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Lab 1: Textbook Sections 2.2, 2.6

Question 1.1. Find the general solution for the differential equation

dy

dx
= 1 +

1

y2
(1)

Solution. Rearranging the equation, we get

−1 +
1

1 + 1
y2

dy

dx
= 0

Which shows that equation (1) is separable. Integrating,∫
Mdx =

∫
−1dx = −x

and ∫
Ndx =

∫
1

1 + 1
y2

dy

dx
dy

=

∫
y2

y2 + 1
dy

=

∫
1− 1 + y2

y2 + 1
dy

=

∫
1− 1

y2 + 1
dy

= y − arctan(y)

So the general solution for equation (1) is

y(x) = arctan(y) + x+ C

Question 1.2. Find the general solution for the differential equation

2x2y4 + 3xy3 + (x3y3 − xy3)dy
dx

= 0 (2)
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Solution. Observe that we can make this equation simpler by factoring out xy3. This shows that y(x) = 0
is clearly a solution, and that if we assume that y(x) 6= 0, other solutions to this problem are identically
solutions to

2xy + 3 + (x2 − 1)
dy

dx
= 0 (3)

In this case,
∂

∂y
M = 2x,

∂

∂x
N = 2x

so this equation is exact. Let

F (x, y) =

∫
M(x, y)dx =

∫
2xy + 3dx = x2y + 3x+ g(y)

and now we find g(y):

∂

∂y
F = N

∂

∂y

(
x2y + 3x+ g(y)

)
= x2 − 1

∂

∂y

(
x2y + g(y)

)
= x2 − 1

x2y + g(y) = x2y − y
g(y) = −y

So the non-zero solutions to this equation are given by

C = x2y + 3x− y

which we can actually rearrange to solve for y (but this wasn’t required for marks). With that, the general
solution to equation (2) is

y(x) = 0, y(x) =
C − 3x

x2 − 1

Remark 1.3. In Question 1.2, there was not really a way to know that factoring out xy3 would lead to
an exact equation. I just tried to make the equation simpler by factoring, and in this case was left with
an exact equation. The way to do this in general is to find the integrating factor. It works out the same
way, just takes a bit more effort. You’ll find that the methods with Z(y) and Z(x) do not work, so the
only thing we know to do so far is guess that the integrating factor is µ(x, y) = xayb. Once multiplied by
this µ, the equation is of the form

2xa+2yb+4 + 3xa+1yb+3 +
(
xa+3yb+3 − xa+1yb+3

) dy
dx

= 0

Taking the partial derivatives gives

∂

∂y
µM = 2(b+ 4)xa+2yb+3 + 3(b+ 3)xa+1yb+2,

∂

∂x
µN = (a+ 3)xa+2yb+3 − (a+ 1)xayb+3

and equating them results in b+ 3 = 0 and a+ 1 = 0. Thus,

a = −1 b = −3

Once you multiply equation (2) by µ(x, y) = x−1y−3, you just get equation (3) again, and from there the
question is solved in the same way.
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Lab 2: Textbook Sections 3.1, 3.2, 3.3

Question 2.1. Solve the initial value problem

y′′ + 2y′ + 4y = 0 (4)

with initial conditions y(0) = 1 and y′(0) = 2.

Solution. Note the characteristic polynomial is

r2 + 2r + 4

which has roots r = −1± i
√

3. Thus the general solution is

y(x) = c1e
−t sin(

√
3t) + c2e

−t cos(
√

3t)

Solving for the constants, we get

1 = y(0) = c1e
0 sin(0) + c2e

0 cos(0) = c2

and

2 = y′(0) = −c1e0 sin(0) +
√

3c1e
0 cos(0)−

√
3c2e

0 sin(0)− c2e0 cos(0) =
√

3c1 − c2 =
√

3c1 − 1

Thus the solution to equation (4) is

y(x) =
√

3e−t sin(
√

3t) + e−t cos(
√

3t)

Question 2.2. Solve the initial value problem

y′′ + 4y′ + 5y = 0 (5)

with initial conditions y(π) = e−π and y′(0) =
√
π + 2eπ.

Solution. Note the characteristic polynomial is

r2 + 4r + 5 = 0

which has roots r = −2± i. Thus the general solution is

y(x) = c1e
−2t sin(x) + c2e

−2t cos(x)

Solving for the constants, we get

e−π = y(π) = c1e
−2π sin(π) + c2e

−2π cos(π) = −c2e−2π

so c2 = −eπ, and

√
π + 2eπ = y′(0) = −2c1e

0 sin(0) + c1e
0 cos(0)− c2e0 sin(0)− 2c2e

0 cos(0) = c1 − 2c2 = c1 + 2eπ

Thus the solution to equation (5) is

y(x) =
√
πe−2t sin(x)− eπe−2t cos(x)
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Lab 3: Textbook Sections 3.4, 3.5

Question 3.1. Find the general solution to the differential equation

4y′′ − 4y′ + y = 16t2et/2 (6)

Solution. First solve the homogeneous equation. The characteristic equation is

4r2 − 4r + 1 = (2r − 1)(2r − 1)

so r = 1
2 , and the two solutions of the homogeneous equation are y1 = et/2 and y2 = tet/2. Next we

look to the table for the correct way to choose a particular solution, and find that we ought to choose

yp =
(
C2t

2 + C1t+ C0

)
et/2

however, this will not work since the C0 term is a linear combination of y1 and y2. So, we try
multiplying by t, but that doesn’t work either in this case! We need to multiply by t twice to escape
combinations of y1 and y2, so the particular solution in the end is

yp = t2
(
C2t

2 + C1t+ C0

)
et/2 =

(
C2t

4 + C1t
3 + C0t

2
)
et/2

finding the derivatives:

y′p = et/2
(
4`2t

3 + 3`1t
2 + 2`0t

)
+

1

2
et/2

(
`2t

4 + `1t
3 + `0t

2
)

=
1

2
et/2

(
`2t

4 + (8`2 + `1)t
3 + (6`1 + `0)t

2 + `0t
)

y′′p =
1

2
et/2

(
4`2t

3 + 3(`1 + 8`2)t
2 + 2(`0 + 6`1)t+ `0

)
+

1

4
et/2

(
`2t

4 + (`1 + 8`2)t
3 + (`0 + 6`1)t

2 + `0t
)

=
1

4
et/2

(
C2t

4 + (16C2 + C1) t
3 + (48C2 + 12C1 + C0) t

2 + (24C1 + 5C0) t+ 2C0

)
Putting these into the equation, we get the following relations by combining terms with the same powers
of t:

C2 − 2C2 + C2 = 0 : t4 terms

16C2 + C1 − 16C2 − 2C1 + C1 = 0 : t3 terms

48C2 + 12C1 + C0 − 12C1 − 2C0 + C0 = 16 : t2 terms

24C1 + 5C0 − 2C0 = 0 : t terms

2C0 = 0 : constant terms

Interestingly the first two equations cancel out entirely and don’t give any information. The last
equation tells us that C0 = 0, and then the second last tells us that C1 = 0. The middle equation then
shows that C2 = 1

3 , and so we have found the particular equation:

yp(t) =
1

3
et/2t4

So the general solution is

y(t) = c2e
t/2t+ c1e

t/2 +
1

3
et/2t4
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Remark 3.2. In question 3.1 we saw that the first two guesses yp and typ had terms equal to C0y1 and
C0y2 which is an interesting property. The equation shown here can be solved with general constants as
well! If we are looking at an equation of the form

y′′ − 2ay′ + a2y = bt2eat (7)

then the characteristic equation is (r−a)(r−a), so finding the general solution we get y1 = eat, y2 = teat,
and yp = (C2t

2 + C1t + C0)t
2eat. Solving for these coefficients is not any more difficult than solving for

the coefficients in question 3.1, and we eventually get to the solution

y(t) =
b

12
t4eat + c2te

at + c1e
at

and note that in question 3.1, a = 1
2 and b = 4. The next question asks you to solve a different sort of

differential equation we saw in a general form.

Question 3.3. Given a constant α ∈ R, find the general solution of

t2y′′ + αty′ +
(α− 1)2

4
y = 0, t > 0 (8)

given that one of the solutions is t(1−α)/2.

Solution. We did an example similar to this in the lab, although the constants there were fixed values.
Let’s try the same method. For this, we suppose that

y2(t) = v(t)y1(t) = v(t)t(1−α)/2

and try to find a proper function for v(t). First, we must find the derivatives:

y′2(t) = v′(t)t(1−α)/2 +
1− α

2
v(t)t(−1−α)/2

y′′2(t) = t(1−α)/2v′′(t) +
1− α

2
t(−1−α)/2v′(t) +

1− α
2

t(−1−α)/2v′(t) +
1

4
(−1− α)(1− α)t(−3−α)/2v(t)

= t(1−α)/2v′′(t) + (1− α)t(−1−α)/2v′(t) +
1

4
(−1− α)(1− α)t(−3−α)/2v(t)

Now, plugging all this into equation (8), we get

t2
(
t(1−α)/2v′′(t) + (1− α)t(−1−α)/2v′(t) +

1

4
(−1− α)(1− α)t(−3−α)/2v(t)

)
+αt

(
v′(t)t(1−α)/2 +

1− α
2

v(t)t(−1−α)/2
)

+
(α− 1)2

4

(
v(t)t(1−α)/2

)
= 0

t(5−α)/2v′′(t) + (1− α)t(3−α)/2v′(t) +
1

4
(−1− α)(1− α)t(1−α)/2v(t)

+αv′(t)t(3−α)/2 + α
1− α

2
v(t)t(1−α)/2 +

(α− 1)2

4
v(t)t(1−α)/2 = 0

t(5−α)/2v′′(t) + (1− α− α) t(3−α)/2v′(t) +

(
1

4
(−1− α)(1− α) + α

1− α
2

+
(α− 1)2

4

)
t(1−α)/2v(t) = 0

which thankfully simplifies a whole lot. In fact, expanding all the terms you can see that the entire factor
that is multiplied by t(1−α)/2v(t) cancels out, resulting in

t(5−α)/2v′′(t) + t(3−α)/2v′(t) = 0
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Next we make the substitution w = v′ to transform this equation into a first order problem. We get

t(5−α)/2w′(t) + t(3−α)/2w(t) = 0

which is separable! This can be solved easily by moving the w(t) term to the other side, isolating w′(t),
and integrating. The result will be w(t) = C

t . We can then recover v(t) by integrating,

v(t) =

∫
w(t)dt =

∫
C

t
dt = C ln(t) +K

Since the constants C and K will each give us a viable result for y2, we will choose the y2 that comes
from setting C = 1, K = 0. Thus we have

y2(t) = v(t)y1(t) = t(1−α)/2 ln(t)

and so finally, the general solution to equation (8) is

y(t) = c1t
(1−α)/2 + c2t

(1−α)/2 ln(t)

Lab 4: Textbook Sections 3.6, 3.7

Question 4.1.

a. Find the general solution to the equation

y′′(t) + 4y(t) = csc(2t) (9)

using variation of parameters.

b. You might find it difficult to solve very similar equations using variation of parameters. Why can’t
we solve the next equation fully like in part a?

y′′(t) + 4y(t) = csc(7t) (10)

Solution.

a. First solve the homogeneous equation. The characteristic equation is

r2 + 4 = 0

so roots are ±2i, and the solutions and their derivatives are

y1 = cos(2t) y2 = sin(2t)
y′1 = −2 sin(2t) y′2 = 2 cos(2t)

So the Wronskian is
2 cos2(2t) + 2 sin2(2t) = 2

We then solve for yp using the formula,

yp = −y1
∫
fy2
w
dt+ y2

∫
fy1
w
dt

= − cos(2t)

∫
csc(2t) sin(2t)

2
dt+ sin(2t)

∫
csc(2t) cos(2t)

2
dt

= −1

2
cos(2t)

∫
1dt+

1

2
sin(2t)

∫
cot(2t)dt

= −1

2
t cos(2t) +

1

2
sin(2t) ln |sin(2t)|
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Thus the general solution for equation (9) is

y(t) = c2 sin(2t) + c1 cos(2t)− 1

2
t cos(2t) +

1

4
sin(2t) ln(sin(2t))

b. The homogeneous solutions are the same, as is the Wronskian. So we can skip to the part where
we find the integrals. The particular solution is

yp = −y1
∫
fy2
w
dt+ y2

∫
fy1
w
dt

= − cos(2t)

∫
csc(7t) sin(2t)

2
dt+ sin(2t)

∫
csc(7t) cos(2t)

2
dt

= − cos(2t)

∫
sin(2t)

sin(7t)
dt+ sin(2t)

∫
cos(2t)

sin(7t)
dt

but we are forced to stop here, because there is no way to solve the integrals. Note: I didn’t ask you
this part of the question since you are not going to be asked something like this on an assignment
or test. I just wanted to illustrate how this method looks when it doesn’t completely work.

Question 4.2. Solve the general problem of a free harmonic oscillator where m = 1, k = 1, 0 < γ < 2,
y(0) = 1, and y′(0) = b. In other words, solve the differential equation

y′′(t) + 2ay′(t) + y(t) = 0 (11)

with 0 < a < 1, y(0) = 1, and y′(0) = b. This will show you how to plot the 0 < a < 1 case like in the
diagram from the lab.

Solution. First, find the characteristic equation, which is

r2 + 2ar + 1 = 0

The quadratic equation gives us the two roots,

−2a±
√

(2a)2 − 4

2
= −a±

√
a2 − 1

= a±
√

(−1)(1− a2)

= a± i
√

1− a2

We did these few extra steps since 1− a2 is positive, so this makes sure that we have a real number
plus/minus i times a real number. This allows us to get the general solution to (11),

y(t) = c1e
−at cos(t

√
1− a2) + c2e

−at sin(t
√

1− a2)

Now, we satisfy the initial conditions.

1 = y(0) = c1e
0 cos(0) + c2e

0 sin(0) = c1

b = y′(0) = −ac1e0 cos(0) +
√

1− a2c2e0 cos(0)

= −a+
√

1− a2c2

and so solving for c2 we get c2 = a+b√
1−a2 , and the final solution to equation (11) is

y(t) = e−at cos(t
√

1− a2) +
a+ b√
1− a2

e−at sin(t
√

1− a2)
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Lab 5: Textbook Sections 3.8, 5.1

Question 5.1.

a. Use a Taylor polynomial about x = 0 to find two solutions to

y′′ − 2xy′ + λy = 0 (12)

(Hint: solving equations with series is something covered this week, so I’ll give the steps for you.
Start by plugging y(x) =

∑∞
n=0 anx

n into the equation. Then combine everything into a single sum
with an xn term. Then use induction to solve and prove the resulting recurrence relation for the
coefficients to find an. You may find this notation useful:

m∏
n=0

f(n) = f(0) · f(1) · f(2) · ... · f(m)

for example,
∏m
n=1 n = m! )

b. You will find that if λ is an even natural number, one of your two solutions is a polynomial. What
is the degree of this polynomial in terms of λ?

Solution.

a. We set our solution to be

y(x) =

∞∑
n=0

anx
n

plugging this in to equation (12),

0 =
∞∑
n=0

n(n− 1)anx
n−2 − 2x

∞∑
n=0

nanx
n−1 + λ

∞∑
n=0

anx
n

=
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

−2nanx
n +

∞∑
n=0

λanx
n

=

∞∑
n=0

((n+ 2)(n+ 1)an+2 − 2nan + λan)xn

So we now must solve the recurrence relation

an+2 =
2n− λ

(n+ 2)(n+ 1)
an

So we have two different cases. Let’s first suppose that n is even, with n = 2k. You might need to
analyze the first few elements in this sequence to come up with a good guess, but I’m just going to
state it. I claim that

an = a2k =

∏k−1
m=0(4m− λ)

(2k)!
a0

is the right answer. Let’s prove this with induction. The base case is clearly true (an ’empty
product’ is always 1, i.e.

∏−1
m=0 f(m) = 1), so let’s move to the induction step.

a2(k+1) =
4k − λ

(2k + 2)(2k + 1)
a2k

=
4k − λ

(2k + 2)(2k + 1)

∏k−1
m=0(4m− λ)

(2k)!
a0

=

∏k
m=0(4m− λ)

(2k + 2)!
a0
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And so, by induction, the equivalence relation is solved. By the same means we get to the same
kind of solution if n = 2k + 1. In this case,

an = a2k+1 =

∏k−1
m=0(4m+ 2− λ)

(2k + 1)!
a1

So the general solution to equation (12) in series form is

y(x) = a0

∞∑
k=0

∏k−1
m=0(4m− λ)

(2k)!
x2k + a1

∞∑
k=0

∏k−1
m=0(4m+ 2− λ)

(2k + 1)!
x2k+1

b. If λ is an even number, there are two possibilities. We see that if λ = 4s for some s ∈ N, then the
first summation will have a 0 in every product as soon as k − 1 ≥ s. This is because when m = s
is a term in the product, 4m − λ = 0, causing every term after that point to be zero. To find the
degree, note that k = s at most, and the degree is d = 2k as that is the power x is raised to. So,

d = 2s =
λ

2

On the other hand, if λ = 4s + 2, then the second summation is the one that will terminate. This
still happens right when k− 1 ≥ s, so k = s is the highest degree term. In this function, the degree
of this term will be 2k + 1, so the degree is

d = 2k + 1 = 2s+ 1 =
4s+ 2

2
=
λ

2

Lab 6: Textbook Sections 5.2, 5.3

Question 6.1. Solve the differential equation

(λ− x2)y′′ + 2y = 0 (13)

with a Taylor series about x = 0. What is the radius of convergence?

Solution. First note that since we have to use a Taylor Series at x = 0, it’s implicit that x = 0 is an
ordinary point, so λ can’t be 0. We suppose y(x) =

∑∞
n=0 anx

n and try to find an. Plugging this in,

0 = (λ− x2)
∞∑
n=0

n(n− 1)anx
n−2 + 2

∞∑
n=0

anx
n

0 = λ

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=0

n(n− 1)anx
n + 2

∞∑
n=0

anx
n

0 = λ
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=0

n(n− 1)anx
n + 2

∞∑
n=0

anx
n

0 =
∞∑
n=0

(λ(n+ 2)(n+ 1)an+2 + (2− n(n− 1)) an)xn

and we need all the coefficients to be 0 for this to hold, thus

an+2 =
n2 − n− 2

λ(n+ 2)(n+ 1)
an
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So we have the recurrence relation

an+2 =
1

λ
· n− 2

n+ 2
an

First, suppose n = 2k. Then

a2(k+1) =
1

λ
· 2k − 2

2k + 2
a2k

So

a2 =
1

λ
· −2

2
a0 = − 1

λ
a0

a4 =
1

λ
· 2− 2

2 + 2
a0 = 0

and all of the terms after this point are therefore going to be 0. This means there are only two non-zero
terms in this solution. Next consider what happens if n = 2k + 1.

a3 =
(−1)

(3)λ
a1 = − 1

3 · λ
a1

a5 =
(1)

(5)λ
a3 = − 1

3 · 5 · λ2
a1

a7 =
(3)

(7)λ
a5 = − 1

5 · 7 · λ3
a1

So in this case the relation is solved by

an = a2k+1 =
1

(2k + 1)(2k − 1)λk
a1 =

1

(4k2 − 1)λk
a1

So the Taylor series solution to equation (13) at x = 0 is

y(x) = a1

∞∑
k=0

1

(4k2 − 1)λk
x2k+1 + a0

(
1− 1

λ
x2
)

Now the second solution is a polynomial and thus it is clearly valid for all x ∈ R. Let’s check the radius
of convergence of the first solution.

L = lim
k→∞

∣∣∣∣ x2k+3

(2k + 3)(2k + 1)λk+1

(2k + 1)(2k − 1)λk

x2k+1

∣∣∣∣
= lim

k→∞

∣∣∣∣2k − 1

2k + 3
· x

2

λ

∣∣∣∣
=

∣∣∣∣x2λ
∣∣∣∣ lim
k→∞

∣∣∣∣2k − 1

2k + 3

∣∣∣∣
=

∣∣∣∣x2λ
∣∣∣∣

This converges when x2 < |λ|, so the radius of convergence is in fact
√
|λ|.

Remark 6.2. An interesting thing about the radius of convergence of the first solution of equation (13)
is that it depends on λ. Observe that this type of differential equation has a power series solution which
can be made to converge on an arbitrarily small (or large) window by changing λ! It is intuitive that the
radius of convergence would shrink as λ does, since once λ = 0, the equation is

−x2y′′ + 2y = 0

which no longer has an ordinary point at x = 0.
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Question 6.3. Attempt to solve the differential equation(
x2 + x

)
y′′ + y = 0 (14)

with a Taylor series about x = 1. Your solution can end once you clearly state the recurrence relation,
since it will unfortunately be unsolvable. Give a lower bound for the radius of convergence of the Taylor
series solution.

Solution. We suppose y(x) =
∑∞

n=0 an (x− 1)n and try to find an. Plugging this in, we get

0 =
(
x2 + x

) ∞∑
n=0

n(n− 1)an (x− 1)n−2 +

∞∑
n=0

an (x− 1)n (15)

Now let’s try to deal with the first term. We have to replace all instances of x in the expression by x− 1,
so we start by fixing the highest power and work our way down. We know (x− 1)2 = x2 − 2x+ 1, so we
need to start by adding and subtracting a 2x and a 1 from the expression.

x2 + x = x2 + x− 2x+ 2x+ 1− 1

= (x− 1)2 + 3x− 1

= (x− 1)2 + 3x− 3 + 2

= (x− 1)2 + 3(x− 1) + 2

And at this point, the expression is a polynomial in x− 1, so we can now deal with the first sum:

x2
∞∑
n=0

n(n− 1)an (x− 1)n−2

=
(
(x− 1)2 + 3(x− 1) + 2

) ∞∑
n=0

n(n− 1)an (x− 1)n−2

=

∞∑
n=0

n(n− 1)an (x− 1)n + 3

∞∑
n=0

n(n− 1)an (x− 1)n−1 + 2

∞∑
n=0

n(n− 1)an (x− 1)n−2

=
∞∑
n=0

n(n− 1)an (x− 1)n + 3
∞∑
n=0

(n+ 1)nan+1 (x− 1)n + 2
∞∑
n=0

(n+ 2)(n+ 1)an+2 (x− 1)n

=

∞∑
n=0

(2(n+ 2)(n+ 1)an+2 + 3n(n+ 1)an+1 + n(n− 1)an) (x− 1)n

And finally, we can add back the second summation from equation (15) to get

0 =
∞∑
n=0

(2(n+ 2)(n+ 1)an+2 + 3n(n+ 1)an+1 + (n(n− 1) + 1) an) (x− 1)n

So the recurrence relation is given by

an+2 = − 3n

2(n+ 2)
an+1 −

n2 − n+ 1

2n2 + 6n+ 4
an

which is indeed 2 scary 4 me. As for the radius of convergence, the leading coefficient in equation (14)
is x2 + x = x(x + 1) which means x = 0 and x = −1 are singular points. Since the center of the Taylor
series was x = 1, we can tell that the radius of convergence is at least 1.
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Lab 7: Textbook Sections 6.1, 6.2

Question 7.1. Solve the initial value problem

y′′ + y = et, y(0) = 1, y′(0) = λ (16)

using the method of Laplace transforms.

Solution. Taking the Laplace transform of both sides, we get

L
{
y′′ + y

}
= L

{
et
}

L
{
y′′
}

+ L {y} = L
{
et
}

s2L {y} − sy(0)− y′(0) + L {y} =
1

s− 1

s2L {y} − s− λ+ L {y} =
1

s− 1

Now, Isolating L {y},

(s2 + 1)L {y} =
1 + (s− 1)(s+ λ)

s− 1

L {y} =
s2 + (λ− 1)s+ 1− λ

(s− 1)(s2 + 1)

And now we must use partial fraction decomposition on the r.h.s. to simplify. To start, let’s write out
what we’re trying to find:

s2 + (λ− 1)s+ 1− λ
(s− 1)(s2 + 1)

=
As+B

s2 + 1
+

C

s− 1
(17)

Now, put the fractions on the r.h.s. together. Let’s look at what happens to the numerator of the r.h.s.

(As+B)(s− 1) + C(s2 + 1) = As2 −As+Bs−B + Cs2 + C

= (A+ C)s2 + (B −A)s+ C −B

Finally, comparing this to the l.h.s. of equation (17), we get the following system of equation by comparing
terms with the same power:

A+ C = 1

B −A = λ− 1

C −B = 1− λ

Adding all three equations together, we get 2C = 1. This tells us that C = 1
2 , A = 1

2 , and B = λ− 1
2 . So

with this new expression, we have

L {y} =
s+ 2λ− 1

2(s2 + 1)
+

1

2(s− 1)

=
2λ− 1

2
· 1

s2 + 1
+

1

2
· s

s2 + 1
+

1

2
· 1

s− 1

So, taking the inverse Laplace transform of each side, we get the solution to the initial value problem
in equation (16),

y(x) =
2λ− 1

2
sin(t) +

1

2
cos(t) +

1

2
et

12



Lab 8: Textbook Sections 6.3, 6.4

Question 8.1. Solve the initial value problem

y′′(t) + y(t) = uπ(t)− u2π(t), y(0) = −1, y′(0) = 0 (18)

for y(t) using Laplace transforms.

Solution. As usual, we start by taking the Laplace transform of both sides of the equation, and isolating
for L {y}.

L
{
y′′(t)

}
+ L {y(t)} = L {uπ(t)− u2π(t)}

s2L {y(t)}+ s+ L {y(t)} =
e−πt

s
− e−2πt

s

(s2 + 1)L {y(t)} =
e−πt − e−2πt

s
− s

L {y(t)} = e−πt
1

s(s2 + 1)
− e−2πt 1

s(s2 + 1)
− s

s2 + 1

And now, take the inverse Laplace transform of both sides. Before we can do this, we need to break
up the fractions here to match them with something from the table. To decompose this, let

1

s(s2 + 1)
=
A

s
+
Bs+ C

s2 + 1
=
As2 +A+Bs2 + Cs

s(s2 + 1)

Comparing the left most and right most sides of this equation, it’s clear that A = 1, C = 0, and
B = −1. So we have

L {y(t)} = (e−πt − e−2πt)
(

1

s
− s

s2 + 1

)
− s

s2 + 1

and at this point, we are able to take the inverse Laplace transform using the table to get the solution to
equation (18),

y(t) = uπ(t) (1− cos(t− π))− u2π(t) (1− cos(t− 2π))− cos(t)

= uπ(t) (1 + cos(t))− u2π(t) (1− cos(t))− cos(t)

= cos(t) (uπ(t) + u2π(t)− 1) + uπ(t)− u2π(t)

11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515

-1-1

11

Figure 1: Solution to question 8.1 (blue) vs. its driver function (red)
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Lab 9: Textbook Sections 6.5, 6.6

Question 9.1. Find values a and b such that the solution to the equation

y′′(t) + 2y′(t) + y(t) = aδ(t− 2) y(0) = b y′(0) = −9 (19)

is identically 0 for all t ≥ 2.

Solution. Taking the Laplace transform of both sides, we get

L
{
y′′ + 2y′ + y

}
= L {aδ(t− 2)}

s2L {y} − bs+ 9 + 2sL {y} − 2b+ L {y} = ae−2s

(s2 + 2s+ 1)L {y} = ae−2s + bs− 9 + 2b

L {y} = ae−2s
1

(s+ 1)2
+ b

s

(s+ 1)2
+ (2b− 9)

1

(s+ 1)2

In order to get this into a form that is easy to take the inverse Laplace transform of, first write

s

(s+ 1)2
=
s+ 1− 1

(s+ 1)2
=

1

(s+ 1)2
− 1

s+ 1

Now, we get the solution for equation (19),

y(t) = au(t− 2)(t− 2)e2−t + be−t(1− t) + (2b− 9)te−t

We want this function to be identically 0 after the point 2, so everything should cancel out. For this
to happen, let t ≥ 2 and set

0 = a(t− 2)e2−t + be−t(1− t) + (2b− 9)te−t

=
(
ae2 − b+ 2b− 9

)
te−t +

(
−2ae2 + b

)
e−t

so we get two equations for a and b,

ae2 + b− 9 = 0

−2ae2 + b = 0

which shows that b = 6, and then a = 3
e2

. So the final solution with the desired property is

y(t) = 3u(t− 2)(t− 2)e−t + 6e−t(1− t) + 3te−t

11 22 33 44 55 66

11

22

00

Figure 2: Solutions to problem 9.1 with b = 6 and a = 0 (blue) vs. a = 3
e2

(red)

14



Question 9.2. Using Laplace transforms, find constants a and b such that the solutions y(t), ya,b(t) to
the initial value problems

y′′ + y = 0, y(0) = 1, y′(0) = 1

y′′a,b + ya,b = a (δ(t− r)− δ(t− r − b)) , ya,b(0) = 1, y′a,b(0) = 1 (20)

are identical for all t ∈ R, except in the interval t ∈ [r, r+ b] where r is the smallest positive number such
that y(r) = 0. In that interval, fa,b(t) is identically 0.

Solution. Taking the Laplace transform of both sides, we get

L
{
y′′a,b + ya,b

}
= L {a (δ(t− r)− δ(t− r − b))}

s2L {ya,b} − 1− s+ L {ya,b} = a
(
e−rs − e−(r+b)s

)
L {ya,b} = a · e−rs 1

s2 + 1
− ae−(r+b)s 1

s2 + 1
+

1

s2 + 1
+

s

s2 + 1

Now, taking the inverse Laplace transform of the r.h.s. is not hard, and we get that the general solution
for equation (20) is

ya,b(t) = sin(t) + cos(t) + a sin(t− r)ur(t) + a sin(t− r − b)ur+b(t)

We have two interesting cases: t ∈ [r, r + b), or t > r + b. Respectively, these two situations give the
following three equations:

0 = sin(t) + cos(t) + a sin(t− r)
sin(t) + cos(t) = sin(t) + cos(t) + a sin(t− r) + a sin(t− r − b)

The second equation shows that 0 = sin(t− r) + sin(t− r− b), which means that b = π+ 2nπ, n ≥ 0.
The first equation shows that

0 =
√

2

(√
2

2
sin(t) +

√
2

2
cos(t)

)
+ a sin(t− r)

0 =
√

2 sin(t+
π

4
) + a sin(t− r)

Observe that r is just the first positive solution to sin(r) + cos(r) = 0, so r = 3π
4 . Thus, a =

√
2.

11 22 33 44 55 66 77 88 99 1010

-1-1

11

Figure 3: Solutions to equation (20) with b = π and a = 0 (blue) vs. a =
√

2 (red)
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Lab 10: Textbook Sections 10.1, 10.2

Question 10.1.

a. Find the Fourier series of the function

fm(x) = m

(
u

(
x+

1

2m

)
− u

(
x− 1

2m

))
(21)

in the interval (−π, π), for an integer m ≥ 1.

b. Find the limit of this Fourier Series as m → ∞ (Note: the ’limit of this Fourier series’ is just the
Fourier series with coefficients ãn = limm→∞ an and b̃n = limm→∞ bn).

Solution.

a. First, note that f is an even function. Since we’re integrating on a symmetric interval about 0 and
sin is an odd function, all the an coefficients are going to be 0. Let’s try to calculate the coefficients
bn. Integrating,

bn =
1

π

∫ π

−π
fm(x) cos

(nπx
π

)
dx

=
m

π

∫ 1
2m

− 1
2m

cos (nx) dx

=
m

π

(
sin(n

(
1
2m

)
)

n
−

sin(n
(
− 1

2m

)
)

n

)
=

2m

πn
sin
( n

2m

)
And finally, the leading coefficient a0 is given by

a0 =
1

π

∫ π

−π
fm(x)dx

=
m

π

∫ 1
2m

− 1
2m

dx

=
m

π

(
1

2m
+

1

2m

)
=

1

π

Thus, the Fourier series of equation (21) is

fm(x) ≈ 1

2π
+
∞∑
n=0

(
2m

πn
sin
( n

2m

)
cos(nx)

)

b. Since an = 0 for all n, ãn = 0 as well. For b̃n, let u = 1
2m . Then

b̃n = lim
m→∞

bn = lim
u→∞

1

πn
· sin(n · u)

u
=

1

πn
· n =

1

π

So the limit Fourier series is the same one from Example 3 in the lab with c = 0,

lim
m→∞

fm(x) ≈ 1

2π
+

1

π

∞∑
n=0

cos(nx)
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Lab 11: Textbook Sections 10.3, 10.4

Question 11.1. Find the Fourier sine and cosine series of the function

f(x) = ex (22)

in the interval (−π, π).

Solution. The even extension is

an =
2

π

∫ π

0
ex cos(nx)dx

=
2

π

(
ex(n sin(nx) + cos(nx))

n2 + 1

) ∣∣∣π
0

=
2

π

(
eπ(n sin(nπ) + cos(nπ))

n2 + 1
− e0(n sin(0) + cos(0))

n2 + 1

)
=

2

π

eπ(−1)n − 1

n2 + 1

In particular, note that a0 = 2
π (eπ − 1). So we have the even representation of equation (22) given by

f(x) ≈ eπ − 1

π
+

2

π

∞∑
n=1

(−1)neπ − 1

n2 + 1
cos(nx)

The odd extension is

an =
2

π

∫ π

0
ex sin(nx)dx

=
2

π

(
ex(sin(nx)− n cos(nx))

n2 + 1

) ∣∣∣π
0

=
2

π

(
eπ(sin(nπ)− n cos(nπ))

n2 + 1
− e0(sin(0)− n cos(0))

n2 + 1

)
=

2

π

−neπ(−1)n + n

n2 + 1

So we have the odd representation of equation (22) given by

f(x) ≈ 2

π

∞∑
n=1

n− n(−1)neπ

n2 + 1
sin(nx)

-6-6 -4-4 -2-2 22 44 66

-5-5

55

00

Figure 4: The exponential function (black) with Fourier cosine (blue) and sine (red) series.
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Question 11.2. Consider the function
f(x) = x · cos(x) (23)

a. Is this function even, odd, or neither? Make sure to justify.

b. If f(x) is even, find its Fourier sine series. If it is odd, find its Fourier cosine series. If it is neither,
find its Fourier series. Take the period in each case to be L = π.

Solution.

a. Since x is an odd function, and cos(x) is even, their product must be odd. Let’s double check this
by plugging in −x:

f(−x) = (−x) · cos(−x) = −(x · cos(x)) = −f(x)

which verifies that f(x) is odd.

b. Since f(x) is odd, we are going to find the Fourier cosine series. First, let’s show another trig
identity like the one in the lab. Using Euler’s identity,

cos(x) cos(nx) =
e−ix + eix

2
· e
−inx + einx

2

=
1

4

(
e−inx−ix + eix−inx + einx−ix + einx+ix

)
=

1

2

(
1

2

(
e−i(n+1)x + ei(n+1)x)

)
+

1

2

(
e−i(n−1)x + ei(n−1)x

))
=

1

2
(cos(x(n+ 1)) + cos(x(n− 1)))

Using this identity, the coefficients are found by integrating. Once again, there are going to be two
different cases depending on if n = 1 or not. Let’s assume first that n 6= 1.

an =
2

π

∫ π

0
x cos(x) cos(nx)dx

=
1

π

∫ π

0
x cos(x(n− 1)) + x cos(x(n+ 1))dx

=
1

π

[
−2x sin(x) cos(nx)

n2 − 1
+

2nx cos(x) sin(nx)

n2 − 1
+

cos((n− 1)x)

(n− 1)2
+

cos((n+ 1)x)

(n+ 1)2

]π
0

=
1

π

(
(−1)n

(n− 1)2
+

(−1)n+2

(n+ 1)2
− (−1)n−1

(n− 1)2
− (−1)n+1

(n+ 1)2

)
= − 2

π

((−1)n + 1)
(
n2 + 1

)
(n2 − 1)2

Finally, assume that n = 1 and find a1.

a1 =
1

π

∫ π

0
x+ x cos(2x)dx

=
1

π

[
1

2
x2 +

1

4
(2x sin(2x) + cos(2x))

]π
0

=
π

2

So we have all we need to write the Fourier cosine series of equation (23). Remember that a1 should
be multiplied by cos(x) even though it’s not included in the summation.

− 1

π
+
π

2
cos(x)− 2

π

∞∑
n=2

((−1)n + 1)
(
n2 + 1

)
(n2 − 1)2

cos(nx)
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Lab 12: Textbook Sections 10.5, 10.6

Question 12.1. Solve the heat equation

ut = βuxx

u(x, 0) = m sin(x)− sin(mx)
(24)

for an integer m > 1, under the boundary conditions u(0, t) = u(π, t) = 1.

Solution. The boundary condition being 1 just means that we are going to use the function f minus the
steady state, so the coefficients will be with respect to

g(x) = m sin(x)− sin(mx)− 1

and we’ll add the steady state back on to the result. g(x) is the sum of two functions which will need
slightly different approaches to solve, so first let’s solve for the coefficients with g1(x) = −1. They are

Tn(0) = − 2

π

∫ π

0
sin(nx)dx

= − 2

nπ
(cos(nx))π0

=
2

nπ
((−1)n − 1)

Next, solve for the coefficients with g2(x) = m sin(x)− sin(mx). This one is much simpler, since there
are only 2 non-zero terms. The solution in this case would be

me−βt sin(x)− e−m2βt sin(mx)

Now by linearity, the full solution is going to be the sum of these two. Thus, the complete solution to
equation (24) is

u(x, t) = 1 +me−βt sin(x)− e−m2βt sin(mx) +
2

π

∞∑
n=1

1

n
((−1)n − 1) e−n

2βt sin(nx)

0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55 5.55.5 66

22

44

66

00

m = 6m = 6

N = 100N = 100

t = 0t = 0

Figure 5: The solution to (24) (red) up to 100 terms vs. the initial condition (green).

19



Question 12.2. Find conditions on the positive functions f(t), g(t), and h(t) under which the P.D.E.

utt + f(t)uxx + g(t)ux − h(t)u = 0 (25)

can be separated into two O.D.E.s. Assuming those conditions hold, separated it.

Solution. Start by assuming it can be separated, and plugging in X(x) · T (t) = u(x, t). We get

0 = XT ′′ + f(t)X ′′T + g(t)X ′T − h(t)XT

Now, simplifying,

0 = XT ′′ + f(t)X ′′T + g(t)X ′T − h(t)XT

−XT ′′ = T
(
f(t)X ′′ + g(t)X ′ − h(t)X

)
T ′′

T
= h(t)− f(t)

X ′

X
− g(t)

X ′′

X

h(t)− T ′′

T
= f(t)

X ′

X
+ g(t)

X ′′

X

From this, we see that for the equation to be separable, it is necessary that f(t)
g(t) =: α be a constant

function, i.e. g is a scalar multiple of f . Under this condition, we can finish separating this:

h(t)− T ′′

T
= f(t)

X ′

X
+ g(t)

X ′′

X
h(t)

g(t)
− T ′′

g(t)T
=
f(t)

g(t)

X ′

X
+
X ′′

X

h(t)T − T ′′

g(t)T
=
αX ′ +X ′′

X

And so, in order for this equation to hold we must have that each side of this equation is equal to the
same constant λ. This means we can write this P.D.E. as two O.D.E.s, in particular

αX ′ +X ′′

X
= λ

h(t)T − T ′′

g(t)T
= λ

which, after some rearranging, is just

X ′′ + αX ′ − λX = 0

T ′′ + (λg(t)− h(t))T = 0

Best of luck on finals and have a good summer!
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