
Math 503 (Discrete Geometry) Notes

Kenneth Moore
University of British Columbia

January → April, 2022

Lecture 1

Recall some basic identities,

1.
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)
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Now, using this we see

n∑
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(−1)i
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)
= (1− 1)n = 0

We can also get
n∑
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=
n∑
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Now let’s have fun.

Theorem 1.1 (Fermat). If p is a prime and a is an integer not divisible by p, then p divides
ap − a.

Proof 1, induction. The base case of a = 0 is trivial. Suppose a > 0 and write a = b+ 1. We have

ap − a = (b+ 1)p − (b+ 1)

= bp +

(
p

1

)
bp−1 + ...+

(
p

p− 1

)
b+ 1− (b+ 1)

= bp − b+

(
p

1

)
bp−1 + ...+

(
p

p− 1

)
b

(1.1)

which is divisible by p by the induction hypothesis.

Proof 2, combinatorial. Consider necklaces with p beads and a colors. We create equivalence
classes of necklaces so that two necklaces are in the same equivalence class if there is a rotation
moving one to the other. Observe that the size of these equivalence classes is p. Thus there are ap

partition classes, and we subtract a for the monochromatic necklaces.
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A harder problem. Consider ‘open necklaces’ which is just a string of beads. We have k colors,
and suppose each color paints an even number of beads. We have 2n beads. What is the fewest
number of cuts we need to make to make two collections of pieces which each have an equal number
of each coloured bead? For example, in the following necklace, we only needed two cuts, and then
the middle part vs. the two end parts are two collections with the same number of colors. There

is a tricky proof which shows the answer is k.

Theorem 1.2 (Borsuk-Ulam). Let f : Sk 7→ Rk be a continuous map for an integer k ≥ 1, and
suppose f(x) = −f(−x). Then there exists x ∈ Sk so that f(x) = 0.

To relate this to the necklace problem, we sort of just make a continuous version of the problem.
Consider a line segment which is painted with different colors and each color set is measurable. In
short, it turns out that the point that exists by the above theorem is a proper way to make cuts
for each color. The idea is to find a color partition in each coordinate, and then find k cuts using
the theorem. We define the functions

fj =
k+1∑
i=1

sign(xi)mj(i) (1.2)

where mj(i) is the measure of the jth color in the ith coordinate1.

Lecture 2

Book Recommendation: Enumerative combinatorics is a good book to check out. Polya-Szego
problems are good as well. There is another book which is in the course syllabus by Stelle that
you should check out. Richard Stanley is a book for just enumerative combinatorics, specialized.
Winogradov had a good book of problems in number theory.

Notation,

1. !n is ‘derangements’, the # of permutations without fixed points. For example,

1 2 3 4
4 3 2 1

(2.1)

is a permutation with no fixed points. We can figure out a recursive statement which defines
these numbers. If we choose 1 as a special element, there are two cases,

1 ... i ...
i ... 1 ...

(2.2)

In this case, we have (n− 1) (!(n− 2)). and

1 ... i ... j ...
i ... j ... ? ...

(2.3)

1See 3Blue1Brown https://youtu.be/yuVqxCSsE7c
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In this case consider what happens if you just remove 1, and put i wherever 1 was on the bottom
row. You will not get any fixed points this way, so we get (n− 1)(!(n− 1)) more permutations for
a total of (n− 1) (!(n− 2)+!(n− 1)).

Recall that every permutation can be represented by the cycles. Like in (2.1), the cycle was
(1423). We define the Stirling numbers of the first kind, s(n, k) = # of permutations of n elements
with k cycles. Can we create a recursion for these?

s(n, k) =

[
n+ 1

k

]
= n

[n
k

]
+

[
n

k − 1

]
(2.4)

If 1 is a fixed point, you are left with n − 1 elements, and 1 is a cycle, so this case results in
s(n, k − 1), which is where we get the second term in (2.4). The first term comes from a similar
argument to before, removing 1 and then adding it back anywhere.

Define Stirling numbers of the second kind S(n, k) =
{
n
k

}
are the number of partitions of an

n-element set into k non-empty classes. Note that two partitions into classes are distinct if there
are two elements which are in the same class in one partition and in different classes in the second
partition. Writing this as a recursion, we have{

n+ 1

k

}
= k

{n
k

}
+

{
n

k − 1

}
(2.5)

Where the second one comes from partitioning the new element into its own set.

2.1 Graphs

What is the maximum number of edges in a graph with v vertices if there are no crossings? It
turns out that there at most 3v − 6 for planar graphs. The follows from the fact that the Euler
characteristic is 2

This graph for example has v = 6, e = 10 and f = 6. By Euler’s formula, we have v−e+f = 2
and luckily our graph satisfies it! We talked a lot about colourings here, nothing rigorous though.

If G is a connected planar graph, then in its embedding to the plane, v − e + f = 2. This
can be proven with induction on e. This formula leads to the bound on the number of edges. We
have f = f3 + f4 + ... + fk where fj is the number of faces with j edges adjacent. So consider
3f3 + 4f4 + ... + kfk = 2e since we count each edge twice, once from each side. We then have
3f ≤ 2e, so then f ≤ 2

3
e. By Euler’s formula, we have v − e+ 2

3
e ≥ 2, and then e ≤ 3v − 6.

Lecture 3

Here we did a little graph theory. We generally say V (Gn) is the vertex set and E(Gn) is the edge
set of the graph Gn, and n = |V |, e = |E|.
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Definition 3.1. A connected graph on n vertices with n − 1 edges is called a tree, denoted Tn.
Equivalently, a connected graph with no cycles.

Handshake Lemma is useful to see these are equivalent,
∑

vi∈V (Gn)
deg(vi) = 2e.

Theorem 3.2 (Cayley’s formula). The number of labelled trees on n vertices is nn−2.

Proof. We show this by Prüfer codes. That is, we show every sequence of n − 2 numbers from n
digits corresponds to a unique tree. For example,

2

4

3
6

5
1

8

7

To do this,

• Find the smallest labelled leaf. In this case, it’s 2. Write down its neighbours label in the
sequence.

• Repeat this until there are just two vertices left.

Now, this is a well defined process, we do not make any decisions about what do do at any
step. The above tree for example gives you (1, 5, 5, 5, 7, 1)

Going backwards, we can recover the tree like this. Write the leaves (the numbers that don’t
appear in the sequence) under the sequence.

1 5 5 5 7 1
2 3 4 6 8

(3.1)

And eliminate numbers one by one, connecting top to the smallest number on the bottom and
adding a number to the bottom when it becomes a leaf (no longer appears on top),

6 1 6 5 6 5 6 5 7 1
6 2 6 3 6 4 6 6 8 5

(3.2)

then in the last step, connect the two leaves that are left on the bottom, in this case 1 and 8.

6 1 6 5 6 5 6 5 6 7 6 1
6 2 6 3 6 4 6 6 8 6 5 6 7 1

(3.3)

How do we know a Prüfer code represents a tree? This is because we can get the degree
sequence back.

We call Cn a cycle of length n. Also, Pn the path of length n− 1, which has n− 1 edges. Also,
Kn is the complete graph on n vertices which has n(n − 2)/2 edges. Also, Kn,m is the complete
bipartite graph, which has two classes V1 of n and m vertices, and the graph has all the edges
connecting vertices between classes and none within classes.

The chromatic number of Gn is the least number so that the vertex set of Gn can be coloured
so that no edge connects the same color.

Theorem 3.3 (Ramsey’s). For any k there is n0(k) such that if n ≥ n0(k) then for any two-

colouring of the edges there will be a mono-chromatic complete subgraph K̃k.

Note that R(3) = n0(3) is 6. You can show with a nice argument that this is enough, and
prove Ramsey’s theorem in a similar way, inductively. In fact R(k) ≤ 4k. In fact this is the best
known bound! (Was* at the time!)
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Lecture 4

4.1 Matchings in Graphs

Definition 4.1. A matching is a subgraph so that no edge shares a vertex. A perfect matching is
a matching with n

2
edges in Gn.

A common question is how many perfect matchings does a certain graph have? Here are two
different ones (red and green) for the Petersen graph.

Exercise 4.2. How many perfect matchings in L2n? (This is a graph with n boxes.)

Proof. The key to this is Fibonacci. If we start with the vertical edge (red), then we basically
remove the first box, so we get PL(n− 1) in this case. If we start with the top and bottom edges
in the first box (green), we remove the last two boxes, so we get PL(n−2) in this case. So in total,
PL(n) = PL(n− 1) + PL(n− 2). We then show the initial values are the same as the Fibonacci,
so the values are the same.

Recall the value R(k). We saw last time that any two colouring of the edges of KR(k) results in

a monochromatic subgraph (Kk). Let R(

k︷ ︸︸ ︷
3, 3, ... , 3) be the number such that the k colouring of the
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edges of KR(3,3,... ,3) results in a monochromatic triangle. we can prove the result for this similar
to what we did last time, choose any vertex and take the most popular color among edges, say,
red in this case. The size of edges with the same color is ≥ n−1

k
, and suppose there is no triangle;

then there is no more of that color in the subgraph. We then have Rk(3) ≤ kRk−1(3), and so
Rk(3) . k!.

We can use this to prove Schur’s theorem; for any k there is a bound S(k) ∈ N such that for
any k-colouring of [S(k)], there is a monochromatic solution to x + y = z. Schur was interested
in this question because if it was false, he could prove Fermat’s last theorem. What this theorem
implies is that xn + yn = zn mod p has a solution for any n, as long as p is a large enough prime.
In Fp, A1 = {an | a ∈ Fp}, Ab = {ban | a ∈ Fp}.

Another technique, consider a graph with n+ 1 vertices, labelled from 1 up to n+ 1. Make it
a complete graph, and color the edge connecting j ≥ i with the color of the vertex j − i. If there
is a triangle in that graph, then j − i and ` − j and ` − i all have the same color. Letting those
values be x, y, and z, we have x+ y = z all having the same color.

Conjecture 4.3. For every k, there is an integer F (k) := n such that for any k-colouring of [n]
there are numbers x, y ∈ [n] where x, y, x+ y, xy all have the same color.

4.2 Normal Generating Functions.

First example, consider aj = 1 for all j ∈ N. The generating function GF is a formal power series
GF (x) =

∑∞
i=0 aix

i. In this fist case, this is simply 1
1−x . Note we often ignore radii of convergence.

Next example, let an = an−1 + 2an−2, n ≥ 2 and a0 = a1 = 1. As n → ∞, we should see
an
an−1
→ some number α, so

α ≈ an
an−1

= 1 + 2
an−2
an−1

= 1 +
2

α
(4.1)

so α2−α−2 = 0. The roots are 2 and 1. Then an = A2n+B(−1)n. Using the initial values, A = 2
3

and B = 1
3
. Thus an = 1

3
(2n+1 + (−1)n). This method was a little less scientific than we would

like, mostly just because we made an assumption of convergence. Let’s use generating functions.
We have

S(x) =
∞∑
n=0

anx
n (4.2)

and try to find S(x). To do this, try multiplying by −x and by −2x2, and we have

S(x) = a0 + a1x+ a2x
2 + a3x

3 + ...

−xS(x) = −a0x− a1x2 − a2x3 + ...

−2x2 = −2a0x
2 − 2a1x

3 + ...

(4.3)

6



and check it out, the x2 terms in these three sum to 0. Same with every term higher than x. So
all we have is (1 − x − 2x2)S(x) = 1, and so S(x) = 1

1−x−2x2 . After partial fractions, we have

S(x) = −1
3

(
1

2x−1 −
1

x+1

)
Next example, consider an = an−1 + 2n. To do this, you first have to find the generating

function of 2n. It is 1
1−2x .

4.3 Exponential Generating Functions.

The exponential generating function is

F (x) =
∞∑
i=0

ai
xn

n!
(4.4)

So once again, let’s see the function for ai = 1? It’s of course just ex. If it was alternating,
aj = (−1)j, we have e−x. Something a bit less simple, let

SE(x) =
∑

i is even

xi

i!
, 1 0 1 0 1 0 ...

or

SO(x) =
∑
i is odd

xi

i!
, 0 1 0 1 0 1 ...

One thing is for sure, if we have SE+SO, we have ex. We also see that S ′E(x) = S0(x) just from the
sums. We thus have SE + S ′E = ex, we could also get SE(x)− S ′′E(x) = 0. Solving this differential
equation is not hard, and we get 1

2
(ex + e−x) = cosh(x).

Lecture 5

5.1 Graphs and their Substructures

Take a graph Gn and suppose e ≥ cn2. We can make a graph with about n2/4 edges that has no
triangle. This is the complete bipartite graph.

Theorem 5.1 (Mantel’s). In a graph containing no triangle, the maximum number of edges is n2

4
.

More generally, ex(G, n) is the max number of edges without G as a subgraph. For example,
ex(C4, n)? It turns out that ex(Cn, n) ≤ cn3/2. We convert this into a problem of counting cherries
(P ′3s), since two vertices cannot share two neighbouring vertices otherwise you have a triangle. The
question is now, how many cherries are in a Gn with e edges? If degree of a vertex is d, we have(
d
2

)
cherries. Thus

#cherry =
∑

v∈V (Gn)

(
deg(v)

2

)
(5.1)

We also know that e = 1
2

∑
v∈V (Gn)

deg(v). These are clearly related, but it might be hard to
see how. Let’s use Cauchy-Schwartz on this. More accurately, we use Jensen’s inequality.

1

2

∑
v∈V (Gn)

deg(v)2 ≈ #cherry,
∑

v∈V (Gn)

deg(v) = 2e (5.2)
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The average degree is 2e
n

, so

∑
deg2 ≥ n

(
2e

n

)2

≈ e2

n
(5.3)

So we have about e2

n
cherries. If there is no C4, then the number of cherries is less than # of

pairs of vertices. Then e2

n
. n2 and so e ≤ cn3/2.

For the lower bound on ex(C4.n), we do a construction and see that it is also cn3/2. Let v1 be
the set of points, and v2 the set of lines. Make a graph on these elements, connecting a point to a
line if the line passes through the point. This turns it into an incidence geometry problem. Now,
what about ex(n, P4)? ex(Ks,t, n) is an open problem and an important one. Note that for any
Gn with e edges, there is a bipartite subgraph G(A,B), |A| ≈ |B| ≈ n

2
with ≈ e

2
edges.

A proof strategy for ex(Ks,t, n). You can find large sets of numbers so that the sum of a
number from one and the other always gives you a prime.

First, count the number of multi-cherries with s berry. That is,
∑

v∈V (Gn)

(
deg(v)
s

)
. If there are

no Ks,t in Gn, then the number of s-multicherries is ≤
(
n
s

)
(t − 1) since there are not t vertices

sitting on any one multicherry. Similar to before we get n
(
e
n

)s ≤ nst, and then e ≤ cn2− 1
s t

1
s which

is also the conjectured lower bound (Kővári-Sós-Turán).

Book recommendation: The Cauchy-Schwartz Masterclass.

Lecture 6

Definition 6.1. A graph Gn is dense if the number of edges is c · n2. Gn is sparse if e = o(n2).

We quickly summarized the material from last time, notably that if e is large enough in Gn,
then it contains Ks,t. We looked at two theorems about sparseness,

Theorem 6.2. Every dense graph on n vertices has a complete bipartite graph subgraph Klogn,logn.

Theorem 6.3. If Gn contains e edges, then there is G′m ⊆ Gn where every vertex has degree at
least half the average degree in Gn

Proof. Choose any vi ∈ Gn with degree deg(vi) <
1
2
avg = e

n
and remove it. It’s not possible to

remove all the vertices, because each time we remove less than the average number of edges, so if
we removed all the vertices, we would be left with some floating edges!

So there is a substructure where all the remaining vertices have deg > 1
2
avg and the number

of edges removed is ≤ n(1
2
avg − ε) < e. If for example Gn is dense, it has cn2 edges and thus it

has a subgraph where every vertex has degree ≥ cn.

We now talked a bit about adjacency matrices. For a graph on 2 sets G(A,B), we put one
set of vertices on one axis and the other on the other. If a graph has a bipartite subgraph Ks,t, it
means that there is a submatrix of size s, t that is all ones.

Consider |A| = |B| = n, and the min degree ≥ cn, and remove rows of the adjacency matrix
based on the maximum number of ones in a row. Each time we remove a row, we reduce the degree
by a positive fraction of cn. In conclusion, every dense graph contains Kt,t with t ≈ log n. If Gn

has n2−ε edges and ε→ 0 as n→∞, then Gn contains Kt,t where t→∞.
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Lecture 7

We defined the adjacency matrix. Recall that it is symmetric, so all its eigenvalues are real. For
example, the graph above has adjacency matrix

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

(7.1)

We usually use J to represent a matrix of all ones, and e the vector of all ones. ej on the other
hand is still just the jth coordinate vector. Note that A(Gn) · e gives you the degree vector.

A useful application of these matrices is counting walks, and there are many extensions to
cases of weighted and directed graphs. How many walks are there in Gn above, starting at v3? A
walk is a sequence of vertices where consecutive vertices are connected by an edge. So v3, v2, v1 is
a walk for example, but v3, v2, v3 is too. Thus there are 5 in this graph. We define wk(i, j) to be
the number of walks from vertex i to j of length k. A question is, what is w4(3, 1) in the above
graph? The adjacency matrix helps. In Ak, the coefficient aij = wk(i, j).

Another question, what are tr(A2), tr(A3), and tr(A4)? The diagonal of A2 just counts the
degree of each vertex. tr(A3) is the number of triangles in the graph. tr(A4) is more interesting...

It counts the number of all these things summed. The number of C4s this counts is not just all
C4s in the graph, but all homomorphisms of them too, because it counts starting at any of the 4
vertices in a C4 and either direction you can start out in. We can check if the graph is connected
in this way too, let B = A + A2 + ... + An−1. Then Gn is connected if and only if B has positive
entries only.

The spectrum of a graph is λ1 ≤ λ2 ≤ ... ≤ λn, the eigenvalues of the adjacency matrix. There
are eigenvectors of each of these values, and if x and y are eigenvectors corresponding to distinct
eigenvalues, then they are orthogonal since A is a nice symmetric matrix. Thus the vectors form
an orthonormal basis of size up to n.

A graph Gn is said to be d-regular if deg(vi) = d for all q ≤ i ≤ n. For example, the Petersen
graph has degree 3 on all vertices. What do we know about the spectrum of d-regular graphs?
One thing is that Ae = de, so d is an eigenvalue. A claim is that all other eigenvalues |λ| ≤ d. To
see this, let v be any other eigenvector, and find its largest entry. we can scale the vector to have
largest entry of 1. We can see the largest entry in A · v will have largest entry strictly less than d,
and so |λ| < d.
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Theorem 7.1 (Geřshgorin theorems).

• In a complex matrix M , if for all i, |aii| >
∑

j 6=i |aij|, then M has full rank.

• Let S =
∑

i 6=j |aij| = ri. Every eigenvalue is in one of the Geřshgorin disks,

• If ∆(Gn) = ∆ is the max degree, then λ1 ≤ λ2 ≤ ... ≤ λn. Then davg ≤ |λn| ≤ ∆.

A fact we will apparently use a lot is that since A is a symmetric matrix, it has an orthonormal
basis of eigenvectors.

Suppose we have two subsets of vertices U and W . How can we use the adjacency matrix to
count the number of edges between U and W? To do this we use indicator vectors of each set.
Multiply the matrix between the two.

Lecture 8

There is another kind of graph matrix, called the Laplace matrix D − A where D is the diagonal
matrix with dii = deg(vi). There is also the unsigned Laplace matrix which is D+A. The benefit
of these is that they are positive definite matrices!

Recall that Ak gives you the number of walks from vi to vj. Let Gn be a connected simple
graph with diameter (the largest minimum distance between two points in the graph) d. Claim:
Gn has at least d+ 1 distinct eigenvalues.

Suppose there are t distinct eigenvalues. Then write (A−λ1I)(A−λ2I)...(A−λtI) = 0. Thus
At is a linear combination of At−1, At−2, ... , I. Note that if t ≤ d, then there is a 0 in position
(i, j) of At if dist(vi, vj) = d.

8.1 Finding eigenvalues: Circulant matrices

C is a circulant (complex) matrix if it has the form

c0 cn−1 cn−2 .. c1
c1 c0 cn−1 .. c2
c2 c3 .. .. ..
.. .. .. .. ..
cn−1 cn−2 .. .. c0

(8.1)

The eigenvectors here are the roots of unity. if ωj = exp
(
2πij
n

)
for 0 ≤ j ≤ n− 1 is the jth root of

unity. The eigenvalues are then λj =
∑n−1

i=0 ciω
i
j
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8.2 Finding eigenvalues: Strongly regular graphs

In a d-regular graph, d is an eigenvalue with eigenvector e. The Petersen graph for example is
3-regular, and has girth(p) = 5 (the smallest cycle is 5). Fun fact, the number of spanning trees
in the Petersen graph is exactly 2000??

A graph is strongly regular if between any two vertices, the number of common neighbours
depends only on whether the vertices are connected. For example, in the Petersen graph, any two
that are not connected (like the red points) have exactly 1 common neighbour. Any two that are
connected (like the blue) have 0.

Now, how can we find the eigenvalues of such a graph? A is the adjacency matrix of P . We
know something about A2. Taking A2 +A+ I −D = J (the all one matrix). In this case, we have
A2 + A− 2I = J . Multiplying both sides by an eigenvector x which has eigenvalue λ then,

λ2x+ λx− 2x = 0 (8.2)

this is because x is orthogonal to the all one vector e, since e is itself an eigenvector. We see λ
is an eigenvalue of A2 as well. Thus the eigenvalues satisfy λ2 + λ − 2 = 0 and so λ = 1,−2. To
recover the multiplicity, we use the fact that the trace of A is 0, so the sum of the eigenvalues
is also 0. We can therefore solve for the multiplicities, in particular 1 has multiplicity 5, −2 has
multiplicity 4, 3 has multiplicity 1.

Theorem 8.1. There is no decomposition of the edges of K10 into three copies of the Petersen
graph.

Proof. Suppose A + B + C = J − I and A,B,C are adjacency matrices of Petersen graphs. Let
VA and VB be the subspaces of the eigenvectors of the eigenvalue 1 in A and B. Both of these are
5 dimensional, and both orthogonal to e. The space e⊥ is 9 dimensional, so there is some vector
x ∈ VA ∩ VB, so J x = 0. Now, what happens if we multiply C by this? We get

Cx = (J − I − A−B)x = −x− Ax−Bx = −3x

This means C has an eigenvector x with eigenvalue −3. Petersen graphs do not have that eigen-
value, so this is not possible.
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Lecture 9

If a matrix is symmetric, then its eigenstuff is “nice”; all eigenvalues are real, and there is an
orthonormal basis v1, v2, ... , vn of the space of eigenvectors. |vi| = 0, and vi · vj = 0 for i 6= j.
Let A be the adjacency matrix of Gn. We can write

A =
n∑
i=1

λiviv
T
i (9.1)

A symmetric minor B of A is a submatrix of A obtained by deleting some rows and the corre-
sponding columns.

Theorem 9.1 (Interlacing eigenvalues). If A is an n × n symmetric matrix with eigenvalues
λ1 ≥ ... ≥ λn and B is an n− k × n− k symmetric minor of A with eigenvalues µ1 ≥ ... ≥ µn−k.
Then λi ≥ µi ≥ λi+k.

In d-regular graphs, the largest eigenvalue d = λ1 ≥ |λi|. Also, λ is the second largest eigenvalue
if λ ≥ |λi| for any i > 1. In a d-regular Gn, the second largest eigenvalue satisfies λ &

√
d. The

proof of this uses the facts that trA2 = dn and trA2 =
∑n

i=1 λ
2
i .

Lemma 9.2. The trace is the sum of the eigenvalues.

Proof. The characteristic polynomial is

p(t) = det(A− tI) = (−1)n
(
tn − (trA)tn−1 + ...+ (−1)n detA

)
(9.2)

To see why that coefficient is trA, consider the cofactor expansion of M = A− tI along any row i,
any term involving an off-diagonal element Mij eliminates both aii− t and ajj− t so any such term
cannot have high enough degree, and so the coefficient of tn−1 must come from (a11− t)...(ann− t).
There is another result where a polynomial xn + a1x

n−1 + ... + ak satisfies a1 =
∑

roots, whose
application completes the proof.

d-regular graphs with second largest eigenvalue close to
√
d are called Ramanujan graphs.

Exercise 9.3. If we have a k-regular graph with adjacency matrix A and two subgraphs of size s
and t, the number of edges between S and T would be approximately ∼ k·s·t

n
. Estimate the error on

this guess by ∣∣∣∣e(S, T )− k · s · t
n

∣∣∣∣ ≤ λ
√
st (9.3)

which is a bound on the ‘edge discrepancy’. This is also called a Cheeger-type inequality.

Proof. As usual, let λ1, ... , λn be the n eigenvalues of the graph and let v1, ... , vn be an orthonormal
basis of corresponding eigenvectors, with λ1 = k and v1 = 1√

n
e. Use J to denote the matrix

consisting of all 1s.
Let χS be the indicator vector for the set S (entry i is 1 if the ith vertex is in S and 0 otherwise)

and χT the indicator vector for T . We have e(S, T ) = χᵀ
SAχT and k·s·t

n
= k

n
(χᵀ

SJ χT ), thus∣∣∣∣e(S, T )− k · s · t
n

∣∣∣∣ =

∣∣∣∣χᵀ
S

(
A− k

n
J
)
χT

∣∣∣∣ (9.4)

12



Now define B = A− k
n
J . Note that v1 is also an eigenvector of J having the eigenvalue n. Since

each vi for vi ≥ 1 is perpendicular to e, they are also each eigenvectors of J with eigenvalue
0. Therefore the two matrices share all eigenvectors, so the eigenvalues of B are the differences
of eigenvalues of the two, namely 0, λ2, ... , λn. Now B is a real symmetric matrix, thus it is
self-adjoint; we have

‖BχT‖2 = 〈BχT , BχT 〉 = 〈χT , B2χT 〉

Using the orthonormal basis vi, we write the vector χT in coordinates to obtain

〈χT , B2χT 〉 = 〈χT ,
n∑
i=1

B2〈χT , vi〉vi〉 = 〈χT ,
n∑
i=2

λ2i 〈χT , vi〉vi〉 =
n∑
i=2

λ2i 〈χT , vi〉2 ≤ λ2 ‖χT‖2

So in summary, ‖BχT‖ ≤ λ ‖χT‖. By the Cauchy-Schwarz inequality, we have

|χᵀ
SBχT | ≤ ‖χS‖ ‖BχT‖ ≤ λ ‖χS‖ ‖χT‖ = λ

√
st (9.5)

and with equation (9.4), this completes the proof.

Recall that A =
∑
λiu

ᵀ
i ui, and let χS, χT be the indicator functions of S and T , so χS =

∑
αiui

and χT =
∑
βiui. Then

e(S, T ) = χᵀ
SAχT =

∑
αiλiβi

The first term in this sum ends up being k·s·t
n

, and the rest of the terms in the sum are the
error terms. We can also estimate them, using the second largest eigenvalue,∣∣∣∣∣∑

i>1

αiλiβi

∣∣∣∣∣ ≤ λ

∣∣∣∣∣∑
i>1

αiβi

∣∣∣∣∣ (9.6)

Lecture 10

Let A,B be sets. Denote by A × B the set of tuples (a, b),for a ∈ A and b ∈ B. If A,B ⊂ R, we
can represent the elements of A× B as points in the plane R2. In this case A× B is a Cartesian
product. Let us suppose |A| = n, |B| = m, finite sets of real numbers. The Cartesian product of
them lies on a grid.

For now, suppose |A| = |B| = n. Let’s give an upper bound on the k-rich lines on A × B. A
line ` is k-rich if |` ∩ (A×B)| ≥ k. Let us denote the number of k-rich lines by xk.

13



Partition A×B into “cells”. We use k
10

vertical and k
10

horizontal separators so that there are

∼ 10|A|
k

points of the grid between each vertical separator, ∼ 10|B|
k

points of the grid between each

horizontal separator. This results in cells which have about 100n2

k2
points.

Now, given a line, two points in ` ∩ (A × B) that are consecutive are called a lucky pair if
called lucky if they lie in the same cell. We have k

5
possible ‘destroyers’, that is, places to cut two

consecutive points. Thus the number of lucky pairs on a k-rick line is ∼ 4
5
k. This means we have

at least xk · 4k5 lucky pairs are created with xk k-rich lines. The number of lucky pairs across all
lines is bounded above by

k2

100

(
100n2

k2

2

)
∼ 100n4

2k2

and therefore xk ≤ cn
4

k3
.

Theorem 10.1 (Szemerédi-Trotter). Given n points in R2, the number of unique lines contain k
of the points is at most O(n

2

k3
).

A famous problem in number theory is the sum-product problem. If A is a subset of R (or C,
N, Fp, etc.) then either A + A or A · A should be large. In the real case, if |A| = n, A ⊂ R, then
we will show |A+ A|+ |A · A| ≥ c · n5/4 (although, the current best is an exponent slightly larger
than n4/3).

To do this, create the grid again with A + A on one edge and A · A on the other. We now
define lines by `ij = ai(x− aj). For every pair, we get a distinct line, so there are n2 of these lines.
Then these lines are all n-rich, as `ij contains (ak +aj, aiak) for any k. Using the previous theorem

now, we see n2 ≤ c (|A+A||A·A|)
2

n3 , so then cn5/2 ≤ |A+ A| |A · A|.
In C or Fp, there are some problems. In C2, lines don’t cut the plane. In Fp, there can be no

partitioning help since there is no ordering. However, we will show something in this case. We
consider A ⊂ Fp with |A| << p and

√
p ≥ |A|. Using graph spectra and a Cheeger-type bound,

we can show that

|A+ A| |A · A| > cmin

{
p |A| , |A|

4

p

}
(10.1)

and if |A| ≈ p2/3, then max {|A+ A| , |A · A|} > c |A|5/4. To do this we define the sum-product
graph GSP . We define V (GSP ) = F∗p× Fp. Two vertices u = (a, b) and v = (c, d) are connected by
an edge iff ac = b+ d.

Lecture 11

Let Fp be a finite field, with multiplicative subgroup F∗p. We will consider the sum-product problem
over finite fields. First, in Z, if A = {1, ... , n} is a geometric progression, we have |A+ A| = 2n−1.
We also have |A · A| & n2−ε. More specifically, |A · A| = n2

logα n
for a constant α.

Theorem 11.1 (Gareu).

|A+ A| |A · A| ≥ c ·min

{
p |A| , |A|

4

p

}

14



In the range
√
p << |A| << p, this is a decent bound. We have a trivial bound

|A+ A| |A · A| ≥ c |A|2 (11.1)

but the theorem in this range gives

|A+ A| |A · A| ≥ |A|2+c (11.2)

and if |A| ≈ p2/3, then

|A+ A| |A · A| ≥ c |A|5/2 (11.3)

Now, back to the sum-product graph. Recall that we have (p − 1)p vertices (a, b) for a ∈ F∗p and
b ∈ Fp. They are connected by an edge iff ac = b + d. Let M denote the adjacency matrix of G.
One sad thing is that it has loops, a vertex can be connected to itself. We have p(p−1) eigenvalues

µ0 ≤ µ1 ≤ ... ≤ µp2−p−1 (11.4)

and let λ be the second largest eigenvalue. For any two vertices u, v, if a 6= c and b 6= d, then
they have exactly one common neighbour. To see this, let (x, y) be a common neighbour. We
have ax = b + y and cx = d + y. From this system of equations, we get x = (b− d)(a− c)−1 and
y = x(a + c) − b − d, which determines the point exactly. On the other hand, if a = c or b = d,
then there are no common neighbours. We have

M2 = J + (p− 2)I − E (11.5)

where E is an error matrix. The error term defines a graph GE, with (vi, vj) ∈ E(GE) iff a = c
or b = d. The error graph is a regular graph, so all the eigenvalues are bounded in degree. Gp−1
is a (p− 1)-regular graph, so p− 1 is the largest eigenvalue, and ~1 is the eigenvector. There is an
orthonormal basis consisting of the eigenvectors of M . Let θ denote the second largest eigenvalue
of M . We know |θ| < p− 1. Multiply equation (11.5) by vθ, and we get

(θ2 − p+ 2)vθ = Evθ (11.6)

which means E has the same eigenvectors as M . So GE is a (2q − 3)-regular graph, so any
eigenvalue of E is at most 2q − 3. We then obtain θ2 − p+ 2 ≤ 2p, so |θ| <

√
3p. Now we use the

spectral bound ∣∣∣∣e(S, T )− |S| |T |
p

∣∣∣∣ ≤ θ
√
|S| |T | (11.7)

Defining the two sets, we choose S = (A ·A)× (−A), and T = (A−1)× (A+A). There is an edge
between (a · b,−c) and (b−1, a+ c). The sizes satisfy |S| = |A · A| |A| and |T | = |A| · |A+ A|, and
the number of edges in e(S, T ) is at least |A|3. Thus,

|A|3 ≤ e(S, T ) ≤ |S| |T |
p

+
√

3p |S| |T | = |A · A| |A+ A| |A|2 + |A|
√

3p |A · A| |A+ A|

looking at each term in this sum individually, we get the result.
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Lecture 12

Recall that Gn is dense if e(Gn) ≥ cn2 for c > 0 fixed.

Lemma 12.1 (Szemerédi’s Regularity). If Gn is dense, then you can partition the vertices into
subsets, where the edges between the ‘most of ’ the subsets are ‘randomlike’ bipartite. In other
words:

For any ε > 0. there is an m such that any graph Gn for n ≥ n0(ε) can have its vertex set
partitioned into ∼ n

m
sized partition classes so that for all but εm2 pairs of the classes, the bipartite

graphs between them are ε-regular.

Definition 12.2. Let G(A,B) be bipartite, |A| = |B| = n. Then G(A,B) is ε-regular if for any
A′ ⊆ A and B′ ⊆ B, with |A′| ≥ ε |A|, |B′| ≥ ε |B|, we have∣∣∣∣e(A′, B′)|A′| |B′|

− e(A,B)

|A| |B|

∣∣∣∣ ≤ ε

This quantity is the ‘density’. We could write it as

|δ(G(A′, B′))− δ(G(A,B))| ≤ ε (12.1)

Lemma 12.3. If Gn is a graph where every edge is the edge of exactly one triangle, then Gn is
sparse. However, you can get really close to n2 edges. There are graphs with ≥ n2

e
√

log(n)

Now, a question. Consider [n] × [n], the integer grid. if S ⊂ [n] × [n], and |S| ≥ cn2, then S
contains a “corner”.

This is a similar question to Roth’s theorem, which is that if S ⊂ [n] and |S| ≥ cn, then S
contains an arithmetic progression of length 3. However, the above question is stronger. You can
see this with a projection trick.
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We can solve the question by creating three vertex sets. The vertices are the slope -1 lines
in the grid, the horizontal lines, and the vertical lines. These sets have 2n, n, and n vertices
respectively. We join two vertices if their point of intersection is in S. Every point in S has exactly
3 lines going through it, so that is a triangle. If we assume this graph is dense, there is one edge
sitting on two triangles. This gives us a corner. Otherwise it is sparse, but this contradicts density
of S.

Lecture 13

Recall that a ε-regular pair is two sets, where the bipartite graph G(V,W ) satisfies the following
condition. If V ′ ⊆ V , W ′ ⊆ W and |V ′| ≥ ε |V |, |W ′| ≥ ε |W |, then

|the density of G(V ′,W ′)− the density of G(V,W )| ≤ ε

Lemma 13.1 (Regularity, by Szemerédi in the 70’s). For any ε > 0 there is an M ∈ N so that
any graph Gn for n ‘large enough’ can be partitioned into M partition classes such that all but at
most εM2 partition class pairs are ε-regular. One can require that all classes have size ∈ [ n

M
± 1].

Given Gn and an ε-regular partition V1, ... , VM , one can define the δ-reduced subgraph of Gn.
This is called G∗n ⊂ Gn, made by removing all edges between edges within one of the Vi, removing
all edges between ε-irregular pairs, and removing all edges between pairs with edge density < δ.

We had cn2 edges originally, how many edges did we remove in this process? In the first step,
at worst every partition graph contains a complete graph, so we could have lost up to

M

(
n
M

2

)
≈M

( n
M

)2
=
n2

M

In the second step, from the lemma, we could have removed ε complete bipartite graphs, and lost

εM2
( n
M

)2
= εn2

from the third step, we removed

δ
( n
M

)2(M
2

)
≈ δn2

therefore we have e(G∗n) ≥
(
c− 1

M
− ε− δ

)
n2 edges in the new graph. So, if for example we chose

our constants so that 1
M

+ ε+ δ < c
2
, then e(G∗n) ≥ c

2
n2 which is a significant number of edges. We

can use this to prove the strange triangle lemma from last class.

17



Proof of 12.3. Another way to state the lemma is that for any c > 0, there is an n0(= n0(c)) so
that if Gn is as in the lemma conditions, then e(Gn) < cn2.

Suppose there is a c > 0 so that there are graphs Gn with arbitrary large n so that every
edge is an edge in exactly one triangle and e(Gn) ≥ cn2. Now, use regularity lemma with ε small
enough on Gn. Find the δ-reduced subgraph of Gn. Because every edge is an edge of exactly one
triangle, if the number of edges we remove is less than the number of triangles, we will still have a
triangle in the end. The number of triangles is cn2

3
. So if 1

M
+ ε+ δ < c

3
, then we will be left with

a triangle.
This triangle connects three classes. We’ll suppose they have size N vertices each. Then there

are 3N vertices total, and δN2 edges, and the three pairs are ε-regular and δ-dense. How many
points are in V2 with νN neighbours in V1? If the number of these bad points is > εN , we get
a contradiction. That is, the density of (BAD, V1) > δ − ε if |BAD| ≥ εN , so there not many
vertices with small degree. This implies there are vertices in V2 which are good for each of V1
and V3. Considering the neighbours of this point, the neighbouring sets have many edges between
them.

Lecture 14

H.W.4 is going to be a 1–2 page “essay”/“reflection” on the presentation, to be completed after
the presentation is done. It should be about the main ideas of the proof, what you learned while
reading the material and preparing the talk.

14.1 Regularity Lemma and Hypergraphs

An induced matching is a set of vertex-disjoint edges in Gn, where the vertices of the matching
induced the edges of the matching only. So for a graph in general, G∗ is an induced subgraph if
there is a vertex set V ′ ⊂ V (Gn) such that V (G∗) = V ′ and G∗ ⊆ Gn and G∗ contains all edges in
Gn between vertices in V ′.

18



Corollary 14.1. If Gn is the union of n induced matchings then it is sparse.

For simplicity, consider a bipartite graph Gn.

Proof sketch. Take M partition classes in an ε-regular partitioning. Let us consider the reduced
(ε, δ) regular subgraph of Gn, G∗n. Now, there is a matching M with ≥ c′n edges. If in a class Vi
the number of vertices of M < ε∗ |Vi|, then remove those edges from M . At the end, we removed
at most ε∗n edges from M .

If ε∗ < c′, there is some edge from M remaining. Say this edge joins classes Vi to Wj, so these
classes have an edge which survived all the cleanings. This means there were ≥ ε∗ |Vi| vertices
from M in Vi and ≥ ε∗ |Wj| vertices from M in Wj as well. Choose ε small enough so that ε∗ > ε.
Since the pair Vi and Wj are ε-regular and δ-dense, we can find a subgraph Mi of Vi and Mj

of Vj, and the number of edges between them is ≥ ε∗ |Vi| ε∗ |Wj| · δ. This means that there are
many edges here, but since these edges came from n matching, so the max number of edges is
min(|Mi| , |Mj|).

Definition 14.2. A 3-uniform hypergraph H(3)
n . is a graph where every (hyper) edge connects 3

vertices.

Observe that the maximum number of edges in H(3)
n is

(
n
3

)
≈ n3. A complete hypergraph is

usually called a clique. A modification of 12.3: if in H(3)
n every edge is the edge of exactly one

clique, then it is sparse. That is, for every c > 0, there is an n0 = n0(c) so that if H(3)
n has this

property, and n ≥ n0, then the number of edges in this graph is < cn3.

Lecture 15

Theorem 15.1. If in H(k)
n , every edge is the edge of exactly one clique, then the graph is sparse

(that is, e(H(k)
n ) = 0(nk)).

19



This is a more general version of what was stated last time. If k = 3, then the above theorem
implies: For each c > 0, there is an n0 = n0(c) such that if S ⊂ [n]× [n] and n ≥ n0 and |S| ≥ cn2,
then S contains a square.

Like the previous theorem of this kind, we solve this with a projection trick, this time projecting
a three dimensional set of points onto the two dimensional set. Let’s assume S contains no square.

Then τ := S × [n] ⊂ [n] × [n] × [n] ⊂ R3 contains no configuration like (x, y, z), (x + d, y, z),
(x + d, y + d, z), (x, y + d, z + d). Points like this determine a tetrahedron. So we create planes
slicing through the space.

Choose a small number `, and consider the smaller cube if this size within the real one. If three
points p1, p2, p3 ∈ [`]3 determine a plane P , the number of planes parallel to P with non-empty
intersection, with [n]3 is ≤ c`n. This can be seen with some linear algebra. In fact, you can
compute that c` = 3` works.

Define vertices of a graph to be one of the four plane edges that can make one of these
tetrahedra. We connect three edges if the intersection of the planes is in τ . Each point of τ defines
4 edges, and every edge is an edge of a clique. If an edge is in at least 2 cliques, then one of
the cliques defines a tetrahedron with sides parallel to the configuration we are looking for. This
completes the proof.

It’s possible to do a similar argument to show that there is always a full 3 × 3 grid in such a
set. You project to the space S × [n]7, (in general, make the dimension one less than the number
of points in your grid) and look at the hyperplanes.

Lecture 16 – Probabilistic Method

Gn,p is a graph on n vertices with each edge having independent probability p of appearing. A
famous example is Gn,1/2, every edge is taken independently with probability 1/2. Question: what
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is the probability that Gn,1/2 is not connected? To start, create a partition into vertex sets m and
n −m. There are m(n −m) potential edges between them, so there is a 2−m(n−m) chance these
components are disconnected. Summing over all such partitions, we have a trivial upper bound on
the probability that the graph will be disconnected.

bn
2
c∑

m=1

(
n

m

)
2−m(n−m) (16.1)

We can evaluate this with some cool splitting of the sum. Let ε > 0, and then

bn
2
c∑

m=1

(
n

m

)
2−m(n−m) =

bεnc∑
m=1

(
n

m

)
2−m(n−m) +

bn
2
c∑

m=bεnc+1

(
n

m

)
2−m(n−m) (16.2)

and estimate each term. The second one is easier, we have m(n−m) ≥ ε(1− ε)n2 so this sum is
less than a sum of 1

2cn2−n
. It sounds like we should actually use ε = log n?

Recall the Ramsay number R(k, k), which is the least number such that any two colouring of
the complete graph on R(k, k) vertices results in a monochromatic complete subgraph of size at
least k. We got the bound of 4k for this number before. We will show that the lower bound is√

2
k
. In Kn, colour the edges independently with probability 1/2. What is the probability that

you have k vertices that span a monochromatic complete subgraph?

Given k vertices, there is a
(
1
2

)(k2)−1 chance it will be monochromatic. There are
(
n
k

)
k-tuples

of vertices. If we sum over all these probabilities and the result is less than one, there might not
be a monochromatic subgraph. It’s pretty intuitive, but this uses a probability theorem called
linearity of expectations.

Let X = 1 if monochromatic, 0 otherwise. Then consider the expected value of X(nk)
. By

linearity of expectations,

EXP

 ∑
S⊂V (Gn),|S|=k

XS

 =
∑

S⊂V (Gn),|S|=k

EXP (XS)

so if this is less than 1, there is a colouring without a monochromatic subgraph. Thus if we can

show
(
n
k

)
·
(
1
2

)(k2)−1 < 1 we are done. This inequality does hold if n ∼
√

2
k
.

Lecture 17 – Extremal Set Theory

We focus on finite sets. Sn is an n element set, and F ⊂ 2Sn is a family of subsets of Sn. A typical
question in Extremal Set Theory is ‘What is the maximum |F| under some given conditions?’ You
could require the subsets to be 3 elements each for example. The extremal set is then a 3-regular
hypergraph.

Here’s a complicated example. Let F have the property that if A, B ∈ F , then for all A 6= B,
A ∩B = k for some fixed integer k ∈ N. What is max |F| under this condition?

We can assume that for all A ∈ F , |A| > k otherwise if there was a set with |A| = k every
pair of sets B, C ∈ F not equal to A have to have B ∩ C = A. We then have B − A and C − A
are disjoint, and every B−A set has at least one point outside A. This gives us at most n− k+ 1
sets in this case.
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Now, every A ∈ F can be represented by its n-dimensional indicator vector vA. We can then
consider the Gramm matrix of the indicator vectors i.e. the matrix where entry aij is the dot
product of vector i with vector j. The dot product of two indicator vectors is the size of the
intersection. This matrix will thus be all k’s, except along the diagonal where there will be the
cardinalities of the sets. Let m = |F|.

MF =


|Ai| k ... k
k |A2| ... k
... ... ... ...
k k ... |Am|

 (17.1)

We want to bound the rank of this matrix in terms of m, k, and n. We can use the bound
Rank(M1 + M2) ≤ Rank(M1) + Rank(M2). It follows that Rank(MF) ≥ m − 1, which you can
see by how MF − kJ is diagonal with nonzero entries in the diagonal, and

m = Rank(MF − kJ ) ≤ Rank(MF) +Rank(kJ ) (17.2)

Now, the definition of this matrix is via 〈vA, vB〉 = x1y1 + ...+ xnyn, so we can split our matrix up
into MF ,1 + MF ,2 + ... + MF ,n where MF ,j is the jth coordinate of the dot product, xjyj. Every
column is a constant multiplier of the first column, so every MF ,j has rank 1. Thus

Rank(MF) ≤
n∑
j=1

Rank(MF ,j) = n (17.3)

We thus have m− 1 ≤ Rank(M) ≤ n so a bound is that m ≤ n+ 1.

Theorem 17.1. Consider F where for all A,B ∈ F , A 6⊂ B. Then max |F| ≤
(
n
bn
2
c

)
.

Proof. Let us suppose that elements of Sn are labelled and let’s consider permutations of the n
elements. A permutation π(n) is “good” if there is a slice given by A ⊂ F ; that is, the first |A|
elements of π(n) are exactly the elements of A.

If π(n) is good for both A and B, then A = B due to the restriction on F . There are exactly
|A|! (n− |A|)! permutations which are good for a particular |A| because the order of the first |A|
elements and the last |n− |A|| elements of π(n) don’t matter. Now,∑

A∈F

|A|! (n− |A|)! ≤ n!

=⇒
∑
A∈F

(
n

|A|

)−1
≤ 1

(17.4)

this last equation is called the LYM inequality. Every entry in this sum is ≥
(
n
bn
2
c

)−1
, so

|F|
(
n

bn
2
c

)−1
≤
∑
A∈F

(
n

|A|

)−1
≤ 1 (17.5)

22



Lecture 18 – Ramsey Theory

We studied the Ramsey number
√

2
k ≤ R(k, k) ≤ 4k in this class. There is an analogue of this

for Hypergraphs as well. A large part of this field is Arithmetic Ramsey, which includes Shur’s
Theorem, and results like the density of a subset of N being large means there are arithmetic
progressions of any size.

18.1 Geometric Ramsey

Theorem 18.1 (Erdős-Szekeres). Any sequence of real numbers has a ‘long’ increasing subsequence
or a ‘long’ decreasing subsequence (not necessarily strictly increasing or decreasing).

For example, the sequence 1, 2, 1, 1, 3, 4, 5, 3 has the increasing subsequence 1, 1, 1, 3, 4, 5 and
decreasing 2, 1, 1. Now, what we mean by long is ‘size at least

√
n’. The exact statement in the

theorem is that s · r+ 1 ≥ n where s is the longest increasing, r is the longest decreasing. You can
see that there is a construction with both sequence lengths at most

√
n, just take 1, 2, ...

√
n, 1, ....

Proof. Let ai ∈ R for 1 ≤ i ≤ n. label each element in the sequence. The labelling of element ai
is (bi, ci), where bi is the size of the largest increasing sequence in the first i elements ending in ai,
and ci is the size of the largest decreasing sequence in the first i elements ending in ai. Observe
that every label is distinct. To see this, note that we have two cases for elements ai, aj. If ai ≥ aj,
then ci < cj. If ai < aj, then bi < bj.

Now, if s is the size of the longest increasing sequence, r is the longest decreasing sequence,
then all of our bi are in [s] and all of our ci ∈ [r]. There are at most sr pairs (bi, ci), so sr ≥ n.

Note that unlike the infinite arithmetic progression problem, you can always find an infinite
increasing or decreasing sequence, not just one of arbitrarily large size. You just let S be the
elements ak in our set for which every element after ak is smaller. If S is infinite, it is an infinite
decreasing subsequence. If its finite, then starting at the element after the final element of S, you
can start find an infinite increasing sequence.

Theorem 18.2 (Kőnig). An infinite rooted tree with finite degree vertices has an infinite path.

Another famous theorem in this area is the following.

Theorem 18.3 (Erdős-Szekeres Happy Ending). Given n points in the plane, no three in one line,
then there are f(n) points in convex position. Let F (n) = least number so that among F (n) points,
there is at least n in convex position. The theorem states 2n ≤ F (n) ≤ 4n.

It’s not hard to see that F (4) = 5, that is, for any 5 there are 4 in convex position. To see
this, assume that the convex hull was not already a quadrilateral, so two points are inside the hull.
Connect the two with a line. This line hits two sides of the triangle, and the 2 points determining
the third side are in convex position with the 2 interior points.
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One more application; let B(k, `) be the least number so that any point set of size ≥ B(km, `)
contains a k-cAp or an `-cUp. These things are points arranged in some kind of parabolic position.
We can prove by induction that

B(k, `) ≤
(
k + `+ 4

`− 2

)
+ 1 (18.1)

Lecture 19

Book recommendation: Lovász, Problems and Exercises in Combinatorics is a book you must have
if you’re into combinatorics.

Let Cd
t be a ‘combinatorial space’ of dimension d over t characters. Words of length d com-

posed using t characters. The ‘characters’ could be anything, but you can take for example
t = {0, 1, 2, ... , t− 1}. A word could be [0, 5, 2, 1, 0, 0] which is an element of C6

6 .

A combinatorial line in Cd
t consists of t words (points) such that in position i for 1 ≤ i ≤ d,

one of two cases holds. Either all entries are the same, or all entries are increasing from 0 to t− 1.
What this might look like is, with the first coordinate stationary and the second increasing,

(2, 0, ... )
(2, 1, ... )
(.. .. ... )
(2, t− 1 ... )

Consider the diagram below. In this space, you can count there are 7 combinatorial lines. You
can see that the red line here is not a combinatorial line as it is decreasing in one coordinate, but
the green one is.

In more generality, note that
∣∣Cd

t

∣∣ = td. We can see there are (t+ 1)d− td combinatorial lines.
To see this, you can choose k coordinates to be constant, and the other d − k will be increasing.
This can be done in

(
d
k

)
ways. Then there are kt ways to choose which values are fixed at, so we

have
∑d−1

k=0

(
d
k

)
kt ways to do this.
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Another argument is to extend the combinatorial space one character longer. Each combina-
torial line will arrive at a unique point on the boundary of Cd

t+1, as everywhere you have t + 1
must have been increasing, as everywhere else you have the same constant. That is, Cd

t+1 − Cd
t is

in bijective correspondence with the lines in Cd
t .

Consider Cd
2 =: Qd, the d-dimensional cube. A line in Cd

2 might look like

(0, 1, 1, 0, 0, 1, 0, 0, 0)
(1, 1, 1, 0, 1, 1, 0, 1, 0)

Theorem 19.1 (Hales-Jewett). For any t and k there is a number HJ(t, k) such that for any
k-colouring of Cd

t there exists a monochromatic combinatorial line provided d ≥ HJ(t, k).

We can prove this for Cd
2 . Note that the points of Cd

2 represent the subsets of a d element
set. We know that the maximum cardinality subset of subsets without one containing another is
≤
(

d
bd/2c

)
∼ 2d√

d
. This means that for and c > 0 there is a d0 depending on c only so that if d ≥ d0,

and we have a set S ⊂ Cd
2 with |S| ≥ c2d, then S contains a combinatorial line (which, again, is

a set containing another). This proves it, as your colouring classes are eventually large enough so
that one of them must contain a line.

We can also show this for HJ(2, k). Well, we have chains of d + 1 sets, and if any two have
the same color, we have a line, so HJ(2, k) = k. In general, there is a way to use these as a base
case for induction.

There is a harder ‘density’ version of Theorem 19.1, called the DHJ Theorem. The first proof
was by Furstenberg and Katznelson, but there is a Polymath project proof of that as well. We will
now state a couple applications of Theorem 19.1.

Theorem 19.2 (Vanderwaerden). For any k and r, there is a bound W (k, r) such that any k
colouring of the first n integers contains a monochromatic arithmetic progression of length r,
provided n ≥ W (k, r).

Theorem 19.3 (Euclidean Ramsey). For any point set {p1, ... pr} = P , and any k-colouring of
R2, there is a monochromatic scaled & translated copy of P .

To begin to prove this, lets say our alphabet is {v1v2, ... , vr}, and here r = t. If we have
combinatorial line we can sum up the rows like so,

(vi ... v1 ... v1 ...)→ V +mv1
(vi ... v2 ... v2 ...)→ V +mv2

...
(vi ... vr ... vr ...)→ V +mvr

(19.1)

where m is the number of running coordinates, and V is the fixed sum of the fixed entries. Let
the color of a word in the combinatorial space be the color at the spot on the plane that you land
when you sum up the vectors in each line. A monochromatic combinatorial line will then give you
a way to transform your set (based on V and m) to land on a monochromatic set of points.
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