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Abstract— I survey some of the problems (both
mathematical and biological) connected with aggre-
gation of social organisms and indicate some mathe-
matical and modelling challenges. I describe recent
work with collegues on swarming behaviour. Exam-
ples discussed include (1) a model for locust migra-
tion swarms, (2) the effect of non-local interactions
on swarm shape and dynamics, and (3) an individual-
based model for the spacing of neighbors in a group.

I. Background and previous work

Many chemical and physical systems are characterized
by formation of patterns, clusters and aggregates, or
phenomena such as wave and pulse propagation. In bi-
ology, swarming and social aggregation form a rich and
diverse collection of such phenomena. The size scale
of groups ranges from microscopic cellular populations
to herds, flocks, schools, and swarms of macroscopic,
and sometimes enormous size. In some cases, notably
swarms of locusts, these aggregates have serious im-
pact on ecology and human activity.

These examples, and many others, have motivated
studies in which both biological aspects as well as
theoretical modeling and mathematical aspects of the
phenomena have been investigated. Early works in
the 1950’s were largely descriptive biological investi-
gations of fish schools [3] or bird flocks [4]. Some
theoretical concepts for the formation of herds and
groups were discussed in a classic paper by Hamilton
[9]. See also [22] for simulations and a model for ani-
mal group structure. The classic book by Okubo(1980)
[16] (recently modernized [18]) presented some aspects
of the initial mathematical concepts applied to study-
ing swarms. Since that time, the literature has grown
substantially, with many significant contributions ad-
dressing such problems from the perspective of biology,
mathematical modeling, or physics. Notable among
these are [17, 19, 6, 20, 25, 7, 5, 15].

II. Biological questions

As we will see, questions of interest to investigators
from different disciplines have distinct flavor. A brief

sample of questions posed by biologists is concentrated
below:

1. Is there a functional purpose to the aggre-
gate? For example, plankton patches that result
from hydrodynamic effects appear to have no
biological purpose. Such emergent phenomena
contrast with, for example, the slime mould Dic-
tyostelium discoideum, whose aggregates form
multicellular structures specialized to promote
survival under conditions of starvation of (part
of) the group as dispersed spores. Similarly, bird
flocks and fish schools afford protection to mem-
bers from predators, opportunities for mating,
for cooperative foraging, or for safer long-range
migration.

2. How do ecological factors affect the aggre-
gation? Environmental factors such as avail-
ability of resources, predation pressure, temper-
ature, light, and other factors are known to in-
fluence the behavior of individuals, as well as the
tendency to aggregate.

3. Conversely, how does aggregation affect eco-
logical phenomena? The density of a popula-
tion is known to influence disease transmission
rates, predation rates, selection pressure, and
evolution of new traits. It also influences how
humans exploit a resource. Schools and shoals
of fish have been so efficiently exploited by fish-
eries, as to lead to mass extinction and collapse.

III. Theoretical questions

A. What causes aggregations to form?

Both intrinsic and extrinsic effects can lead to cluster-
ing and aggregation. Direct attraction and repulsion
to other members of one’s own kind are intrinsic to
many species. Locusts, for example, have phases in
which they lead a solitary life, and phases of gregari-
ous behavior in which attraction and mutual excitation
lead to swarming.

Insect swarms, some fish schools, and many other
groups form as a result of attraction to some external



marker, food source, or gradient. Patchy distribution
of resources in the environment can lead to clustering
(and, in some cases, to active aggregation: see de-
tails about locust phase transitions described below.)
Physical forces and ”convergence zones” or interplay
between physics of fluid and properties of the living
cells have also been investigated in connection with
pattern formation (e.g. by Kessler, Hill [11] and oth-
ers).

B. What causes aggregations to persist?

Some swarms serve a limited and ephemeral purpose,
and disappear when this purpose no longer exists.
This is the case in some mating swarms, or congrega-
tions exploiting a concentrated resource. The swarm-
ing phase of the desert locust depends on weather con-
ditions, wind direction, state of maturity, and phase of
the individuals.

C. How do we bridge the individual and
collective levels?

Can we understand the behavior of the group if we
know something about the individual rules of behavior
and interactions? Addressing this issue forms one of
the main goals of mathematical modeling. This realm
builds on experience from physical models that bridges
the gap between particles and continua. Partial differ-
ential equations, stochastic differential equations, and
other mathematical methods, provide useful analytical
tools. These lead to insights in simpler models. Sim-
ulations help incorporate biological realism in more
detailed models. However, challenges abound: One,
is how to deal with the complexity of nonlinear in-
teractions; another, is how to faithfully represent the
phenomena without introducing artifacts due to the
model. (See discussion below.)

Can we learn something about the organism behav-
ior by studying the aggregate? This question is related
to the former, but with a top-down approach. In some
cases, we might wish to infer aspects of individual be-
havior and physiological parameters from observations
of macroscopic collective phenomena. But this ”in-
verse problem” is quite hard, since many diverse rules
can lead to aggregates that look and behave quite sim-
ilarly. (For example, simulations of fish schools based
on very diverse sets of rules, lead to seemingly realistic
dynamics [20].)

D. What determines the shape and geometry
of the swarm?

Aggregates and groups of animals occur in 1 dimen-
sion (walking along trails), 2 dimensions (in large mi-
gration herds) and 3 dimensions (flocks and schools).
How does the dimensionality influence the shape of
the aggregate? Sizes of groups vary from small hand-
fuls to billions. How does group size affect the be-

haviour of the group? How does it affect the structure
and the density of packing? Some swarms have well-
defined sharp ”fronts”, others are more diffuse and
ill-defined. Densities in the interior of an aggregate
are often relatively constant, meaning that individu-
als have some preferred spacing behavior. How is this
achieved? Mathematical modeling can address some
of these questions. (See for example [13] where it has
been argued that repulsion between individuals has to
have a larger density dependence than attraction to
obtain uniform density in swarms.)

IV. A Taxonomy of models

In this section, I briefly indicate some of the common
approaches used to model aggregation. While the list
is presented as contrasting pairs, many modelers have
combined multiple approaches to studying their sys-
tem of interest

Eulerian versus Lagrangian: This dichotomy de-
scribes the distinction between models in which the
position (velocity, state, etc) of each individual is rep-
resented, versus those that treat the density of the
population over space. The dichotomy depends on
our point of view: are we following a given individ-
ual to see how it is affected by its neighbors, or are
we watching the herd move past us as a density wave
[16]. In the classical literature, Eulerian models have
tended to dominate since they lead to well-studied par-
tial differential equations. However individual-based
Lagrangian models are becoming more popular [5, 12].

Deterministic versus stochastic: Noise plays a domi-
nant role at small spatial scales, and short time scales.
To some extent, all biological systems have inherent
variability and random effects, but in some cases, we
can represent the behavior fairly well by averaging out
and using a mean-field approach. In other cases, con-
sidering fluctuations is important [15].

Local interactions versus long-ranged interactions:
Do individuals affect one another only by close-range
(e.g. tactile) interactions? How do we take into ac-
count visual stimuli, or chemical signaling ? Such ef-
fects can lead to attraction or repulsion at a distance.
Models that incorporate such nonlocal effects gener-
ally contain integro-differential equations [10, 13].

Analytic versus simulation models: There is some-
thing to be gained from each approach. The former
forces us to simplify the ideas and treat minimal mod-
els to the full extent possible. Many of these models
are quite divorced from biological reality. This short-
coming can be addressed by more detailed simulations.

V. Mathematical Challenges

In order to understand aggregation, we must also un-
derstand dispersal. Traditionally, random motion of a
population p(x, t) is represented by the simple diffu-



sion equation
pt = D∆p.

This equation has the defect of predicting an infinitely
fast propagation speed. (Particles concentrated at the
origin at t = 0 have some small but finite probability
of getting arbitrarily far within an arbitrarily small
time interval.) As discussed in an excellent review by
Hadeller [8], this results from the feature that particles
make any number of independent, uncorrelated moves
per unit time. To correct such defects, some model-
ers consider a correlated random walk, where particles
move at some fixed velocity, v and reverse direction
by a Poisson process with parameter µ/2. In 1D, this
leads to the system of p.d.e.’s for the densities of indi-
viduals moving left, p−(x, t), and right, p+(x, t):

p+
t + vp+

x =
µ

2
(p− − p+),

p−t − vp−x =
µ

2
(p+ − p−). (1)

By differentiating one equation with respect to t, the
other with respect to x, and eliminating cross terms
pxt, the above system can be rewritten in the form
known as the telegraph equation,

1
µ
ptt + pt =

v2

µ
pxx.

This equation can be approximated by the diffusion
equation in the case that organisms move rapidly and
reverse their direction of motion often, provided we as-
sume that the ratio D = v2/µ approaches a constant.
(The constant is the diffusion coefficient, or the ran-
dom motility coefficient.) This illustrates the fact that
scaling space and time appropriately is nontrivial: dif-
ferent scalings would, in general, lead to distinct model
behavior, and possibly, to artifacts.

The above system and its associated second order
p.d.e. can be generalized to cases where the velocity
takes values in some range (rather than a precise sin-
gle value), leading to a so-called velocity jump process
summarized in an integro- partial differential equation
[8, 19]. There is, however, some difficulty in gener-
alizing this framework to higher dimensions, e.g. to
motion in the plane or in 3D, (a problem if we are to
apply the theory to flocks or herds). Hadeller (1999)
[8] notes that the generalized version of the telegraph
equation

τptt + pt = D∆p

does not preserve positivity of p, making solutions
unbiological. Further, this equation (unlike the 1D
version) is not derivable from a stochastic process in
higher dimensions. These examples point to issues
that continue to provide mathematical challenges.

VI. Examples of Models

In this section, I summarize a number of recent models
and examples based on my own interests and research.
This work has been carried out over past years with
the colleagues A Mogilner (UC Davis), D Grunbaum
(UW), and J Watmough (UNB, Canada).

A. Locusts

Locusts are economically devastating insect pests.
The desert locust Schistocerca gregaria forms airborne
swarms of immense size: up to billions of individuals,
spread out over many kilometers, traveling at speeds of
10-15 km/hr for distances of hundreds and even thou-
sands of kilometers. Figure 1 illustrates the structure
described in [1] for a typical locust swarm: locusts take
off against the wind direction at the rear of the swarm,
turn to fly downwind (direction of arrow), and land to-
wards the front to forage. (The detailed structure is
hard to quantify due to the size of most swarms.)

Figure 1: A rolling locust swarm; after [1]. The arrow
indicates direction of motion. Shown on the bottom
are the landing zone (left) and takeoff zone (right).

It is of interest to understand how swarms of this
magnitude can stay together as they migrate, over pe-
riods of many days. Given their size and density, a
continuum approach seemed appropriate in a model
[14] described briefly below. An abstraction was to
represent the swarm in 1D as a density profile along a
transect parallel to the direction of motion (assumed
to be in simple straight path). The variable x was thus
position along the axis of the swarm, with x → +∞
far ahead of the front and x → −∞ far behind the
back of the swarm (Reverse Fig 1).

The model we investigated considered exchange be-
tween stationary individuals on the ground S(x, t) and
those flying above, F (x, t) with a basic system of equa-
tions:

St = −R(S, F )S +G(S, F )F,
Ft = DFxx − UFx +R(S, F )S −G(S, F )F (2)

Here R,G are density-dependent exchange rates be-
tween stationary and flying locusts. D is random



motion due to atmospheric turbulence and irregular
flight paths of individuals, U is simple drift speed due
to wind and active flight. D,U may be density de-
pendent, i.e. D = D(S, F ), U = U(S, F ), but were
here assumed to be local in nature: individuals inter-
act only with those in close proximity. The question
addressed in this model was whether (and under what
circumstances) such models give rise to a swarm that
migrates with some fixed speed, while preserving some
basic shape.

Transforming to moving coordinate z = x − ct, we
looked for traveling band, strictly nonnegative solu-
tions in which F, S → 0 as z → ±∞ (no individuals
far out in front of or in back of the swarm) and where
the total number of individuals in the swarm is con-
served. A notable lack in the literature of models for
such pulse-like solutions in population migration was
apparent when this work was undertaken.

Under this transformation, the system of equations
(2) becomes a pair of ordinary differential equations.
Conservation and boundary conditions leads to reduc-
tion of dimensionality and simplification to the system
shown below [14]:

−cSz = −R(S, F )S +G(S, F )F,
DFz = −cS + (U − c)F (3)

This system can be studied in the phase plane. Specifi-
cally, biologically relevant traveling band solutions cor-
respond to strictly nonnegative homoclinic trajectories
based at the origin. It was shown in [14] that such
trajectories cannot exist. The argument consisted of
analysis of the eigenvectors at the origin: To obtain
such homoclinic trajectories, the eigenvectors should
have the configuration shown in Figure 2, but for any
reasonable assumptions about R,G,D,U , this config-
uration cannot be obtained.

(0,0)

S(0,0)

F

Figure 2: .

The basic reason for this non-existence result is that
the model inherits problems from the random mo-
tion represented by the diffusion term. The problem,
specifically, is that diffusion leads to a continual loss
of individuals from the back of the swarm. Once an
individual strays far behind the others, there is no

mechanism in place for returning to the group. Un-
fortunately, this defect cannot be cured by biologically
relevant density dependent diffusion or drift, since the
problems occur at low densities. (See detailed argu-
ments in [14].) Negative results in this example mo-
tivated investigation of the effect of non-local interac-
tion terms on swarm shape and stability. These are
described in the next section.

A related problem relevant to locusts is what causes
aggregation to occur in the first place. Locusts have
two forms: in the ’solitarious’ phase, they avoid each
other, whereas in the ’gregarious’ phase they attract
one another and swarm. Recent experimental work
in the group of Simpson [21, 23, 24] has shown that
a transition from solitary to a gregarious form takes
place under crowded conditions. The stimulus from
neighboring locusts has been identified as mechani-
cal stimulation of the back legs. The change between
states occurs over a timescale of several hours and
is reversible. There is also evidence that this aspect
is passed from one generation to the next, i.e. that
gregarious female locusts will produce gregarious off-
spring. This area is ripe for further modeling.

VII. Non-local models

To address some of the modeling issues raised in the
locust swarm models [14], Mogilner and I [13] investi-
gated a model with attraction and repulsion between
organisms, and with non-local interactions. For p(x, t)
population density, the model is

∂p

∂t
=

∂

∂x

(
D
∂p

∂x
− V p

)
where the group velocity, V is given by an expression
involving convolutions

V (p) = cp+AKa ∗ p−RpKr ∗ p
with

Kj ∗ p =
∫
Kj(x − x′)p(x′)dx′, j = a, r

Terms in the above integro-pde include attraction and
repulsion, the latter having higher density-dependence
than the former, as well as ordinary density-dependent
local drift term cp. Ka(x),Kr(x) are kernels that rep-
resent the spatial extent of interactions between one
individual and its neighbors a distance x away. It was
found that the higher density-dependence of the repul-
sion term was essential to control the density of the in-
terior of the swarm, and avoid unrealistically crowded
and compact distributions.

Kernels should be odd functions to model the (anti-
symmetric) effects of neighbors in front or behind an
individual on its motion (either hurrying forward or
lagging behind). The relative magnitudes (A,R) and
the spatial ranges of the attraction and repulsion de-
termine how such interactions affect the swarm.



A. Onset of aggregation

One case considered was that of normalized kernels

Kj(x) = − x

2a2
j

e−x
2/2a2

j aj = a, r.

Here aj governs the spatial extent of the given effect.
A similar odd kernel was used in a model by Kawasaki
[10]. To investigate the onset of aggregation, we de-
termined whether perturbing a uniform steady state
density P , with small perturbations (wavenumber q)

p(x, t) = P + ε expλt exp iqx

lead to growth or decay. (Growth signifies that the
original homogeneous distribution is breaking up into
aggregates). This question can be investigated by sim-
ple linear stability analysis. As in many integro-pde
models, the expressions that determine the sign of the
(real part of the) eigenvalues involves Fourier trans-
forms of the kernels, which, in this case, are

K̂j(q) = iqaj exp(−q2a2
j/2) aj = a, r

It was shown in [13] that swarming will occur when

P
(
Aae(−q2a2/2) −RrPe(−q2r2/2)

)
−D > 0

This basically says that attraction is stronger (in some
sense) than combined effects of repulsion and random
motion. Moreover, the most unstable wavenumber has
the property that

q2 = 2
ln(Aa3)− ln(RPr3)

a2 − r2
.

This result can be interpreted: it means that either
attraction has longer range (r < a) and is stronger
(RP < A), a case that pertains to organisms that
seek each other’s company, but avoid close contact or
both inequalities are reversed, which would mean that
organisms avoid one another unless in close proximity,
and only then attract. (The latter is less relevant to
most biological aggregations.)

B. Swarm shape

A simpler set of interaction kernels (odd step func-
tions with spatial extent a = r and normalized height)
were used to investigate the shape and cohesion of the
swarms in this model. These kernels account for a
finite range of attraction and repulsion between or-
ganisms, but the interaction is simplified as roughly
constant over that range.

The following results were obtained (by analysis
and, for purposes of comparison, by numerical sim-
ulation).

Figure 3: Idealized shape of swarm obtained with non-
local model (dotted lines) and velocity of individuals
(solid line). In simulations, the flat top is actually
pointed at the front and somewhat rounded towards
the rear of the swarm.

• The density of the interior of the swarm depends
on the relative strengths of attraction and repul-
sion: higher attraction leads to more crowded,
smaller diameter swarms. Figure 3 shows an ide-
alized version of such a shape.)

• Repulsion (in particular, the fact that density
dependence of repulsion is higher) leads to a rel-
atively constant density away from the swarm
edges. Repulsion keeps the swarm from collaps-
ing to a tight cluster.

• The non-local nature of the model leads to rel-
atively sharp front and back edges. Individ-
uals too far forward tend to move back into
the swarm, whereas those falling behind tend
to move forward faster to catch up. (See solid
curve in Figure 3.) However, there is some con-
tinual loss of individuals that get left behind un-
less random motion is absent (D = 0). This loss
eventually leads to dissipation of the swarm.

• The lifetime of a swarm of diameter L is expo-
nentially large, with the following parameter de-
pendence:

T =
LR

cA
exp

[
A2r

4RD

(
1− 4c

A

)]
This shows that repulsion and random motion
accelerate breakup (since RD appears in the de-
nominator in the exponential), but also that it is
important to have non-local attraction stronger
than simple local drift to preserve the swarm
over a long time.

• If random motion is density dependent so that
D → 0 as the density of the population de-
creases, there is a locally stable true traveling
band solution. However, this solution is not
globally stable.



VIII. Individual-based models

Recent work [12] explores the Lagrangian-based ap-
proach in which spacing between neighbors in a group
is of primary interest. Positions of individuals relative
to the group centroid, xi(t), i = 1..N are defined. It
is assumed that rearrangement occurs through mutual
attraction and repulsion. Typically, we consider

dx
dt

= V,

where V = {Vi}Ni=1 is a vector of individual velocities.
We neglect inertial motion, and assume that velocities
are proportional to forces in steady state motion

V = Fr − Fa,

where Fa,Fr, are attraction and repulsion. Specific
forms considered for the distance dependence of these
interaction forces in 1D include inverse powers

F a(x) =
A

xm
, F r(x) =

R

xn
, (4)

and exponentials

F a(x) = A sign(x) e−
|x|
a ,

(Similarly for F r(x)). Here A,R are magnitudes of at-
traction, repulsion, and a, r are parameters governing
the decay over distance of the effects.

An attractive feature of these forms of interaction
functions, used throughout the biological literature to
represent attraction and repulsion, e.g. between fish in
a school [3] or between individuals in a herd or other
social aggregation [2] is that they are expressible as
the gradient of some potential function. This means
that there is a Lyapunov function, whose minima cor-
respond to stable stationary states of the system. (For
these forces, this function is easily constructed.) This
fact has been mentioned [2] but has not been exploited
in previous analysis of individual spacing distances.

The potential function corresponding to exponential
interactions is

P (x) = Rr exp(−|x|/r)−Aa exp(−|x|/a).

and the Lyapunov function is formed by superimpos-
ing such potentials:

W (x) =
1
2

N∑
i,j=1

P (xi − xj).

where the sum is taken over individuals.
In the case of exponential interactions, with strong

short-ranged repulsion and long-ranged attraction

(R > A, a > r) two organisms would prefer to stay
a distance s apart given by:

s =
a

((a/r) − 1)
ln(R/A).

However, when the group is larger, due to interactions
with non-nearest neighbors, we showed that the actual
individual distance shrinks. It is found that if repul-
sion is not sufficiently strong, the group will collapse
into a tight cluster. Under the appropriate conditions,
the finite distance between neighbors in a large group
with equidistant neighbors can be estimated: This is
done by finding the minimum of the Lyapunov func-
tion. The result is that the individual distance in a
large group is

δ '
√

12
Rr2 −Aa2

R−A .

This distance is smaller than the distance maintained
between an isolated pair (δ < s). The form of the
expression reveals precise conditions on the attraction
and repulsion to avoid collapse of the swarm to an
infinitely tight cluster, namely, it must be true that

Rr2 > Aa2, R > A.

The reversed inequality pair is also possible theoreti-
cally, but of lesser biological relevance.

Simulations exploring such attraction-repulsion in-
teractions (see Figure 4) have been used to investigate
such interactions in groups moving in 2D.

Figure 4: Cellular automata simulations written by
Athan Spiros: a group of fifty individuals with inverse-
power attraction and repulsion; eq. 4 with A =
14, R = 9.5, a = 2.0, r = 3.0. Groups are still merg-
ing and collaping. Available interactively online at
www.math.ubc.ca/̃ ais/chemosim
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