
Math 442 (Graphs & Networks) Notes

January → April 2025

Contents

Lecture 1 (Feb. 25) . 2

Eulerian circuits . 3

Algorithms, and Eulerian trails . 4

Lecture 2 (Feb. 27) . 5

Decomposition into trails . 6

Lecture 3 (Mar. 4, Review class) . 6

Lecture 4 (Mar. 11) . 10

Turan’s Theorem and Extremal Graph Theory . 10

Lecture 5 (Mar. 13) . 14

Lecture 6 (Mar. 18) . 17

Cages . 19

Ramsey’s Theorem . 20

Lecture 7 (Mar. 20) . 20

The Happy Ending Problem . 22

Lecture 8 (Mar. 25) . 24

Midterm review: Degree sequences+Eulerian trails 24

Midterm review: Extremal graphs . 24

Lecture 9 (April 1st) . 28

Max-Flow Min-Cut . 28

Lecture 10 (April 3rd) . 32

Lecture 11 (April 8th) . 36

1

Lecture 1 (Feb. 25)

The content for today comes from Chapter 3, Circuits and Cycles.

We begin with the Königsberg bridge problem (now Kaliningrad), the oldest problem in graph

theory.

Problem 1.1. Can you walk across all 7 bridges without re-crossing any? Try it. You can start

anywhere.

It turns out this is impossible! Let’s convert this problem to the language of graph theory.

First, some definitions. In this chapter we are going to be dealing with:

• multigraphs: graphs with multiple edges allowed

• pseudographs: multigraphs with loops allowed

We have some common terms on multi/pseudographs.

• Walk: A list of alternating vertices/edges A1e1A2e2 . . . An−1en−1An.

– Ends on vertices

– ek connects Ak, Ak+1

– Ak 6= Ak+1 unless ek is a loop

– Length of a walk is counted by the edges.

• Trail: a walk with no edge repeated.

• Path: a walk with no vertex repeated. Question: is this also a trial?

A closed trail is a ‘circuit’. A closed path is a ‘cycle’. Note that pseudographs can have cycles of

lengths 1 or 2... these are called “loops” and “loons” respectively.

2

Eulerian circuits

An Eulerian circuit (resp. trail) in a pseudograph G is a circuit (resp trail) that contains every

edge of G.

Example 1.2.

Theorem 1.3 (Euler, 1736). If a pseudograph G has an Eulerian circuit, then G is connected and

the degree of every vertex is even.

Proof. If the trail exists, we must pass through a given vertex A some number of times h, leaving

no edge unpassed. The degree of A is then 2h.

The converse also true, proven over 100 years later.

Theorem 1.4 (Hierholzer). If a pseudograph G is connected and the degree of every vertex is even,

then G has an Eulerian circuit.

To prove this, we need a Lemma.

Lemma 1.5. If every vertex in a pseudograph G has even degree, then any vertex with positive

degree in G lies on a circuit in G.

Proof. Let A be a vertex in G. Walk off of A through the graph. Every vertex we come to has

even degree, so we can always leave by an edge we haven’t used – each pass ‘uses up’ two edges

incident to A.

Now, we prove Theorem 1.4.

Proof. Let G be a connected pseudograph, degree of every vertex is even. Let C be a longest

circuit in G. Assume for contradiction that G does not contain every edge of G.

Define a graph H, v(H) = v(G), e(H) = e(G)\e(C). The degrees of vertices in H are even.

Claim: we can find a vertex A with non-0 degree in H. Assume we couldn’t, and let A be any

vertex in the circuit. There is at least some vertex B in H with positive degree. But this vertex is

connected to A by a path in G, from connectivity. Since A is the cycle and B is not, somewhere

along the path there is an edge connecting a vertex in C to a vertex outside of C.

By Lemma 1.5, A is part of some circuit C1 in H. So we extend the circuit C by adding C1.

3

Algorithms, and Eulerian trails

The previous proof can easily be converted into an algorithm for finding an Eulerian circuit.

Hierholzer’s steps:

1. Choose any starting vertex A.

2. Follow a trail until returning to A. Call this circuit C. (Why do we always get back to A?)

3. If there is a vertex A′ on C with edges outside of C, define the graph H: v(H) = v(G),

e(H) = e(G)\e(C) and repeat (2) using this starting point and graph.

4. Append the new circuit to C, and repeat stage (3-4).

We can prove that this really terminates with an Eulerian circuit by following the logic of the

proof. We now took a look at an example.

(1.) Choose any starting point (2.) Follow a trail randomly until back at A

(3.) Choose a vert. A′ with edges not in circuit
(4.) Find a new circuit out of remaining edges,

append, and repeat 3-4 until all edges used.

Figure 1: Heirholzer’s example

4

Lecture 2 (Feb. 27)

Theorem 2.1. A pseudograph G has an Eulerian trail iff it is connected and has precisely 2 vertices

of odd degree.

Proof. =⇒ G has an Eulerian trail, starting at A and ending at B. Adding an edge here creates

an Eulerian circuit, so all vertices have even degree. So A and B must have had odd degree, and

they are the only ones.

⇐= Let A and B have odd degree. Adding an edge here, everything has even degree, so

there’s a circuit. Removing that edge leaves a trail.

(Exercise) We can now solve the Königsberg bridge problem. To do so, write it in graph theory

language: Does the following graph have an Eulerian trial?

Definition 2.2. A bridge in a (pseudo)graph is an edge whose deletion disconnects the graph (i.e.,

increases the number of connected components).

Another algorithm for finding Eulerian circuits and trails is called Fleury’s algorithm. You

can think of this as the ‘don’t burn bridges algorithm’. We run this algorithm on a pseudograph

which is connected and has precisely 0 or 2 vertices of odd degree.

Fleury’s Steps:

1. Choose a starting vertex A with odd degree (if one exists, else choose any).

2. Find an unused edge that is not a bridge, if there is one. Otherwise choose a bridge.

3. Move across to the other vertex, remove the edge (and add it to the trail), and repeat (2-3)

until stuck.

5

Exercise: Where does this process terminate and why? Why does this use every edge? The

first answer is the same as in the previous algorithm: its not possible to get stuck anywhere else

because of the even degrees. For the second answer, if it doesn’t use every edge, then we can argue

at some point we must have used a bridge when there was another non-bridge edge available.

Question: what happens if you start in the wrong spot (an even vertex, when there are odd

ones available)? What if there are more than 2 odd vertices?

Decomposition into trails

Theorem 2.3 (Listing). If G is a connected pseudograph with precisely 2h vertices of odd degree,

h 6= 0, G is decomposable into h trails and not fewer.

Proof. (Exercise) Add h edges to make all vertices even degree. Note that each vertex only gets 1

additional added edge. Find the Eulerian circuit, then delete the edges. The circuit was chopped

in h places, leaving h (non-empty!) trails. Each odd vertex must be the endpoint of a trail, so no

fewer than h.

Problem 2.4. (Exercise, stated but not solved in class) If a 3-regular graph is decomposed into

trails, the average length is ≤ 3.

Problem 2.5. (Exercise, discussed but not solved class) Write down the modified Hierholzer’s

algorithm so that it finds Eulerian trails, when there are exactly 2 vertices of odd degree.

Lecture 3 (Mar. 4, Review class)

Today is a class of review of the things we have learned so far. About the quiz: There will not

be difficult logic or proofs. Graphs are are all simple, no pseudo/multi-graphs. In short, the most

important things to study for the quiz are

• the basics, definitions, algorithms

• properties of common graphs:

– Complete graphs

– Bipartite graphs

– Cycles

– Trees

– Paths

– Regular graphs, etc!

6

Degree sequences

Theorem 3.1 (The Erdős–Gallai Theorem). A sequence of non-negative integers d1, d2, . . . , dn

arranged in non-increasing order (d1 ≥ d2 ≥ · · · ≥ dn) is the degree sequence of a simple, undirected

graph if and only if:

1. The sum of the degrees is even:
n∑

i=1

di is even

2. The following inequality holds for all k = 1, 2, . . . , n:

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(di, k).

Havel-Hakimi steps: Another way to see if a sequence d1, d2, . . . , dn is graphic, is by running

the following algorithm.

1. sort the degrees to be decreasing.

2. delete d1, and subtract 1 from the next d1 elements.

3. repeat as necessary

Example 3.2. Is (6, 5, 5, 4, 3, 2, 2, 1) graphic? Is (6, 5, 5, 4, 2, 2, 1, 1) ? Use the algorithm

to figure this out, and reconstruct the graph if possible.

Prüfer codes

Check the other notes for the algorithm. In class, we went through a couple examples. Draw the

tree whose Prüfer code is (1, 1, 1, 1, 6, 5).

Figure 2: It should be this

Find the Prüfer code for the following graph.

7

Figure 3: (It should be 6643143)

MSTs

In a graph with weighted edges, we are interested in finding a tree connecting all vertices of the

lowest possible weight. We have two algorithms for doing this (the write-up of these algorithms is

from the existing notes on the topic).

Kruskal’s Algorithm

1. Sort all the edges of the graph in non-decreasing order by their weight.

2. Initialize an empty set (or forest) for your MST.

3. Iterate over the sorted edges:

(a) Let an edge be (u, v) with weight w.

(b) Check if u and v belong to the same connected component (i.e., whether including this

edge forms a cycle).

(c) If they are not in the same component, include this edge in the MST.

4. Continue until you have n− 1 edges in your MST (where n is the number of vertices in the

graph).

Prim’s Algorithm

1. Select any starting vertex v.

2. While there are vertices not yet in the MST:

(a) From the set of edges that connect a vertex in the MST to a vertex outside the MST,

choose the edge with the smallest weight.

(b) Add this edge and the new vertex to the MST.

8

It would be helpful to try a couple examples finding the MST with both algorithms. We ran both

on the following graph.

Colouring

Theorem 3.3 (Brooks’). χ(G) ≤ ∆(G) for a connected, simple graph G, unless G is a complete

graph or an odd cycle. In that case, χ(G) = ∆(G) + 1.

Theorem 3.4 (Vizing). Let G be a graph. The edge colouring number χE(G) is either ∆(G) or

∆(G) + 1.

Example 3.5. Every 2-colouring of K6 has a monochromatic triangle.

(1.) Any arbitrary vertex has 3 edges in

one of the colours (say, red)

(2.) Then in order to avoid a red triangle,

we end up creating a blue one.

Figure 4: Monochromatic triangle proof

Eulerian Trails and Circuits

We quickly went over Hierholzer’s algorithm and Fleury’s algorithm again. These algorithms are

written in the previous sections so I won’t restate them here.

9

3 9

9363253

Definition 3.6. A graph is called “Eulerian” if it has an Euler trail or circuit.

Definition 3.7. A 2-factor is a spanning subgraph of degree 2 (one or more cycles).

Theorem 3.8. If a pseudograph is 4-regular, then G has a decomposition into two 2-factors.

Proof. Note that the number of edges is even, |e(G)| = 4|v(E)|
2

= 2|v(E)|. The edges an Eulerian

circuit, colour it alternatingly red-blue. Because the colours alternate, each vertex has exactly

2 blue and two red edges. So the subgraph consisting of the edges in one of the colours is a

two-factor.

Lecture 4 (Mar. 11)

• “size” of a graph refers to number of edges, “order” refers to number of vertices.

• If V ⊆ v(G), “subgraph induced by V ” is the subgraph found by deleting all vertices in G

outside of V .

• For a vertex x in a graph, N(x) is the “neighbourhood” of x – the collection of vertices

adjacent to x.

Turan’s Theorem and Extremal Graph Theory

Problem 4.1. Find a largest graph G with n vertices and chromatic number two.

Solution. Since G has chromatic number two, the vertices are coloured by two colors, red and blue.

If there is a red vertex that is not adjacent to a blue vertex, we can add this edge and increase the

number of edges. Thus we know every blue vertex is adjacent to every red vertex, and we have a

Km1,m2 . Suppose there are m1 blue and m2 red vertices, with m1 +m2 = n. We show that m1 and

m2 are as close to equal as possible, |m1 −m2| ≤ 1.

10

Write the difference D = m1 −m2 for a D ≥ 0, we want to show D = 0 or 1 for the edges to

be maximized. The number of edges is m1m2, and n = m1 +m2 = D + 2m2, so

edges = m2(n−m2) = m2(m2 +D) =
1

2
(n−D)

(
1

2
(n−D) +D

)
=

1

4
(n2 −D2).

We can interpret the first equation, edges = m2(n−m2), as a continuous equation edges(x) =

x(n− x) for n fixed. This is a downward parabola with roots 0 and n, so it’s easy to see the max

is n/2.

Problem 4.2. Find the largest graph G with n vertices and chromatic number k.

Solution. We know every vertex is adjacent to every vertex of each other colour again, so we have

a k-partite graph Km1,m2, ... ,mk
. It is complete, since if it wasn’t, we could just add some more

edges. The number of edges in this kind of graph is

edges =
k∑

i<j

mimj =
1

2

(
n2 −

k∑
i=1

m2
i

)
.

The second equation for the number of edges comes from a “complimentary counting”: The total

number of pairs of vertices (ordered, and repetition allowed) is n2. The total number of pairs of

vertices (ordered, and repetition allowed) from within the ith partition class is m2
i .

Now, suppose there were two partition classes with mi ≥ mj + 2. Consider a new graph made

by transferring one element from the ith to the jth partition class. The new partition classes have

sizes m′1,m
′
2, . . . ,m

′
k, which are all the same values except m′i = (mi − 1) and m′j = (mj + 1) The

difference in the number of edges is

edges− edges’ =
1

2

(
n2 −

k∑
`=1

m2
`

)
− 1

2

(
n2 −

k∑
`=1

(m′`)
2

)
,

=
1

2

(
(mi − 1)2 + (mj + 1)2 −m2

i −m2
j

)
,

= 1 +mj −mi ,

≤ 1 +mi − 2−mi ,

= −1.

(4.1)

edges’ is larger, so mi ≥ mj + 2 is not allowed in the max graph. So |mi −mj| ≤ 1 for all i, j.

To summarize, the result of this is a theorem:

Theorem 4.3. The largest graph on n vertices with chromatic number k is Km1,m2, ... ,mk
, with

m = m1 +m2 + ...+mk and |mi −mj| ≤ 1.

11

Now, a stronger version of this theorem. Certainly no graph with chromatic number k contains

a subgraph isomorphic to Kk+1, but, for instance, a cycle of length five contains no K3 and still

has chromatic number three.

Theorem 4.4 (Turan). The largest graph with n vertices that contains no subgraph isomorphic to

Kk+1 is a complete k-partite graph Km1,m2, ... ,mk
, with m = m1 +m2 + ...+mk and |mi −mj| ≤ 1.

As a lemma, we first prove this in the case that k = 2.

Lemma 4.5 (Mantel’s theorem). The largest graph with n vertices that contains no triangle is the

complete bipartite graph Km1,m2, with n = m1 +m2, and |m1 −m2| ≤ 1.

Proof. Let G be a graph with no ∆. Let V be the vertex set of G. We choose a vertex of largest

degree x ∈ v(G). Consider

N(x) := {vertices adjacent to x} .

No vertices in N(x) are adjacent to each other, otherwise ∆ exists.

We make a new graph on the same vertices as G, but with different edges. Let W = N(x)

in G, and V = v(G)−N(x). Our new graph H is the complete bipartite graph K|V |,|W | on these

vertices.

Figure 5: The graphs G vs. G′ (= H).

If z is any vertex in V , then

degH(z) = degH(x) = degG(x) ≥ degG(z)

since x was maximal. If z is a vertex in W , then

degH = n− |W | ≥ degG(z)

since no two vertices in W were adjacent in G. Since degG(z) ≤ degH(z) for all z ∈ v(G), the

number of edges |e(H)| ≥ |e(G)|. H is a complete bipartite graph, which we can optimize like in

the previous proofs.

12

We can now prove Turan’s theorem.

Proof. We claim that if G is a graph on n vertices that contains no Kk+1 then there is a k-partite

graph H with the same vertex set as G such that

degG(z) ≤ degH(z)

for every vertex z of G.

This claim is proven by induction on k. The base case 2 is the lemma. Suppose this holds for

values ≤ k, and let G be an n vertex graph not containing Kk+1.

Let x be the vertex of max degree in G, and let G0 be the subgraph induced by N(x). There

may be edges here this time, but there can be no Kk since x would be adjacent to all of it, making

a Kk+1. Thus, there is a (k − 1)-partite graph H0 such that

degG0
(z) ≤ degH0

(z)

for all vertices z ∈ N(x).

Disconnect all vertices in V := v(G) − N(x), and connect them to all vertices in W = v(H0)

to form H.

For vertices in V , we have degG(z) ≤ degG(x) by maximality of x. For vertices in W , we have

degG(z) ≤ degG0
(z) + n− |W |,

since there are only n− |W | elements outside W . Also, the induction hypothesis says

degG0
(z) + n− |W | ≤ degH0

(z) + n− |W |,

13

and finally,

degH0
(z) + n− |W | = degH(z)

since z is connected to everything outside. Therefore, degG(z) ≤ degH(z) for all vertices in G as

claimed.

The claim now implies that any graph G with no Kk+1 subgraph can be replaced with a

complete k-partite graph with more edges. Optimizing the k-partite graph yields the theorem.

The optimized k-partite graph is called the Turan Graph.

Lecture 5 (Mar. 13)

Summarizing the content from last time, we showed:

• The maximal Km1,m2 has |m1 −m2| ≤ 1.

• The maximal Km1,...,mk
has |mi −mj| ≤ 1 for all i, j.

• Km1,m2 has the max edges for ∆-free.

• Km1,...,mk
has max edges for Kk+1-free.

• For a graph G, if you can find a graph H on v(G) so that degH(vi) ≥ degG(vi) for all vertices,

H has more edges than G.

Today we look at some further extremal problems.

Lemma 5.1 (Cauchy-Schwartz inequality). For two sets of numbers {a1, . . . ak}, {b1, . . . bk},(
k∑

i=1

aibi

)2

≤

(
k∑

i=1

a2i

)(
k∑

i=1

b2i

)
.

An implication is: when summing a bunch of numbers squared, the result is always larger than

their sum times the average value. One can understand this in terms of dot products: considering

U = (a1, . . . ak), V = (b1, . . . bk) as vectors, the inequality is just U · V ≤ |U ||V |.

Theorem 5.2 (Kővári-Sós-Turán, special case). If Gn contains no K2,X , then it has at most√
Xn3/2 edges.

Proof. The proof works by counting “cherries” in two different ways, by their stems, and by the

pairs of the berries themselves. A cherry is just a path of length 2, it feels right to call these paths

cherries in the context of the proof.

14

(1.) A cherry (length 2 path) (2.) A cherry in the verts. adjacent to v1.

Figure 6: Cherries on a vertex v1.

The number of cherries for a given vertex vi in Gn is
(
di
2

)
≥ 1

4
d2i (we are using that

(
di
2

)
≥ 1

4
d2i

only to simplify things a little). So the total number of cherries is

#cherries =
n∑

i=1

(
di
2

)
≥ 1

4

n∑
i=1

d2i .

So, using Cauchy-Schwartz, we have

#cherries ≥ 1

4

n∑
i=1

d2i ≥
1

4
· 1

n

(
n∑

i=1

di

)2

=
1

4
· 1

n
(2|e(G)|)2 =

|e(G)|2

n
.

On the other hand, each pair of vertices have at most X − 1 stems joining them, otherwise they

would form K2,X with those stems.

Therefore,

#cherries ≤ (X − 1)

(
n

2

)
≤ Xn2.

Combining these bounds gives us |e(G)|2
n
≤ #cherries ≤ Xn2, and simplifying gives us exactly

|e(G)| ≤
√
Xn3/2.

Theorem 5.3 (Mantel’s theorem alternative statement). If Gn contains no triangle then it has at

most n2

4
edges.

Proof. Let x and y be vertices in G which are joined by an edge. We see that deg(x)+deg(y) ≤ n.

This is because every vertex in the graph G is adjacent to at most one of u, v, so there are at most

15

n − 2 edges connecting x and y to outside vertices, and the edge between them which adds one

degree to each. Note now that∑
x∈v(G)

d2(x) =
∑

(x,y)∈e(G)

(deg(x) + deg(y)) ≤ |e(G)|n.

We can see the first equality here by considering how many times deg(x) for a particular vertex

appears on the right hand side. For every edge x is in, we add deg(x) to the sum. So deg(x)

appears in the sum deg(x) times, so its contribution is deg2(x), like in the left hand side.

On the other hand, since
∑

x∈v(G) d(x) = 2|e(G)|, the Cauchy-Schwartz inequality implies that

∑
x∈v(G)

deg2(x) ≥ 1

n

 ∑
x∈v(G)

deg(x)

2

≥ 4|e(G)|2

n
.

So,
4|e(G)|2

n
≤ |e(G)|n,

and the result follows.

Problem 5.4. Find a largest graph with 9 vertices and diameter 6.

Solution. Start with a path of length 6 with end points u and v, which uses up 7 of the vertices. No

other edges can be added between the vertices on the path. The two additional vertices can each

be attached to at most three element of the path each, otherwise, there would be a shorter path

from u to v. They can also be attached to each other, so there are a max possible 6+3+3+1=13

edges. The following figure shows we can realize that.

Problem 5.5. Find a largest graph G satisfying

1. |v(G)| = 8, diameter four.

2. |v(G)| = 7, no cycle of length greater than three.

3. |v(G)| = 7, girth four.

4. |v(G)| = 9, exactly one triangle (3-cycle).

5. |v(G)| = 7, exactly one square (4-cycle).

6. |v(G)| = 8, girth 6.

16

Lecture 6 (Mar. 18)

Problem 6.1. Reviewing the two remaining questions from last class, find a largest graph G

satisfying

1. |v(G)| = 7, no cycle of length greater than three.

2. |v(G)| = 9, exactly one triangle (3-cycle).

Solution.

1. The max number of edges is 9! We can argue this in several steps. (This case-by-case is

slightly more involved than the one we actually did in class.)

• What if there are no cycles? Then its a tree, and the best possible is 6 edges.

• Just one cycle? Then removing one edge from that cycle would leave you with a tree,

so there’s at most 7 edges.

• What if there are two triangles that don’t share a vertex? You can connect the remaining

vertex to both with at most one edge, otherwise you’d make a C4. Then you can also

add a vertex connecting the triangles together, where the extra vertex is connected.

This gives 9 edges.

Figure 7: The result from 2 disjoint triangles

• Lastly, what if we try two triangles joined at one vertex. No other edges can join vertices

in a, b, c, d, e. The remaining two vertices, can each be joined to a, b, c, d, e in at most

one spot, otherwise we would make a C4. The remaining two could also be joined to

each other, so there is a max of 9 edges possible. By connecting them both to c, we can

realize this.

(1.) Two triangles joined at a vertex (2.) Nine edges

17

2. Consider that the graph with the triangle removed will be girth at least 4. We first find what

is the maximum number of edges on a girth 4 graph with |v(G)| = 6. To do so, start with

a cycle of length 4. The two other vertices can be attached to the cycle in at most 2 places

each, and to each other. We show a configuration that realizes this below, with 9 edges.

Now, we have a triangle, and a girth 4-graph. Clearly, at most 6 edges connect the triangle to

the girth 4 graph, since no two edges from the triangle can go to the same vertex. Therefore,

the max number of edges possible is 9 + 6 + 3 = 18. All we need to do is show a realization

of this many edges now, and we’ll be done. But it’s worth thinking through the process of

finding the connections.

One would be tempted to attach two edges to each vertex of the triangle, but this won’t

work. Every pair of edges attached to the same vertex on the triangle must be attached to

an ‘anti-edge’ (just a pair of vertices with no edge between them) in the girth-4 component,

otherwise we make a triangle. The anti-edges form two triangles. So, it’s not possible to

connect two edges from each vertex on the triangle to all vertices in the girth-4 component.

We can achieve 18 edges by attaching 3 edges to one triangle vertex, 2 to the second, and 1

to the third.

18

Theorem 6.2. Define the max unit distances function, which is the maximal possible number of

times a distance 1 can appear between a finite number n points in the plane.

u(n) = max
P⊂R2, number of points in P=n

{p, q ∈ P : |p− q| = 1} (6.1)

Then u(n) ≤
√

3n3/2.

Proof. Given any set of points P in the plane, define their “unit distance graph”. The vertices of

the graph are the points in P , and there is an edge between p, q ∈ P if and only if |p− q| = 1.

This graph has no K2,3. The collection of points equidistant to p and p′ above is their per-

pendicular bisector, and it’s not possible that more than two points on this bisector are the same

distance away from p and p′.

For example, we know u(3) = 3, u(4) = 5, u(7) = 12, and u(9) = 18. In fact, all values up

to n = 21 are known and proven to be optimal, and the values we have found up to n = 112 are

expected to be the best possible.

Cages

Problem 6.3. What is the minimal graph with girth g?

Problem 6.4. What is the minimal 3-regular graph with girth g? This not something we can

answer in general!

Problem 6.5. What is the minimal 3-regular graph with

1. girth 3? Answer is K4.

2. girth 4? Answer is K3,3.

3. girth 5? Answer is Petersen graph. We went through the argument showing this in class, it’s

the same one that’s in the book.

4. girth ≥ 6? We saw the known examples in some slides, which have been uploaded separately.

19

Ramsey’s Theorem

Definition 6.6. The Ramsey number R(s, t) is the smallest integer with the property that any

red-blue edge-coloring of KR(s,t) must contain a red Ks or a blue Kt.

It’s certainly true that R(2, 2) = 2. How about R(2, X)? We showed before that any red-blue

edge colouring of K6 has a monochromatic ∆, so R(3, 3) ≤ 6.

Interesting questions:

1. Determine R(s, t) exactly for small values s, t. We only know a handful of them. R(4, 4) = 18,

but we don’t know higher exactly: 43 ≤ R(5, 5) ≤ 46, and 102 ≤ R(6, 6) ≤ 160.

“Erdős asks us to imagine an alien force, vastly more powerful than us, landing on Earth

and demanding the value of R(5, 5) or they will destroy our planet. In that case, he claims,

we should marshal all our computers and all our mathematicians and attempt to find the

value. But suppose, instead, that they ask for R(6, 6). In that case, he believes, we should

attempt to destroy the aliens.” (Joel Spencer)

2. Determine the asymptotics of R(s, s).

3. (Not discussed in class!) Determine the asymptotics of R(X, t) for small fixed values of X.

This is very hard as well. Just one year ago, it was shown that

t3

log4(t)
≤ r(4, t) ≤ t3

log2(t)
.

(the lower bound was last year, upper was 2001) which nearly solves this case.

Theorem 6.7 (Ramsey). For positive integers s, t, the Ramsey Number R(s, t) is finite.

Lecture 7 (Mar. 20)

We first reintroduced the definition of Ramsey Numbers (Definition 8.10), and the statement of

theorem (Theorem 6.7). We now prove it!

Proof. We will use induction. The base cases are that R(2, X) = X for any integer X. To see this,

just note that in a complete graph on X vertices, colouring a single edge red would result in a red

K2. But if no edges are coloured red at all, we have a blue KX . We also need to understand that

R(s, t) = R(t, s).

Next, for the induction step, we claim that R(s, t) ≤ R(s− 1, t) +R(s, t− 1).

Let n = R(s − 1, t) + R(s, t − 1) and consider any red/blue colouring of the edges of Kn.

Fix a vertex v, and let Nred(v) = {u ∈ N(v) : (u, v) is red}, Nblue(v) = {u ∈ N(v) : (u, v) is blue}.

20

Notice that

|Nred(v)|+ |Nblue(v)| = n− 1 = R(s− 1, t) +R(s, t− 1)− 1

because the neighbourhoods contain all vertices, except for v. Consider two cases:

• There are at least R(s− 1, t) red edges connected to v, that is, |Nred(v)| ≥ R(s− 1, t). The

definition of R(s−1, t) implies that Nred(v) either contains a red copy of Ks−1 or a blue copy

of Kt. In the first case, adding v to the red Ks−1 creates a red Ks, since all edges joining v

to this set are red. In the second, we have a blue Kt.

• |Nred(v)| ≤ R(s− 1, t)− 1. In this case, we have the following:

R(s− 1, t) +R(s, t− 1)− 1 = |Nred(v)|+ |Nblue(v)| ≤ R(s− 1, t)− 1 + |Nblue(v)|.,

and after cancelling,

|Nblue(v)| ≥ R(s, t− 1).

The definition of R(s, t− 1) implies Nblue(v) has a red Ks or blue Kt−1, and we are done by

adding v to the blue Kt−1 in the latter case.

Overall, it is known that

c1
√

2
s
≤ R(s, s) ≤ c24

s.

You can show this upper bound using the recursive relationship from the proof. Now, it’s interesting

that our proof seems quite basic, so one would expect the 4s could be improved. This problem

resisted all attempts until very recently (2023), a huge breakthrough improved this to

c1
√

2
s
≤ R(s, s) ≤ c23.999s.

The method has since been improved, and we have lowered that constant by a bit more.

The point of Ramsey numbers: The theorem explains that in a large enough system,

it’s impossible not to have very structured parts. This might be an intuitive phenomenon, but

Ramsey’s theorem is rigorous and quantifiable.

21

Another equivalent statement of the Ramsey numbers: Every graph Gn has an independent set

or a complete subgraph of size at least m := blog4(n)c. To see this, consider all the edges currently

in your graph as red edges. Add all the missing edges to the graph until it is complete, colouring the

newly added edges blue. Because n = 4log4 n ≥ 4m, we know this graph has a complete subgraph

that’s entirely red, or entirely blue. If its entirely red, this complete graph is made of edges that

were in the original graph Gn, so Gn has a complete subgraph of size m. If the subgraph is entirely

blue, then none of the edges at all was part of Gn, so the vertices form an independent set in Gn.

Another application: Every set of points P ⊂ R2 with |P | = n and no three in a line, has a

“long” increasing sequence or a decreasing sequence. To see this one, you create a complete graph

where the vertices are the points. The edge between two points is coloured red if the segment

joining the points has positive slope. Ramsey’s theorem says that there is either a red Km or a

blue Km, where m is around blog4 nc. A monochromatic Km in such a graph is forced to be an

entirely increasing sequence, or a decreasing one. (Not discussed in class: there is a simpler show

a result like this, without Ramsey’s theorem, that gets a much better quantitative bound!)

Figure 9: A decreasing sequence in blue, and an increasing K4 in red

The Happy Ending Problem

For this final beautiful application, we are going to define a couple things that will only be used

in this section. The first:

Definition 7.1. A point set P ⊂ R2 is called “convex” if the points can form a polygon, with all

interior angles less than 180 degrees.

This problem states that every set of points in the plane has convex subset. As a warmup:

Problem 7.2. Show that any 5 points in the plane, no three in a line, has a convex subset of 4

points.

To solve this, we first argue that the set must look like a triangle with two points inside,

otherwise the ‘outside points’ would form a convex set of 4. Then, connect the two inside points

22

with a line. This line hits two sides of the triangle, and the 2 points determining the third side are

in convex position with those 2 interior points.

Now, the goal for the rest of this section is to solve the following problem.

Problem 7.3 (Happy Ending). Show that for any integer m, there is an n large enough so that

for any set P of n points in the plane, no three in a line, there is a convex subset with ≥ m points.

Doing the previous thing doesn’t seem to work, as giving a colour to one pair of points doesn’t

seem to allow us to identify whether it’s “in a convex set” or not. We would want something that

would allow us to capture the structure of at least 4 points being in convex position at once...

Definition 7.4 (Hypergraph). A k-hypergraph is a collection of objects (vertices) and connections

between k-tuples of these objects (edges).

Notice that if k = 2, this is exactly the definition of a graph! Hypergraphs are not so differ-

ent, but they are hard to draw, and many simple notions are much more complicated for them.

Therefore we will only learn one single thing about them: that Ramsey’s theorem holds for them

as well.

Kk
n is the notation we’ll use for the complete k-hypergraph on n vertices, which is n vertices

with every k-tuple connected by an edge. For example, K3
4 consists of 4 points, and each 3-tuple

of points is joined by an edge.

Definition 7.5. The k-Ramsey number Rk(s, t) is the smallest integer with the property that any

red-blue edge-coloring of Kk
R(s,t) must contain a red Kk

s or a blue Kk
t .

Theorem 7.6. For positive integers s, t, k, the Ramsey Number Rk(s, t) is finite.

We can now solve Problem 7.3 in full. Consider the complete 4-hypergraph K4
n, with an edge

coloured red if its 4-tuple is convex, and blue if its 4-tuple is not convex. We choose n to be

n = R4(m, 5). Then, by definition, the colouring we’ve defined either has a red K4
m or a blue K4

5 .

In the second case, the colouring has a blue K4
5 , which means we have 5 points where every 4 of

them is not convex. But we showed in problem 7.2 that this can never happen!

Because of that, the only possibility is that we are in the first case, where we have a red K4
m,

which means that we have m points where every single 4-tuple of them is convex. Because of this,

the entire m points of this K4
m are in convex position!

23

Lecture 8 (Mar. 25)

On the midterm: Most things from the course are covered. The exception is Prufer codes! These

will return on the final.

This review contains only things post-reading break, with one exception:

Midterm review: Degree sequences+Eulerian trails

The first thing to remember is how to construct sequences that are graphic. We only did the

following one, it would be worth it to practice a couple more.

Problem 8.1. Reconstruct the graphic sequence (6, 5, 5, 5, 4, 4, 2, 1).

Solution.

(6, 5, 5, 5, 4, 4, 2, 1)

(4, 4, 4, 3, 3, 1, 1)

(3, 3, 2, 2, 1, 1)

(2, 1, 1, 1, 1)

(0, 0, 1, 1)

(1, 1, 0, 0)

(0, 0, 0)

6

5

5

5

4

4

2

1

Theorem 8.2. A graph G has an Eulerian trail iff it is connected and has precisely 2 vertices of

odd degree. G has an Eulerian circuit iff it is connected and all vertices are even degree.

For example, the graph we constructed in the previous problem has 4 vertices of odd degree,

so it does not have an Eulerian trail.

Midterm review: Extremal graphs

Problem 8.3. How many edges at most on a graph with |v(G)| = 8 and exactly two triangles?

Solution. This one ended up being complicated! We break into cases, based on whether the triangle

subgraphs are disjoint, connected by a vertex, or connected by two vertices (and an edge).

24

• The two triangles are disjoint. Then they use 6 of the vertices and make 6 edges.

– There are at most 3 edges between the two triangles.

– There is at most 1 edge joining each outside vertex to each triangle, so there’s at most

4 edges joining outside the vertices to the triangles.

– The two outside vertices may have an edge between them.

This means this case has a maximum of 14 edges. We can realize that in the figure below.

• The two triangles share a single vertex.

– There are no more edges between the triangles.

– There is at most 1 edge joining each outside vertex to each triangle, so there’s at most

6 edges joining outside the vertices to the triangles.

– The three outside vertices may have at most two edges between them, otherwise they

would make a triangle.

This means this case has a maximum of 14 edges. We can realize that in the figure below.

• The two triangles share two vertices. Call this configuration of 4 points H, and call the other

four vertices P .

– There are no more edges between vertices in H.

25

– There is at most 2 edges joining each vertex of P to H, for a total of 8 edges. This is

only possible by connecting to both of the only two disjoint vertices in H.

– The four vertices of P may have at most four edges between them in a C4 pattern,

otherwise they would make a triangle.

This is a maximum of 17 edges. However, note that if two vertices outside have an edge

between them, its not possible to connect both of them to the two available spots in H.

– Connecting just two from P to H with two edges is is possible, using two opposite

vertices in the C4, which results in 15 edges.

– Connecting three vertices of P to the two spots in H results in in at most 3 edges

outside H (by joining the final vertex to the three joined ones), and thus at most 15

edges as well.

– and connecting all 4 results in 0 edges possible outside H, resulting in only 13 edges.

This means this case and in this problem, any valid graph has a maximum of 15 edges. We realize

that bound in the figure above.

Definition 8.4. The Turán graph on n vertices Tn,k is the complete k-partite graph, with vertices

evenly distributed.

Theorem 8.5 (Turán’s). The maximal graph Gn with no Kk+1 is the Turán graph Tn,k.

Problem 8.6. How many edges does the Turán graph Tn,k have? Assume k divides n if it helps.

Solution. By counting the total number of pairs of points in the graph (repetitions allowed), and

subtracting all the pairs within the same partite classes, we get

#edges =
1

2

(
n2 −

k∑
i=1

m2
i

)
=
n2

2

(
1− 1

k

)
. (8.1)

26

If k does not divide n, n2

2

(
1− 1

k

)
is still nearly the number of edges. But for completeness, if we

write n = d + r
k

for some 0 < r < k, (so r is the remainder), we can work through some steps to

show the precise value

#edges =
n2 − r2

2

(
1− 1

k

)
+

(
r

2

)
.

Often, we are just interested in the number of edges in a graph where n is large. So if k is some

small constant number, then r is tiny compared to n so Equation (8.1) is a very good estimate.

Theorem 8.7 (Mantel’s).

• The maximal graph with no triangle is the balanced complete bipartite graph.

• A graph with no triangle Gn has at most n2

4
edges.

Theorem 8.8 (Kővári-Sós-Turán). If Gn contains no K2,X , then it has at most
√
Xn3/2 edges.

Problem 8.9. Let P ⊂ R2 be a set of n distinct points, and let L be a set of n distinct lines in

R2. Give an upper bound on the number of point line pairs (p, `) where the point lies on the line.

Solution. With any problem like this, the question will give us a collection of objects, and a

relationship that those objects can either satisfy, or not. In this case, our objects are points and

lines, and the relationship is the point lying on the line. Therefore, we consider a complete bipartite

graph, with vertices representing both points and lines. We connect two vertices with an edge, if

one vertex is a point, the other is a line, and the point lies on the line.

This graph cannot have a K2,2. If it did, then we would have two points, each connected to two

lines. This would correspond to two distinct points both contained in two distinct lines. But at

most a single line goes through any pair of points, so this is impossible! Theoren 8.8 now implies

there are at most
√

2(2n)3/2 of these points-line pairs.

Definition 8.10. The Ramsey number R(s, t) is the smallest integer with the property that any

red-blue edge-coloring of KR(s,t) must contain a red Ks or a blue Kt subgraph.

Problem 8.11. (Stated in class but not shown) A graph Gn can be coloured red and blue, such

that there is no monochromatic triangle. At most how many edges are in Gn? (The answer will

depend on the number of vertices n)

Solution. Because we want to avoid triangles, you might be tempted to apply Mantel’s theorem.

Indeed, considering the red edges alone, Mantel’s theorem says there are at most n2

4
red edges and

the maximal graph is the complete bipartite graph. Then, the only place to add more edges is

within the two partite classes. There are n/2 vertices in each, so Mantel’s theorem says we can

add at most n2

16
blue edges to each of the two partite classes. Altogether, there are

n2

4
+
n2

16
+
n2

16
=

3n2

8
= 0.375n2

27

edges at most.

Perhaps surprisingly, this is not optimal. There are many more red edges than blue in that

construction, so it would be better to even things out. What you must do to solve this problem

is recall that any colouring of K6 red and blue has a monochromatic triangle. So, our graph

certainly cannot contain any K6. Turán’s theorem says the maximal number of edges in a graph

avoiding K6 is the Turán graph Tn,5. And we can demonstrate a colouring of Tn,5 which does avoid

monochromatic triangles by extending the colouring for a K5, as below.

From Equation (8.1), this graph has n2

2
(1− 1

5
) = 0.4n2 edges.

Lecture 9 (April 1st)

Max-Flow Min-Cut

Definition 9.1 (Directed graph). A simple directed graph (“digraph”) D, consists of a set of

vertices v(D) and edges e(D), where edges are ordered pairs e = (u, v). We call

• u the tail of e,

• v the head of e, and

• u, v the ends of e.

Definition 9.2 (Underlying graph and Orientation). If D is a digraph, the graph G with v(G) =

v(D) and e(G) = e(D) is the underlying (pseudo-)graph of D. We call D an orientation of G.

Definition 9.3 (Digraph degree and neighbourhood).

• The outneighbourhood Nout(v), is the edges with tail v, and outdegree dout(v) is |Nout(v)|.

28

• The inneighbourhood Nin(v), is the edges with head v, and indegree din(v) is |Nin(v)|.

Some common digraphs are:

• Directed Path (length n): A graph with v(G) = {v1, ... , vn+1} and edges may be numbered

{e1, ... , en} so that ei = (vi, vi+1).

• Directed Cycle (length n): A graph with v(G) = {v1, ... , vn} and edges may be numbered

{e1, ... , en} so that ei = (vi, v(i+1 mod n)).

• Rooted tree: connected, and all vertices have din(v) = 1, except one (the root), which has

din(v) = 0.

• Tournament: A digraph whose underlying graph is complete

Theorem 9.4 (Handshaking). For every digraph D,∑
v∈v(D)

dout(v) =
∑

v∈v(D)

din(v) = |e(D)|. (9.1)

Definition 9.5 (Walks). A directed walk of length n in a digraph D is a sequence v0, v1, v2, ... , vn

so that vi ∈ v(D) and (vi−1, vi) ∈ e(D). If

• v0 = vn the walk is closed,

• vi are all distinct it’s a directed path,

• (vi−1, vi) are all distinct it’s a directed trail.

Definition 9.6 (Connected).

• A digraph D is weakly connected if the underlying graph is connected.

• Two vertices u, v ∈ v(D) are connected if there is a directed path from u to v.

• D strongly connected if every u, v ∈ v(D) are connected.

Definition 9.7 (Network). A network N(D, s, t, c) consists of

• A directed graph D.

• A source vertex s ∈ v(D) and a sink t ∈ v(D). Nin(s) is empty, Nout(t) is empty (some

references don’t require this).

• A capacity function: a mapping c : e(D) 7→ R+ denoted by c(u, v) for (u, v) ∈ e(D). c is the

max volume that can pass through an edge per unit of time.

29

Figure 10: An example of drawing a network

Definition 9.8 (Flow). A flow in a network is a mapping f : e(D) → R+ denoted by f(u, v),

subject to the following two constraints:

• Capacity Constraint: For every edge (u, v) ∈ e(D), f(u, v) ≤ c(u, v).

• Conservation of Flows: For each vertex v apart from s and t (the source and sink, respec-

tively), the following equality holds:∑
u∈Nin(v)

f(u, v) =
∑

w∈Nout(v)

f(v, w).

The value of the flow |f | ≥ 0 is the total flow reaching the sink,

|f | =
∑

u∈Nin(t)

f(u, t).

Figure 11: An example of communicating flow on the network from Fig. 10

The capacity constraint then says that the volume flowing through each edge per unit time is

less than or equal to the maximum capacity of the edge, and the conservation constraint says that

the amount that flows into each vertex equals the amount flowing out of each vertex, apart from

the source and sink vertices.

Typically, the source will not be the head of any vertex, and the sink will not be the tail of

any vertex. We could modify this definition slightly to allow for multiple sources and sinks.

30

Proposition 9.9. |f | =
∑

u∈Nout(s)
f(s, u).

Proof. This is a consequence of the conservation of flows:

0 =
∑

(u,v)∈e(D)

f(u, v)− f(u, v) =
∑

u∈v(D)

 ∑
v∈Nout(u)

f(u, v)−
∑

v∈Nin(t)

f(w, u)

 ,

where we reorganized the edges into the vertices’ neighbourhoods. The only contributions that

don’t cancel are

0 =
∑

u∈Nout(s)

f(s, u)−
∑

u∈Nin(t)

f(u, t) =
∑

u∈Nout(s)

f(s, u)− |f |.

Problem 9.10 (Max flow). Given a network N(D, s, t, c), find a flow with maximal |f |. That is,

route as much flow as possible from s to t.

Figure 12: An example where it’s easy to tell the max flow possible

Definition 9.11 (Residual network). Given a network N(D, s, t, c) and a flow on it, f . The

residual network Nf (D, s, t, cf) is a network on the same digraph, with cf (u, v) = c(u, v)− f(u, v).

Further, if (u, v) ∈ e(D), the new capacity function also records the “reverse capacity” cf (v, u) =

f(u, v) for every edge in the path.

Figure 13: The residual network of Figure 11

31

Theorem 9.12 (Ford-Fulkerson Algorithm). Given a network N(D, s, t, c) Consider the following

algorithm:

1. Create a flow f , all edges 0 flow.

2. Update the residual network Nf (D, s, t, cf).

3. If there is a path P in the underlying graph (not a directed path) from s to t where

cf (u, v) > 0 for every (u, v) ∈ P :

• find bf (P) = min(u,v)∈e(P) cf (u, v)

• For each edge (u, v) in the path:

– if (u, v) ∈ e(D): set f(u, v) = f(u, v) + bf (P)

– otherwise, (v, u) ∈ e(D), so: set f(v, u) = f(v, u)− bf (P)

• Go back back to step 2.

This algorithm finds the max flow, if it terminates.

Lecture 10 (April 3rd)

First we slow down, and think about how we could find a good flow most simply.

Naive algorithm: Given a Network N(D, s, t, c),

1. Initialize an empty flow

2. If there is a directed path from s to t with c(u, v)− f(u, v) > 0 for all edges:

• Find bf (P) = min(u,v)∈e(P) (c(u, v)− f(u, v))

• For (u, v) ∈ e(P): set f(u, v) = f(u, v) + bf (P).

Why does this algorithm not work so well? It can get stuck with sub-optimal flows!

Figure 14: A network with two naively chosen directed paths, no more can be found

32

We then gave the full algorithm (Theorem 9.12) again. Also, from the step: “If there is a path

P in the underlying graph from s to t where cf (u, v) > 0 for every (u, v) ∈ e(P)”, we defined those

paths with this property to be augmenting paths.

Figure 15: The residual network of the suboptimal graph above

Figure 15 also has a (bolded) valid augmenting path. We can see what this path will do to the

flow along its edge in the next step of the algorithm by organizing its edges in a table:

Edge (s, v2) (v2, v3) (v3, v1) (v1, v5) (v5, v4) (v4, v6) (v6, t)

ordered edge ∈ D? Yes Yes No Yes No Yes Yes

flow adjustment +3 +3 −3 +3 −3 +3 +3

Exercise questions – After each step (each new augmented path added) in the Ford-Fulkerson

algorithm:

• Justify that the flow always increases.

• Justify the capacity constraint is still satisfied.

• Justify that conservation of flows is still satisfied.

Definition 10.1 (Cut). An s-t cut (S, T) is a partition of v(D) such that s ∈ S and t ∈ T . That

is, an s-t cut is a division of the vertices of the network into two parts, with the source in one part

and the sink in the other.

For any partition S, T (vertex sets with S ∩ T = ∅ and S ∪ T = v(D)), we use the following

notation for the cut set (see Figure 16; there may be edges from T to S):

X(S, T) := {(u, v) ∈ e(D) : u ∈ S, v ∈ T}.

33

If (S, T) is an s-t cut, X(S, T) is the set of edges that connect the source part of the cut to

the sink part. Thus, if all the edges in X(S, T) are removed, no positive flow is possible, because

there is no path in the resulting graph from the source to the sink. Define

C(S, T) =
∑

(u,v)∈X(S,T)

c(u, v).

The “capacity” of an s-t cut is C(S, T), the total capacity of edges from S to T .

Problem 10.2 (Min Cut). Minimize C(S, T), that is, determine S and T such that the capacity

of the s-t cut is minimal.

Even though min-cut doesn’t mention anything about flows directly, these problems are closely

related.

Theorem 10.3 (Max-flow min-cut). For any network, the solutions to max flow and min cut are

the same value.

Towards this, let’s consider a cut on a network that has a flow, and we’ll prove two lemmas to

help in the proof. Let

F (S, T) =
∑

(u,v)∈X(S,T)

f(u, v).

Figure 16: Example of two s-t cuts on a network, with cut capacities and flows

Lemma 10.4. For a network N(D, s, t, c), flow f , and an s-t cut (S, T), we have |f | = F (S, T)−
F (T, S).

34

Proof. By induction on the size of S. If |S| = 1, the source is the only vertex in S. Then

F (S, T)− F (T, S) = F (S, T) =
∑

(u,v)∈X({s},D−{s}

f(u, v) =
∑

v∈Nout(s)

f(s, v) = |f |

by proposition 9.9.

Next, suppose it’s true for all |S| < k, and now let |S| = k. Choose any vertex v ∈ S other

than the source, and let S ′ = S − {v}.

From the induction hypothesis, we have:

|f | = F (S ′, T + {v})− F (T + {v} , S ′) = (F (S ′, T) + F (S ′, v))− (F (T, S ′) + F (v, S ′)) . (10.1)

From conservation of flows,

0 = F (S ′ + T, v)− F (v, S ′ + T) = (F (S ′, v) + F (T, v))− (F (v, S ′) + F (v, T)) , (10.2)

and subtracting equation (10.2) from (10.1), what what we get is

|f | = (F (S ′, T) + F (v, T))− (F (T, S ′) + F (T, v)) = F (S, T)− F (T, S).

In particular, a useful corollary follows.

Lemma 10.5. For a network N(D, s, t, c), flow f , and a cut (S, T), we have |f | ≤ C(S, T) with

equality iff F (T, S) = 0 and f(u, v) = c(u, v) for each (u, v) ∈ X(S, T).

Proof. By Lemma 10.4,

|f | = F (S, T)− F (T, S) ≤ F (S, T) ≤ C(S, T).

Equality only holds if and only if both of those inequalities become equality, which is equivalent

to the conditions that F (T, S) = 0 and f(u, v) = c(u, v) for each (u, v) ∈ X(S, T).

35

Lecture 11 (April 8th)

Proof of 10.3. Let f be a flow on a network. We prove theorem 10.3 by showing the following

statements are equivalent:

1. f is a maximum flow.

2. There is an s-t cut with C(S, T) = |f |.

3. There are no augmenting paths left in the network N with flow f .

2. =⇒ 1.: From Lem 10.5, all flows have |f | ≤ C(S, T), so a flow with |f | = C(S, T) is max.

1. =⇒ 3.: If there was an augmenting path, we could use the algorithm to increase the flow.

3. =⇒ 2.: There is no augmenting path from s to t, but let S be the set of vertices “reachable”

from s, i.e., the vertices v where an augmenting path from s to v exists. Let T be all the other

vertices. By definition of S, it’s not possible that

• F (T, S) 6= 0, otherwise there would be a reverse edge that we could augment further along,

or

• f(u, v) 6= c(u, v) for an edge in X(S, T), otherwise we could just straightforwardly extend an

augmenting path along that edge.

How can we be certain this cannot be improved? We find a min cut! S = {s, v2} is a cut set where

F (T, S) = 0 and f(u, v) = c(u, v) for each (u, v) ∈ X(S, T). Therefore, |f | is the max flow, by the

(2) to (1) part of the proof of the theorem.

36

	Lecture 1 (Feb. 25)
	Eulerian circuits
	Algorithms, and Eulerian trails

	Lecture 2 (Feb. 27)
	Decomposition into trails

	Lecture 3 (Mar. 4, Review class)
	Lecture 4 (Mar. 11)
	Turan's Theorem and Extremal Graph Theory

	Lecture 5 (Mar. 13)
	Lecture 6 (Mar. 18)
	Cages
	Ramsey's Theorem

	Lecture 7 (Mar. 20)
	The Happy Ending Problem

	Lecture 8 (Mar. 25)
	Midterm review: Degree sequences+Eulerian trails
	Midterm review: Extremal graphs

	Lecture 9 (April 1st)
	Max-Flow Min-Cut

	Lecture 10 (April 3rd)
	Lecture 11 (April 8th)

