
2
(0.

(71)

The remaining eigenvalue must be either stable and less then j
1

in magnitude,
or unstable and greater then j

2
in magnitude. However, a simple renumbering

can allow the conditions

!a/e(j
2
(0(j

1
(1

j
3
(j

1
.

(72)
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A.2 Moments of the distribution, nonlocal model

We consider the model given by equation (45) with velocity composed of the
wind drift, u, and the swarming velocity v as given in equation (46). We define
the following Moments of the distribution:

F
0
(t)"P

=

~=

F (x, t )dx , (73)

F
1
(t)"P

=

~=

xF (x, t)dx , (74)

F
2
(t)"P

=

~=

x2F (x, t)dx . (75)

Then note that the total number of individuals is N"F
0
(t), and the

center of mass of the swarm is XM (t)"F
1
/N. The variance of the distribution is

given by

»(t)"
1

N P
=

~=

(x!XM )2F (x, t)dx . (76)

It can be shown that the relationship between second moment and variance is

F
2
"N (»#XM 2) . (77)

We can find the appropriate moments of the distribution directly from
equation (45), as follows:

Total number of individuals: It is simple to show that the total number of
individuals is conserved by integrating both sides of equation (45) over space,
and showing that terms on the right hand side are zero (after integrating by
parts and making the appropriate assumptions about behaviour at $R).
We omit the details. Thus

dF
0

dt
"0 (78)

so that F
0
, and thus also N is constant. This is clear from the fact that

equation (45) includes no source-sink terms, only terms for redistribution over
space. Thus the total number of individuals throughout the (unbounded)
region is constant.

Center of mass: Multiply both sides of equation (4) by x and integrate to
obtain:

L
Lt P

=

~=

xFdx"P
=

~=

x AD
L2F
Lx2

!

L
Lx

((w#v)F ) Bdx . (79)

544 L. Edelstein-Keshet et al.



Integrating by parts on the right hand side leads to

L
Lt P

=

~=

xFdx"Cx AD
LF

Lx
!(w#v) FBD

=

~=

!P
=

~=
AD

LF

Lx
!(w#v)FBdx . (80)

Appropriate assumptions about the kernel K will guarantee that the velocities
(w#v) remain bounded at $R. If we assume that at xP$R the swarm
density, and its derivative, go to zero (faster than a power of 1/x) we obtain
(after a second integration by parts that removes the term DLF/Lx from the
remaining integral):

dF
1

dt
"P

=

~=

(w#v)Fdx"wN#P
=

~=

(K* F)Fdx . (81)

Thus

dXM
dt

"w#

1

N P
=

~=

(K*F)F dx . (82)

Thus the center of mass moves with a velocity that consists of (a) the wind
drift and (b) a swarming terms that is superimposed on this drift. However, it
will be seen further that when K is odd, the swarming terms make no
contribution to the velocity of the center of mass.

Variance of the distribution: We multiply both sides of equation (45) by
(x!XM )2 and integrate to obtain:

L
Lt P

=

~=

(x!XM )2Fdx"P
=

~=

(x!XM )2 AD
L2F

Lx2
!

L
Lx

[(w#v)F ]B dx . (83)

We integrate by parts as before, and assume that F(x, t) and its derivative go
to zero at $R faster than 1/(x!XM )2, to arrive at the following:

dN» (t)

dt
"2D P

=

~=

Fdx#2 P
=

~=

(x!XM ) (w#v)F dx . (84)

We use the definitions of N and v and the fact that N is constant to simplify
this to

d»(t)

dt
"2D#

2

N P
=

~=

(x!XM ) (w#K*F)Fdx . (85)

Since the wind velocity, w is assumed to be constant, it is easy to show that it
leads to a term that drops out of the expression, resulting in

d» (t)

dt
"2D#

2

N P
=

~=

(x!XM ) (K* F )F dx . (86)
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This result shows that diffusion tends to increase the variance at a constant
rate, and it is up to swarming term in the integral to reverse this effect, if at all.

Width of the swarm: The width of the swarm, ¼ is related to its variance by

¼"J». Thus, once the variance is known, so is the width.

A.3 Small swarm approximation

If the swarm is small enough that the interaction distances are larger than the
size of the swarm, then the kernel can be approximated locally fairly well by
a few term in its Taylor series:

K(x)"x A
A

a2
e~(x@a)2!

B

b2
e~(x@b)2 B (87)

"x C
A

a2 A1!
x2

a2
#

1

2

x4

a4
!

1

3!

x6

a6
#2B

!

B

b2 A1!
x2

b2
#

1

2

x4

b4
!

1

3!

x6

b6
#2BD (88)

"C
A

a2
!

B

b2D x!C
A

a4
!

B

b4D x3#
1

2 C
A

a6
!

B

b6D x5#2 (89)

In this case, we can also calculate the first few terms in the swarming-induced
velocity term v"K*F as follows:

v"K * F"P
=

~=

K(x!x@)F (x@)dx@ (90)

"C
A

a2
!

B

b2D P
=

~=

(x!x@)F (x@)dx@!C
A

a4
!

B

b4D P
=

~=

(x!x@)3F (x@)dx@ (91)

#

1

2 C
A

a6
!

B

b6 D P
=

~=

(x!x@)5F (x@)dx@#2 (92)

+C
A

a2
!

B

b2D (x!XM )N!C
A

a4
!

B

b4D Ax3!3x2XM #3x (»#XM 2 )!
F
3

N BN

(93)

where F
3
and higher moments of the distribution appear. For the small swarm

approximation, the higher moments should be small, and can be neglected,
but this is not true for large swarms. Applying this approximation to the
aggregate swarm properties described in the previous section gives the
following leading order behaviour:

Center of mass:
dXM
dt

"w (94)
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The center of mass just moves with the wind speed. It can be shown that the
higher order terms vanish when the kernel is odd. The swarming term in that
case does not contribute to group motion, only to internal motion in the
swarm. This is not the case if the kernel is an even function (Mogilner and
Edelstein-Keshet, 1997).

Variance of the distribution:

d»(t)

dt
"2D#2 C

A

a2
!

B

b2D P
=

~=

(x!XM )2Fdx#2 (95)

This can then be simplified to

d»(t)

dt
"2D!2 C

B

b2
!

A

a2DN»#2 . (96)

The leading term in the expansion suggests that a possibility arises (when the
term in square brakets is positive) that the effect of the swarming kernel to
leading order is to reverse the widening effect of the diffusion in the model.
When this happens, we expect that the variance would stabilize (but only to
leading order) at the approximate value

»"

D

[ B
bÈ
!A

aÈ
]N

(97)

This result also suggests that the width of the swarm, according to a leading
order estimate has the form

¼"J»+D1@2 C
B

b2
!

A

a2D
~1@2

N~1@2 (98)

which agrees with a result obtained by a perturbation expansion in the case of
small diffusion D"e. However, as noted in the text, this approximation has
neglected the effects of higher order terms and may be misleading. In particu-
lar, for swarms that are not small, this approximation may be meaningless.
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