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Lecture 2

Definition 2.1. let Z C A" = {(z1, ..., 2,) : z; € C} is an algebraic set or a closed set if it is the
zero set Z = Z(S)={pe A", f'(p) =0V f e S CClzy,..,z,)}.

Some examples,
e A" = Z(0): the 0 polynomial, or ) = Z(1): the 1
e Any point (aq, ..., a,) is a n algebraic set for the zero set (aq, ..., a,) = Z(z1 —aq, ... ,x, — ay)
e any linear subspace
o {f(xz,y) =0} C A" plane curves
Question 2.2. How does Z(S) depend on S?

The first observation is that in general, you may replace the subset S with the ideal generated
by S, since for two functions in S, the linear combination g; f; 4+ g2 fo for arbitrary polynomials
g1, g2 is also in there. That is, Z(I(S)) = Z(S) so we always consider S € C[zy, ..., x,| which are
ideals. The Hilbert Basis Theorem shows that all ideals in Clz, ..., x,] are finitely generated, so
any algebraic set is the solution to a finite set of polynomials.

The following is a result in commutative algebra.

Lemma 2.3. Let R be a ring (in this class, we always assume rings are commutative and with
identity). Then the following are equivalent.

1. FEvery ideal in R s finitely generated

2. Every infinite ascending chain of ideals is stationary (a stationary chain of ideals is one
where eventually the inclusions all become equalities. For I; C I, C I3 C ... there is an n
sufficiently large so that I, = I, for allm > n).

Such rings are called Noetherian
Proof.

(1) = (2) Suppose [; C I, C I3 C ... Then |, [; is an ideal, so I = (fi, ..., f) where f; is
in some Ij,. Then I = I,



(2) = (1) Suppose there was an I which was not finitely generated, and let f; € I be any
non-zero element, and let fir1 € I — (f1,..., f;). Then (f1) C (f1, f2) C ... is nonstationary,
which is a contradiction.

]

Note that If R is Noetherian, then R[x] is also Noetherian, which implies the earlier Hilbert
basis theorem.

Theorem 2.4. If R is Noetherian, then R[z] is Neotherian.

Proof. Suppose I C R[z] was not finitely generated. Construct a fo, fi,... € I where fy is non-zero
and minimal degree, choosing f;11 € I — (f1, ..., f;) to be of minimal degree. Let a; be the leading
coefficient of f;, which creates an ascending sequence of ideals I; := (ay, ..., a;) C R, which makes
an ascending sequence which must be stationary. This means there is an n so that for all m > n,
am+1 € (a1, ..., a,). But then a0 = > 1" ria;. So we let

f = fm-l-l _ Z xdegfmﬂ—deyfirifl (2_1)

=0

Now, the second part is in (fo,..., fi), and the first is in I — (fy, ..., fin), which means f €
I — f(fo, ., fm), but the degree degf < degfm+1 since the coefficient of z4¢9/m+1 of f is

Am+1 — Zriai =0 (22)
=0
which contradicts that f,,; was chosen to be the minimal degree. O]

Now, algebraic sets do not exactly determine a unique ideal. That is, any algebraic set may
not be the zeros of some polynomials. For example, let 0 € A'. This is {0} = Z(z) = Z(2?), but
(z) # (2*). More generally, Z(f1,..., fr) and Z(f}, ..., f;*) are the same.

The assignment S — Z(.S) reverses inclusions.
1. It Sy € Sy C Clay, .., x,] then Z(Ss) C Z(S7) C A™.
2. Z(U; 5) = M Z(5)
3. Z(S1) U Z(S2) = Z(S1 - S2)

For number three, suppose p € Z(S1) U Z(55), then for all f; - fo € S; - Sy, one of f; and fo
vanishes so their product does too. So p € Z(S; - Ss).

Next suppose p & Z(S1) U Z(Ss,), then there is f; € Sy, fo € Sy so that f;(p) # 0, so their
product is not zero as well, so p € Z(S; - Sa).

Definition 2.5. Recall that we can define a topology on X by specifying what the closed sets are,
Just requiring that

1. 0, X are closed

2. Arbitrary intersections and finite unions of closed sets are closed



This means we can specify a topology by specifying that the algebraic sets are closed, which results
in the Zariski Topology.

Using the subspace topology, the Zariski topology induces a topology on any algebraic set.
Note that the Zarkisi topology is very coarse. That is, the open sets are very big; they are all
dense. This topology is very different from analytic topology. Compactness is useless, every closed
set is compact. Any set bijection is continuous as well, so continuity is not useful. Be careful with
intuition!

Definition 2.6. For X C A", let I(X) = {f € Clzy,...,z,] : f(p) =0V p € X} be the ideal of
functions that vanish on X. Then

I : { Algebraic sets in AN} — {Ideals in Clzy, ..., x,]} (2.3)
and Z 18 a map in the other direction.

Example 2.7. Let Z = z-azis U y-azis U z-azxis. Note that x-azis U y-axis = Z(z,xy), and
z-azis = Z(x,y), and so
Z(z,2y) U Z(2,y) = Z(wz, 2y, 2y, 2y%) (2.4)

and as well Z(ZX) = {xy-plane} U {yz-plane}, so
Z = Z(ZX)UZ(XY)UZ(YZ) = Z(ZX, XY,Y Z) (2.5)

but I, # I, even though Z(I;) = Z. It turns out I, C I, but xy € I, — I,. Note that 2*y* € I*.

Lecture 3
Definition 3.1. Given some ideal I C Clzy, ..., x,)|, then the radical of the ideal is
VI={feClzy,..,x,): [T €I for somer} (3.1)
Theorem 3.2 (Nullstellensatz).
1. If X C A" is algebraic, then Z(I(X)) = X.

S

2. If I C Clzy, ..., x,), then I(Z(X)) =
Proof.

1. True by definition. But can you think of a non-algebraic set where this fails? One example
is any interval. Any infinite set of points in fact!

2. “D” is easy: if f" vanishes, then f vanishes.

“c”:. if f vanishes on Z(I), then f" € I for some r. To see this, we invoke the following
lemma from commutative algebra. Suppose f vanishes on Z(I). Consider J = [+ (f-t—1) C
Clzy, ..., xp, t]. Then Z(J) C A" is (), since the x coordinates lie in Z(I) and f -t —1=10
turns into —1 = 0 at such point and thus cannot have solutions. By the corollary, we have
1=go(f - t—1)4+ > gifi where I = (f1,..., fr), and g; € Clzy, ..., Z,,t]. Now, let N be the
highest degree of the powers of ¢ occurring in the functions g;. Then

G; = ngi € (C[ZL‘l, ,ZEn,ft] (32)
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which is a polynomial in the x; and ft. Then

fN=Go- (ft=1)+>_ fi € Clan, ..., xn, f1] (3.3)
G;
Now, setting ft = 1, we get a polynomial equation
=Y Gilw, o an )i €T (3.4)
[
Lemma 3.3. The mazimal ideals in Clxy, ..., x,] are all of the form m = (x1 —aq, ..., x, — ay) for

(a1, ...,a,) C A"

Corollary 3.4. If Z(I) =0, then I = (1) (I is everything. If I # (1), then it would be contained
in some maximal ideal I C M whcih means there is an (ay, ..., a,) € Z(1)).

Note that the lemma fails for example R[z] since (z? 4+ 1) C R[z] is maximal.

Definition 3.5. A set X is reducible if X = X1 U Xy, X; closed and X; # X. If X is not redicible
it is called irreducible. An irreducible algebraic set X C A™ is called an affine variety.

For example, let X C A2 where X = Z(22 —¢y*) = Z((x —y)(x +y)) = Z(z —y) U Z(z + y).
Definition 3.6. A topological space is Noetherian if every descending chain of closed sets is sta-
tionary.

A corollary of this is that every algebraic set can be written as a finite union of affine varieties,
just using a similar logic to Lemma 2.3 and noting that Z(-) reverses inclusions.

P C R is a prime ideal if ab € P = a,b € P. This happens iff R/P is an integral domain,
where a-b =0 in R/P implies a = 0 or b = 0. There are correspondences between some concepts,
given in the following list.

e Geometry in A"

1. Points in A"
2. Affine varaieties
3. Closed sets

o Algebra (Ideals in Clzy, ..., z,))

1. maximal ideals in C[zy, .., x,]
2. prime ideals
3. radical ideals

Definition 3.7. Let X C A" be a variety. The dimension of X is the largest d s.t. there is a
chain

P£XoCXC..CXy=X (3.5)

where each X; are irreducible closed sets. By definition, the dimension of any closed set is the
highest dimension of its components (Jargon: if X = X1 U...U X, a union of irreducible sets X;,
the X; are called the components of X ).

For example, the closed sets of Al are (), A or finite sets of points. Thus dim Al = 1. It is
also true that dim A™ = n, however it is quite hard to prove that directly from the definition.
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3.1 Projective space and projective varieties

As a set, complex projective space CP™ (or just P™) is equivalence classes of (n + 1)-tuples

CP" = (C™ = {0}) /C* = {(a1, .., an) # (0,...,0)} / ~ (3.6)

where (aq,...,a,) ~ (Aaq, ..., Aa,) for any A € C*. You can think of this as the set of lines in
A" whcih are in bijective correspondence with the copy of A" given by the subset of A"*! where
ao = 1 through stereographic projection, except those where ag = 0.

Now, in a way CP" is A" with some points added at oo. Let’s consider Uy C P", where

Up = {(ag,...,an) : agp # 0}. We have a bijection Uy — A™ where (aq, ..., a,) <ﬂ “—"),

ag’ ’ ag
(1:0by,...,b,) < (b1,...,0,). Similarly, define U; C P™ where the a; # 0. This makes CP" into
an n-dimensional complex manifold with U; & C™ as coordinate charts ( you could see that the
change of coordinates are holomorphic).
In the analytic topology, CP™ is compact and has a natural metric:

CP" = {<a,... L) : Z la;|” = 1} / ~ (3.7)

if (a1,...,a,) ~ (Aay, ..., Aay,) for any A € C* where |[A| = 1. THus
CP" = §**+! /St (3.8)

For example, let’s look at CP' = S?. Then Uy 2 C 3 2z = % and U; = C > w = . So,
setwise, CP' = C U {oo}. Note also that S* = S3/S!.

Definition 3.8. f(zy,...,,) is homogeneous if f(A\xq, ..., A\v,) = X f(xg, ..., 7,).

Lecture 4

Definition 4.1. A polynomial f € Clxy, ..., x,] is homogeneous of degree d if for all X € C,

fAzg, ..., Azn) = M f (20, ..., T0) (4.1)

Now, let (fi, ..., fx) be a collection of homogeneous polynomials (not necessarily of the same degree).
Then

Z(f1,., Jr) =4{p € CP": fi(p) =0} (4.2)

Note that a homopoly f is not a function on CP" (the value f(z,...,x,) is not well defined),
however the 0 set is well defined.

Definition 4.2. Z C CP" is an algebraic set (a.k.k. a closed set) if there are homogeneous
fiy ooy fro such that Z = Z(f1, ..., fx).

If all the f; are linear, then their zero set Z is also called linear. It’s a linear subset of CP™,
and for example a linear subspace of CP? is called a line.

Example 4.3. Consider Z(x3 — x1x9) C CP2. This is a conic plane curve. What does this look
like in the 3 affine coordinate patches it has?



1. 22 = x79 in Uy, we have affine coordinates %, ﬁ—f}, so Uy where xo # 0 is the set where
1= (@) (22
ote) o)

I
Zo

€

X

2
2. In Uy, x1 # 0, and the equation is (ﬂ> = 2

z1

)
€

ILEO

€

3. Schematically, we can encapsulate all the equations:

(1:0:0)




We can also get a look at this in RIP2, which form lines in RP3,

Example 4.4 (twisted cubic). Let X € CP? be the image of the set map CP' — CP3, (z¢: x1) —

(23 : 22xy : wox? : 23). This map is well defined, just check equivalence classes; multiplying by

lambda thing. You also need to check not all coordinates in the image are 0 at any point.
I claim X is a closed algebraic set, so it must be the O set of 3 polynomials (fy, f1, f2). Let CP?
have homogeneous coords (2 : z1 : 22 : 23). Then let

_ 2
L fO—ZOZQ_Zl

_ 2
o fi =223 — 25
o fo= 2023 — 212

So, clearly X C Z(fo, f1, f2). Suppose (zo : z1 : 29 1 z3) € f(fo, f1, f2). Then either zy or z3 # 0;
shouldn’t be hard to see this from the equations. If zg # 0, then
(20121200 23) ~ (25 1 2021 1 202t 25 23)
= (23 2221 : 2022 20212) (4.3)

= (25 2321 202t 20)
Now, in Uy (zog #0), let t = L. we have the map Al — A3 =Ty, t — (¢, 2, 13).

Surprisingly, we show in the homework that the twisted cubic X C CP? cannot be described
by fewer than 3 equations. Jargon: X is not a complete intersection. Consider the minors of the

matrix
20 21 22
Z1 R9 <3

Aye, they are equivalent to the three equations for X. Them all being 0 is equivalent to this matrix
having rank exactly 1.
Like our correspondence

{closed sets in A"} «— {radical ideals I C Clz1, ..., z,]} (4.4)

we would like similar statements for sets X C CP". I C C|xy, .., 2,] is a homogeneous ideals if it
is generated by homo polys. Z(fi,.., fx) = Z(I) for I = (f1,..., fr). Conversely, given Z C CP",
1(Z) is the ideal generated by homogeneous f such that f(p) =0 for all p € Z.
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Theorem 4.5. Z(-) and I(-) give a bijection

{Z C CP" closed algebraic sets} +—

4.5
{homogeneous I C Clxy, ..., x,] where VI =1, except (2o, 1, ... ,:cn)} (4:5)

Definition 4.6. A closed se X C CP" is irreducible if X # X1 U X5 a non-trivial union of closed
sets. A projective variety is an irreducible closed set in CP".

Passing between projective to affine varieties: Let H C CP" be the hyperplane H = {xy = 0}.
Then CP* — H = A", where (zo, ..., T,) — (”—1 g”—"), (1:21:..:x,) < (21,..., 2,) Suppose

xg’ ’ x0

X C CP" is an algebraic set defined by I(X) = (fi(xo, ..., Tn), ., fx(Tos vy Tn))-

Let X = X N (CP" — H) so X° € A". Then I(X%) = (f,..., fY) where f2(z1,...,2,) =
fi(1, 21,0y 20)- o

Conversely suppose X C A" X = Z(fi,..., fx), define X C CP™ be the Zariski closeure of
X C A" Cc CP™.

{Z e P} {I :I\/CT,S[?’(;«"I,?], a:n)} 0

‘, Ordinary Nullstellensatz

Z C AM st if (ag, ... ,a,) C Z, then
(Aag, ..., Aay,) € Z for all A and Z # {(0,...,0)}

Definition 4.7. Let f € C[zy, ..., 2,] be of degree d, and let f*™° € Clxy, ..., x,] be

homo d T T,
s Ip) =x0fi | —, ..., — 4.7
f (Io, y &L ) x()f (-TO x[)) ( )
chich is homogeneous of degree d The claim in the (next) homework is that
X = Z(I(X)home) (4.8)
where I € Clzy, ..., z,], I(X)"m° C Clxy, ..., x,] is the ideal generated by f*™° for f € I. We will
also show by example that for I = (fi1, ..., fr), it is not necessary that 1"m° = ( fhomo - ,i“’m").
Lecture 5
In general
H ={L(zg,...,z,) =0} (5.1)
where L is a linear polynomial and let p € CP", p ¢ H. So H C CP" is a hyperplane. There is
a linear change of coordinates z, ..., x, — z, ..., x, so that H = {z{, = 0}, and p is the z{-axis
= {2z} =.. =2/, =0}. Then CP"\H = A" and p = 0 € A". Thus you can really identify H =

lines in CP" passing through p.

Consider C' C CP", where C' = Z(Q) where Q(x¢, x1, z2) is an irreducible quadric polynomial.
We would like to prove this is an isomorphism of projective varieties, but we need to define
morphisms of projective varieties first.



An-H

Figure 2: Correspondence between hyperplanes

PP

1:1
C —— P!

C q<—Dpq

Example 5.1. From Last time, consider CP' — CP?, (zg : x1) — (a3 : 2371 : 2% : x3) should be
a morphism, right?

Definition 5.2. Let V C A", W C A™ be affine varieties. A set map o : V — W is a morphism if
there are polynomials fi, ..., fum € Clzy, ..., x| s0 alxy, ..., x,) = (fr(xl, ..., 20), .y f(z], .0 2)).
L.e. morphisms are the restrictions of polynomial maps A™ — A™.

Definition 5.3. Let V. C A™ be an affine variety. The ring of functions on V' (a.k.a. the affine
coordinate ring of V')
A(V) : Clay, ooy x,) /I(V) (5.2)

Also sometimes called C[V], R[V], Oy, or Oy (V).

Note that f € A(V) can be regarded as actual functions on V. Since (z1,...,2,) € V,if f=7

mod [(V), then f(z1,...,x,) = f(z1, ..., 2n).
Given a : V — W morphism of varieties, we get a homomorphism of algebras
a*  AW) — A(V)

aa*(g) =goa (5:3)
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and the following diagram commutes

V5w (5.4)
f‘]

a*(g)
C

Conversely let A : A(W) +— A(V) be an algebra homomorphism. Then there is a : V +— W
such that o = .

A:Clyr, oo s Y] JIW) = Clay, .., 2] /I(V) (5.5)
so choose fi,..., fm € Clz1,...,2,] such that f; = A(y;). This defines a map a : A" — A™,
a(xy, ey y) = (fr(Ty, oo, Tn), eoey frn(T1, oy ).

If (zq,...,2,) € V, then (x4, ..., 2,) € W since if g € (W),
g(fil(x1, oy xn)y s frn(@1y oo 20)) = g(A(¥1)s -, A(Y))  mod I(V)
= ANy, s Ym)) mod I(V) (5.6)
=0
This construction is canonical and gives a bijective correspondence

Mor(V, W) = Hom(A(W), A(V)) (5.7)

That is, we have a categorical equivalence.

{Category of affine varieties over C} {Category of finitely generated algebras}

over C which are integral domains

V — A(V) (58)
(f: VW) — (f: AW] — A[V])
Another correspondence from this is
Varieties «— prime ideals I C Clzy, ..., z,)] (5.9)

Variety V «— A[V] = Clzy, ..., z,]/I(V)

If A is a finitely generated algebra over C (which is an integral domain), then pick some set of
generators 1y, ..., x, so that

A=Clzy,...,x,]/1 (5.10)

We could try doing the same strategy with projective varieties; define morphisms in terms of
homogeneous coord rings. Consider C' C CP?, 22 +y? — 2% = 0. Let’s try to define a map C — CP!
by (x :y:2)+— (x:2z—y). The problem is that this is not defined at the point (0 : 1 : 1), so it
doesn’t give us a morphism. Now, let’s look at the addine coordinate patch z # 0. The curve is

<§)2+ <Q)2 —0 (5.11)
z z

Let £ — s, and ¥ = ¢. Then the map is (f DL 1) > ﬁ, or in s,t language, (s,t) + %7, which

kind of makes it stereographic projection. The missing point should be the point at infinity, so it
should be well defined? Well, consider
(x:y:z)—=(x:z—1y)
~(z(z+y) 2% =y
(z(z +y) y7) (5.12)
(
(

~

z(z +y): 2%
Z+y:x)

~Y
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so we have “two” maps (x : y : z) = (v : z—vy), (x 1y : 2) = (2 4+ y : x) which agree as
maps C +— CP! when defined, but the first is not defined at (0 : 1 : 1), second not defined at
(0:1:—1). So what we're finding that affine varieties are like coordinate charts! For morphisms
of affine varieties we have a nice correspondence, but projective varieties are kind of like global
morphisms.

Lecture 6

We have a contravariant equivalence of categories equation (5.8). We want to make sense of
defining morphisms locally in a coherent way. In particular, the previous example C' +— P! should
be an isomorphism. Note that the homogeneous coordinate rings are not isomorphic.

Definition 6.1. Clx,vy, z|/(z* + y* — 22) % Clz,y] are not isomorphic. These are the coordi-
nate rings of the corresponding cone-like affine varieties. The one on the left hand side is the
homogeneous coordinate ring.

C (CB (CQ

Suppose that they were isomorphic. Then there is a polynomial map f which induces a homeo-
morphism of {z? + y? = 2%} — C2. But then we have a homeomorphism between {z? + y* = 22} —
{0,0,0} — C? — {0,0}.

Explicitly, we actually have

{2* +y* =2} —{0,0,0} = (C* - {0,0}) /£ 1 (6.1)

11



by the map

(C*—{0,0}) / £1 {2 +y* =2} — {0,0,0}
+(u,v) = (u® = 0*, 2uv, u® + v?)

<\/%(5p+z),\/%(z—x)> — (2,9, 2) (6.3)

with the relative sign fixed by \/%(:c +2) - \/%(z —x) = 3y°. Now, the contradiction is that

C?—{(0,0)} /£ 1 cannot be homeomorphic to C*—{(0,0)}, since the action of +1 on C*—{(0,0)}
is free so they have different 7.

To talk about maps on Zariski open sets, we need to first talk about functions defined on open
sets back in the affine case.

Let X C A" be an affine variety. We know the functions on X are

(6.2)

with inverse

A[X] = Cla1, .., 2] /T(X) (6.4)

But how should we define functions on some open set U C AY ? Since X is a variety, (6.4) is an
integral domain, so we can talk about its “field of fractions”.

Definition 6.2. The field of rational functions or field of fractions on X is called K(X), and it
is the quotient field of A[X]. That is,

K(X):{ng,geA[a:},g%O} (6.5)

modulo the usual equivalence of fractions, with the usual multiplication and addition of fractions.

Even though we call the elements of K(X) “rational functions”, they are not functions really
since they are not defined everywhere. A point p € X is called a regular point of g if g(p) # 0.

Definition 6.3. Forp € X C A", the local ring of X at p is

Ox, = {L € k()1 909 20} (1) (6.6)
Definition 6.4. Let U C X be Zariski open, and define the ring of reqular functions on U be

Ox(U) = () Oxy (6.7)

peU

Note that these 5 functions are equivalence classes actually, so it’s not quite right to just say
g(p) # 0. You can’t just refer to g specifically. What is meant by this notation is that there is

some representative 5 in the equivalence class for which g(p) # 0.

Remark 6.1. The regular functions on U are not necessarily given by f with g(p) # 0 for all
p € U. The equivalence classes bit can mess with this.
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Example 6.5. Let X C A?* be given by x124 = Tox3, and let U C X be
U:X—{ZL'Q :O}ﬂ{$4 :0} :X—Z((I'Q,ZE4)) (68)

So 'Y is the set (x1,...,x4) € X so that xy # 0 or x4 # 0. Then L = € K(X) are regular on
all of U.

Proposition 6.6. Let X C A" be an affine variety, f € A[X]. Let

Xy={peX:flp)#0}=X—-Z(f) (6.9)
Then

Proof. Clearly A[X)]; C Ox(Xy). Conversely, suppose ¢ € O(Xy) C K(X). Let
Jo={g€ A[X]:g-¢p€ A} C A[X] (6.11)

The ideal of functions clearing the denominator of ¢. Then For all p € Xy, there are h, g € A[X],
we have g(p) # 0 and ¢ = %. Thus, g € J and g(p) # 0. Then Z(J) C Z(f) are closed sets in X,

so (f) C€vJ = f" e J for some r, which means ¢ = fi7 and so O(Xy) C A[X];. O

In the special case where f = 1, this implies Ox (X) = A[X].
Notice the open set A — {0} C A is isomorphic to a (closed) affine variety.

04 (A = {0}) = Claly = Cla,a™] = Cla,yl/(ay — 1 (612
More generally, X = Z(f, ..., fx) C A™. If g € A[X], then X, = X — Z(g) is isomorphic to

Z(fi(zy, . xn), s (2, o 20), 1 — tg(zy, ..., 2)) € A (6.13)

Distinguish open sets X, C X of affine varieties are isomorphic to (closed) affine varieties , however
not all open sets are isomorphic to affine varieties. Let X = A% — {(0,0)} C A2 Since

A*—{(0,0)} = {A* = {z = 0}} U{A® — {y = 0} } (6.14)
But then
Op2 (A? = {(0,0)}) = Op2 (A* — {z =0}) N Op2 (A* — {y = 0}) o
_ {f(i;y)} A {g(:;y)} (6.15)
and
Op2 (A% = {(0,0)}) = Clz, y] (6.16)

So the A% — {(0,0)} cannot be isomorphic to an affine variety otherwise it would have to be A?
and C? — {(0,0)} % C? for topological reasons. So A% — {(0,0)} is not an affine variety but it is
covered by open sets which are.
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Lecture 7

Recall X C A™is an affine variety K (X) = {5 cfog € Alx] =Clay, ...,z /1(X), g # O}. The local

ring Ox, = {5 € K(X):g(p) # O} for p € X. If Ox(U) = ,cry Ox,p- We have distinguished
open sets Xy C X which is X; = X\Z(f) for f € Alz] = Clzy, ..., 2,]/I(X). The localized ring is
Ox(Xy) =: Alz]s. X is isomorphic to an affine variety. X; C A" with coordinates (1, ..., zp, t).
In particular I(X¢) = (fi, ..., fn, ft —1). However for example

Oz (AM\{(0,0)}) = C[z, 3] (7.1)

so the open set A%\ {(0,0)} is not isomorphic to an affine variety. However
A%\ {(0,0)} = A?\ {z-axis} U A?\ {y-axis} (7.2)

so it has an open covering by affine varieties. We want to build a category of abstract varieties —
spaces with an open covering by affine varieties. We then want to know what the morphisms are.
Our category should include projective varieties and open sets in affine varieties. The basic tool
for this is “sheaves”.

7.2 Sheaves

Let X be a topological space and consider the category open(X) where the objects are open sets
U C X and the morphisms are open inclusions U C V. Let Rings be the category of commutative
rings with a unit.

Definition 7.1. A pre-sheaf F is a contra-variant functor F : open(X) — Rings. A functor just
takes objects to objects and functors to functors, and contravarient means it reverses the arrows.
If we have U C V, we get a homomorphism F(V) 225 F(U) by a restriction pyy such that if
UcV cW, the diagram

FW) 2% F(V) (7.3)

commutes.

For example, if X is a smooth manifold, then C'"* be the sheaf of smooth functions on X. so
if U C X is open, then C*(U) = ring of smooth functions on U = {f : U +— R : f is C*}. Now
if we have C>(V') — C*(U) for U C V', we write f f’ is the restriction map.

U

Another example, if X C A™ an affine variety, Ox is the sheaf of regular functions on X (called

the structure sheaf). Here, Ox(U) is the ring of regular functions.

Some jargon: elements f € F(U) are called “sections of F over U”. We define the stalk of
F at p to be the ring of equivalence classes F, := limys,F(U), which “sort of” concretely =

equivalence classes on (¢, U), ¢ € F(U), p € U where (¢1,Uy) ~ (¢p2,Us) iff thereisa V C Uy NU;
and ¥ € F(V) so that ¢ = gbl‘v = ng‘V.

For example, in C*(R"), p € R, C7° = germ of functions at p.
For another example, Ox , the stalk at p of the structure sheaf Ox is the local ring Ox,,.
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A third example, let X be a space, p € X is a point. The skyscraper sheaf F is the sheaf

where
FU) = Oring pgU (7.4)
C pelU

Definition 7.2. A pre-sheaf is called a sheaf if it satisfies the following “gluing” property: If
U € X is open and {U;} is an open cover of U and we have sections f; € F(U;) are sections such
that f; = f; for all i # j, then there is a unique f € F(U) such that f’ = f;

iNU; iNU; Ui

Some examples of presheaves that are not sheaves:

1. The presheaf of constant functions. To see this, suppose you had two disjoint sets with
different constant functions on them. Then there is no global constant function which can
satisfy both.

2. The presheaf of bounded real functions on R (or any non-compact space). Then just let e”
and cover R™ with bounded open sets; restricting e to each of them. Each are bounded and
agree on overlaps, but cannot make a global function for all of them.

These examples tell you that bounded and constant are not local conditions.

Definition 7.3. If f : X — Y is a continuous map of topological spaces and F is a sheaf on X,
then the pushforward sheaf f,F is the sheaf on'Y given by (f.JF)(U) = F(f~HU)).

Sheaves can be used to define morphisms. For example, if X and Y are smooth manifolds
and CY and C§° are the sheaves of smooth functions, then a continuous map ¢ : X — Y is
smooth if it pulls back smooth functions to smooth functions, i.e. for all U C Y, f € C°(U),
then ¢*(f) = fo¢ € C¥(f1(U)). In other words, ¢ is smooth if it induces a sheaf map
" OF — ¢.CF (note: these are two sheaves on Y') meaning that homomorphisms

9" : Oy (U) = (6.C%) (U) (7.5)
for all U C Y that commute with restriction. We can formalize this idea.

Definition 7.4. A topological space X equipped with a sheaf of rings Ox s called a ringed space.
A morphism of ringed spaces is a pair (f, f*) where f : X +— Y is continuous topologically, and
[*: Oy — f.Ox is a sheaf map (i.e. a collection Oy (U) s o (f~1(U)) which commutes with
restriction).

Proposition 7.5. Let X C A™ and Y C A™ be affine varieties. Then f: X — Y is a morphism
if and only if (f, f*) is a morphism of the ringed spaces (X, Ox) and (Y, Oy)

Proof. < is easy. If (f, f*) is a morphism f*LOy +— fxOx, apply this to
Oy (Y) 2% Ox (f7H(Y)

. (7.6)
AlY] = Al

“=" beginning with a homomorphism Oy (Y) oy (X), we first show that F* induces ring
maps on local rungs for all p, f*LOy sp) = Ox,p. Let ¢ = £ € Oy, s0 g,h € Oy(Y) and
h(f(p)) # 0. Then

s (%) f*gz) € K(X) (7.7)
(

)
which is in Ox, and thus h(f(p)) # 0 <= (f*(h))(p) # 0. Similar argument applies to
ov(U) L ox(F1W)). =
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Lecture 8

Definition 8.1. A pre-variety is a connected ringed space (X, Ox) such that there ezists a finite
open cover {U;} of X such that (U;, Ox|y,) is isomorphic as a ringed space to an affine variety.
A morphism of pre-varieties is a morphism of ringed spaces of this type.

Recall that if X C A™ is an affine variety, then A[z] = Clxy,...,2,]/I(X) is the coordinate
ring, and
f

OX(U):{EEk(X) | f,g € Alz], g # 0 for somepEU} (8.1)

We will have an additional condition to get rid of the “pre” that rule out some unpleasant
cases. First, a few examples.

8.3 Projective varieties are (pre-)varieties

X = Z(fi, . f) C P" (8.2)
for f; homogeneous in Clzo, ..., z,|. Let I(x) = (f1,..., fx) and
K(X) = {i, f,g € Clxo, ..., x,]/I(X) homogeneous of the same degree, g £ 0} (8.3)
g

Note that at regular values p € X, 5 is an actual (rational) function.

Ox(U) = {i € K(X) | ! is regular at p for all p € U} (8.4)
g

g
Btw, something that is not obvious is that Ox (X)) (global functions on X') are constant so Ox (X) =
C. We may prove it later but it is hard.
To see that (X, Ox) for X € P™ is a pre-variety, we show that X; = X NU; (U; = A"™) so that
X; C A™. So all we need to do is check that

(.0

) = (x.0x) (5.5)

i

Let Y € A" be
Y =Z(g1(y1s s Un)s s G6(Y1, - s Yn))

where y; = i—é and ¢;(y1, .., Yn) = fi(L,y1, ..., yn). Then define

F:Xo—=Y, (vo:...:2,) — <i—é,,’;—g> and F7' Y = Xo, (Y1, 5 Yn) = (Lyr ¢ oo 2 Yn)-
Then F' is a morphism of ringed spaces: suppose H is regular on U C Y. Then
P ey Yn P x_17"'7§_n
Q(yla---ayn) q(x_o""’;v_g)

Now we can clear denominators with a xd for some d. The result is a degree d homogeneous
polynomial over a degree d homogeneous polynomial, and the denominator does not vanish on the

preimage F'~1(U). So F* (g) € Ox, (F71(U)). Proving the reverse inclusion is similar, and also

“boring”.
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8.4 A very important idea

Let X C IP" be a projective variety and suppose fy, ..., fm € Clzo, ..., z,]/1(X) homogeneous of the
same degree, and suppose that for all p € X, f;(p) # 0 for some i (jargon: this is a ”basepoint-free
linear system). Then f: X — P™ p— (fo(p) : ... : f(p)) is a morphism.

First, this is well defined set theoretically:

p={(z0:...:Tn) = fo(To, ., Tn) i oot frn(T0,.r, Tp)
(Azg @ oot Axy) ()\dfo(xo, ) et AN (g, ,:z:n))
To check that f : X — P™ is a morphism, it suffices to check an open cover satisfies that
F(Opn (i) € Ox (f~H(UL) (8.8)
so let Wy = f~Y(Uy), f: Wy Uy = Q" be given by

(00 i) (R )] (5.9)

fo(xo, ooy xn) 7 folmo, ooy p)

with f(xg,...,x,) # 0 for all (zo,...,z,) € Wy. Given g € Opm (Uy) = Clz1, ..., 21|, we have

* fl(an“'axn) fm(xﬂy'-'axn)>
= yeees 8.10
f (g) g (fo(l‘o,...,l‘n) fo(l’o,...,ﬂ?n) ( )
and each of the f’(mg—x")) € Ox (W) since fy is not 0 on Wy and deg f; = deg fo.
A special case of this idea is the Varonese embedding: this is a map
P" — P(dzn)_l(xo D ay) (e apat kL) (8.11)

so the entries are monomials of degree d. One special-er case of this is the twisted cubic. Another
could be P2 — P53 (x:y:2)— (2% :9y%: 2% oy 22 1 y2).

A non-trivial example: let C' C P? be the cubic curve with the equation zy? = z(z? — 22).
We can geometrically define a set map ¢ : C' — C which we will show is a morphism. We will see
it is also an involution (¢ o ¢ = id). (This is secretly related to the group law on C', shhh)

Let a = Z, b = £ be the affine coordinates on Uy C P2, then Cy, = C N U, has equation
V=a-a=ala—1)(a+1)

- (CL(), b(])

Figure 3: The curve 2y* = x(2? — 2?) defining a stereographic projection-like map ¢

Now define ¢(qy) = ¢1 based on the above figure. We also have ¢(py) = Px. So C\Cy = (0
1:0) = P, which lies on the {z = 0} line which is the b-axis in affine A?.
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Points on the line pogp are given by (tao, thy), so to solve for ¢; = (ay, by), it will be one of the

solutions to
(tho)? = t3ay — tag by = apg — ag (8.12)

Lecture 9

After some manipulating of the first equation there, we end up with the fact that ¢t = 1 or

t= —a%, so basically if go = (ag, by), we have ¢; = (—%, —2—3) So we can write
0 0
Ty 2 oy
d):(—:—:l)l—) —— === (9.1)
z z x zw
thus
Olr:y:z2)= (—zx D —yz 3:2) (9.2)

This is well defined except at (0:0:1) and (0: 1:0). However we can rewrite it as (yz : 22 — 22 :
—yz) which is defined at (0 : 0 : 1), this point gets sent to (0 : 1:0). We could have also written
d(x:y:z)= (2% : 2y : —y*> — 2%) shows that the other point is defined as well.

S! x st

Figure 4: Under ¢, there are 4 fixed points.
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So we need to show for an open affine cover of C, ¢ pulls back regular functions to regular
functions. Let Uy, Uy, Uy C P? affine opens C; = C N U;, {¢;} an affine cover. Note ¢~'(¢;) is open
in C. In particular let

® Gy = C— {p07poo}
® (1 :O_{T()ap()arl}
® Co = C— {poo}

so just {cy, 2} give an open cover. Note ¢~ H(C}) = C' — {poo, 70,71} and ¢~ (c3) = C — {po}). So
¢_1<Cl) C C2 and (b_l(Cz) C 02 U Cl.
Consider

¢: 07 (c1) =C
(a,b) —=(xz :yz : —a?)

:<£:1:—_x2)
y yz
_ b 1. —ab
a? -1 a?—1

So if ¢ = { and d = Z are coordinates on ¢;, and g(c,d) € Oc(C1), then

b —ab
a?—1"a%2—-1

(6"(9)) (@) = g ( ) € Oc (67 (er)) (9.3)

aglll and a;“f’l are regular on Cy — {rg, 1}, so any polynomial expression in them is as well. This

kind of argument works similarly for the other chart.

By the same argument, let’s look at

5:6”—)0
10
(a,b) — <—5,¥>

b

which is comparable to ¢(a,b) = (—i, —a—2)..? Then 5(p0) = Poo and a(poo) = po as well.

Foreshadowing, (C,pg) is an abelian group with p., the origin in the group. An involution
gives rise to a quotient € as a set of equivalence classes p ~ ¢(p). In general, if X is a pre-variety
and G is a finite group which acts by isomorphims on X then we can define a new pre-variety
Y = X/G is the “orbit space”, the topological space of orbits Y =2 X/G with 7 : X — Y,

Oy (U) := (Ox (7 1(U)))“ (the ring of G invariant functions)
Problem 9.1. Show that C'/¢ = P!, and C/¢ = C

To do this, we need to find a morphism 7 : C' = C such that for every point in C, the preimage
is the point p and ¢(p) as well.
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Lecture 10

Proposition 10.1. Let X C P" be a projective variety. Ox(X) = C i.e., the constant functions
are the only global ones.

Proof. Recall Ox(X) € K(X) = {g . £,9 € S(X) = Clxo, .., 2] /I(X), deg (g) - 0}. Now,
¢ € O(X) if ¢ is regular at all points. There are in general many possible expressions of one
equivalence class ¢ = g L= g 2 = ..., but the possible denominators form an ideal. Define I, C S(X),

I, ={g:9¢ € S(X)}. Since ¢ is regular at all points of X means that Z(I) = 0.
Observe that if projective nullstellensatz was the same as affine nullstellensatz, we would get

that /I, = (1) which implies 1 € I, and thus ¢ € S(X). However, all we actually know is that
(zo, .. \/ . This gives
Jo _ Jo fo
= — =..=— 10.1
¢= zdy x]lv N (10.1)

for some N. Let d > (n+1)N+1, and then let g € S(X)4 (that’s polynomials of degree d in S(X)).
Each monomials of g are divisible by some z¥ by the pigeon hole principle. Thus g¢ € S(X)q4
which implies g¢? € S(X)q and in fact g¢? € S(X), for all ¢. (Logic: we can just iterate this: ¢
is degree 0, so we can take g; = g¢ which is another degree d thing, and multiply that by ¢ and
the same property holds.)

In particular, z¢¢? € S(X), for all . consider the S(X) module 254S(X). Then ¢? € 255(X)
for all ¢q. Finitely generated modules over a noetherian ring satsify the descending chain condition
on submodules. Here we have

S(X) C S(X)+¢S(X) C S(X)+¢pS(X) +¢?S(X) C ... Cay®S(X) (10.2)
so the sequence must stabalize, and at that point we can write

P = Gn19" "+ o+ G160+ go (10.3)

for g; € S(X). This equation holds in K (X), so in particular it holds in each degree. In degree 0,
it says that ¢™ = a,,_1¢™ ' + ... + ag where a; € S(X)o = C are the degree 0 (constant) bits of
g;- C is algebraically closed, so

=1

for some r; € C. Thus ¢ = r; for some 1. O

Now, here are some “bad” pre-varieties. Consider

P! = A U Al
1_a (10.5)

(o, 1) z=%0 w =

We have “made” P! by gluing two affine varieties A'UA! with the gluing map A'—{0} — A'—{0},
Z % However, we could have gotten a prevariety by just by X = A! U A! gluing with z — 2
away from 0. This is like an affine line but with two origins. This is an example of a non-hausdorff
in the analytic topology btw. In algebraic geometry, we call this situation non-separated. To get
a useful characterization of this “hausdorff-like” property, we need a notion of products.
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Let X = Z(f1,.... fx) CA", fi € Clay,....z), Y = Z(g1,..-,90) C A™, g; € Cly1, ..., Ym),
then we define

I(XXY)=(f1,, [es 91, 90) C Clz1, e, Ty Y1, oo Yu] (10.6)

and

AX xXY)=Clxy, ..., Tn Yty - Y]/ (f1y ooy [y 15 - G2)

= Clry, .., 2al/ (f1s 5 f&) @ Clyn, o Yl / (915 -5 90) (10.7)
= R®S

and from commutative algebra, we know the tensor product of integral domains is an integral
domain. This notion of product of affine varieties is a product in the categorical sense. The
morphisms X X Y — X, X XY — Y (which correspond to the inclusions of rings R — R® S,
S +— R ® S) satisfy the following universal property, saying that whenever there is a morphism
from W to both X and Y, there must be a unique on from W to X x Y.

W (10.8)
Xt X xY—3YV

This follows from the fact that tensor product is a “categorical co-product”, which is the fact that
if we have maps R — A, and S — A, then there exists a unique one from R ® S — A.

w (10.9)

]

R—>R®S<—S

Let (X, O,) and (Y, Oy) be pre-varieties. Then define (X XY, Ox«y) as follows. X xY is Cartesian
product as a set basis for topology {U; x V;} for {U;}, {V;} open covers of X and Y.

Proposition 10.2. The product of projective varieties is a projective variety.

Proof. Since any irreducible closed set of a projective variety is a projective variety, we need only
prove that P x P™ is a projective variety. Define the map

I:P" xP"— P(n+1)(m+1)71

(10.10)
(@0, -y Tn)y Yoy ooe s Ym) = (oo 123y 0 o)
let z;; be homogeneous coordinates on P+ D=1 Tet U;; = {2, # 0}. then
[_1(U7;j) = Ul X Uj
t 1 t (10.11)
zij # 0 z; # 0 yi 0
Then consider
1:Uy X Uy — Uno
T T T
S1y..-458n tl,...,tm Tig i= Sitj (1012)
Sl_ié tj—% rij:%



Where i =0,...,n, j =0,...,m, and (4,7) # (0,0), and

[(Sl, ceey Sn,tl, ,tm) == T',L'O = 87; (1013)

Toj = t;
So the image is the set of points satisfying r; - ro; = r;;. Finally,
Clri]/(rij — rioro;) = Clrig, .« Tno, o1, -+ s Tom] (10.14)
O

Remark 10.2. Closed subvarieties of P" x P™ are given by zeros of bihomogeneous polynomials
f(x(b coo sy Ty Yoo oo >?/m); f()‘x07 SR Axn?ﬂy07 7:U’ym) = )\dllude(x()a ooy Ty YOy oo 7ym)

Lecture 11

Recall: a prevariety is a ringed space (X, Ox) which is locally an affine variety. We want our
varieties to have a “Hausdorft” property.

Definition 11.1. A prevariaty X is called a variety if for every pair of morphisms f, g: Y — X,
the set {p € Y : f(p) =g(p)} CY is closed.

For example, consider our bad prevariety

P! = Al U Al
(z0,21) z=%  yw=l=n (11.1)

We can end up with A! with a doubled origin. Let f, g : A = X be the two inclusions. The set
{f(p) =g(p)} = A — {0} C A! which is open!

Lemma 11.2. A prevariety X is a variety <= the diagonal A C X x X 1is closed.

Proof. “ =" Let Y = X x X and let f, g be the projections. Then A = {f(p) = g(p)}, so it is
closed.
“<” Let f, g: Y — X be any morphisms. by the universal property of products

v (11.2)

f g
=)

i  XxX—3X

we have Y +— X via (f,g) and {f(p) = g(p)} = (. 9)"'(A). O

We want a notion of “compactness”, e.g. in the analytic topology, projective varieties are com-
pact, whereas affine varieties are non-compact (or zero dimensional). But in the Zariski topology,
everything is compact, so use instead that the image of a compact set is compact. We will show
that the image of a projective variety under a morphism is closed.
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Note that this is false for affine varieties; consider Z = {zy = 1} C A? and project it onto a
coordinate by f, then f(Z) = A — {0} is not closed.

Theorem 11.3. The projection w : P™* x P™ — P" is closed, i.e. if X CP" x P™ s closed, then
so is m(X) C P".

Proof. Let X = Z(fi1(x,y),..., fr(z,y)) where f; are bihomogeneous. W.L.O.G. we may assume
the bi-degree is the same for all fs.

To see this, consider Z(f(29, ..., 2n)) = Z(23f, ..., 28 f) C P" so we can make things to a specific
degree at the expense of adding more generators.

Let p € P, then p € n(X) < Z(fi(p,y)) # 0. In other words,

pem(X) = o, Um)" L (12 y), - fr(Dy)) = *s (11.3)

for all s > 0, deg f; = d. This is true when s < d, so we show that for each s > d, %, is given by
polynomials.
(Yo, -, Ym)® is generated by (™7*) monomials of degree s, which we call {Mg(y)}lgg(mﬂ).

Now, *, is not true iff there are g (y) such that

M,(y) = de,kfk, degger =s—d (11.4)
k

Let {N,(y)} be the monomials of degree s — d, then %, is not true iff the collection
{NZ(?/)fkhgeg(mtj*d),gkgr

spans the vector space of degree s polynomials in Y, which has dimension (m"ts) We write the
coefficients of Ny(y) fi(y) in the basis {M;(y)} to get a ("F*) x r(™*~%) matrix. *, is not true if
this matrix has full rank, x, is true if all the (mn:s) X (m;:s) minors have determinant 0. But these
determinants are a bunch of homogeneous polynomials in the z’s. O

Corollary 11.4. The projection map P X Y — Y is closed for any (pre-?)variety Y.

23



Proof. First assume Y C A™ is affine, so Y C A™ C P™. Let X C P" x Y be closed, so let Z be

its closure in P x P™. By theorem 11.3, 7(Z) is closed in P™. Then
T Z)=n(ZNP"xY)=7(ZNY)

is closed in Y. For general varieties Y, to check that 7(Z) C Y is closed, we need only check that
its restriction is closed in each affine cover. O

Definition 11.5. A variety X is complete if m: X XY — Y is closed for all (pre-?)varieties Y.

This means that any projective variety is complete. However, the converse is false; not all
complete sets are projective varieties (although counterexamples are hard to construct).

Jargon: a variety which is an open set in a projective variety is called quasi-projective. All affine
varieties are quasi-projective (again, almost all varieties you could think of are quasi-projective;
non-quasi-projective varieties are hard to construct).

Lecture 12

12.5 Important projective varieties

Just as projective space P"~! = {C C C"} is the space of 1-dim linear subspaces of C", We can
define

Definition 12.1. As a set, Gr(k,n) is the set of k-dim linear subspaces L C C", L = C*. We can
also view this as the set of P*~1 C P"~1. Sometimes you will see the notation G(k — 1,n — 1) so
be careful.

We want to exhibit Gr(k,n) as a projective variety. We could say a set of k independent
vectors vy, ..., vx € C" determine L = span {vy, ..., v}, but these generators are ambiguous; the
coordinates coming from this basis could be many different things. If we want to describe L &
Gr(k,n — k) in terms of coordinates, we want something like collections {vy, ..., v}, but ‘up to’
the ambiguity. Should identify equivalent coordinates somehow.

The notion of exterior product is an efficient way to handle this issue.

Definition 12.2. Let (eq, ..., e,) be the standard basis for C", and let /\k C™ be the vector space
spanned by (Z) vectors, written formally as

with {iy, ..., i} € {1,...,n}. By convention, we have \’C" = C, N"C" = C with basis vectors
e1 A ... Ney, and \"C" = {0} for k > n.

If we extend the product A to any sequence iy, ..., 4 (not necessarily increasing) by

ei, \... Ne;, = 0if ¢; = i, for some i # ¢ (12.2)
eiy N Neiy, = (=1)7%€, ) Ao Ney,, for o € perm(L, ..., n) '

(like for example, e; A e3 Aes = —e3 Aep Aes = ez A es Aep) where we extend this linearly
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k

—N—
C"®..0C" — A‘Cn (12.3)
VM1 Q... +— VI NA...N\NU

where if v; = " aje;,

(Z a1i16i1> NN (Z akikeik) = Z (0,17;1 T akik)eil VANPRVAN €i, (124)

i in i1,

Key observation: if V;,....,V,, € C", v; = Zj a;jej, then vy A ... A v, = det(a;;)er A e,. Thus, we
have
U1 VANPIRAN Un = Z (ah-l feees t amn)eil VANPIRAN €, (125)

7:17"'7in

whcih is only non-zero when 74, ..., 1, are distinct, so that equals

= Z A15(1) * - * Ono(n)€o(1) N\ -+ N\ €a(n)

o€perm{1,...,n}

(12.6)
= Z (=1)7@150) * - " Unom) | 1A . Nep

c€perm{l,...,n}

More generally, if v1,...,vp € C", for v; = ) ajje;,

oo o

Lemma 12.3. {v, ..., v} spans a k-dim subspace iff 0 # vy A ... Av, € N¥C™.

) (12.7)

i1 g

If L =span{vy,..., v}, then vy A ... Avg € /\k C™ are called the “plucker coordinates” of L.

Lemma 12.4. Let {vy,..., v} and {w,...,wg} be two sets of linearly independent vectors in C™.
Then
span {vy, ..., v} = span {wy, ..., wg } (12.8)
if and only if
VA AV = Awy AL Awy for some A € CX (12.9)
Proof. Suppose span {vy, ..., vx} = span {wy, ..., w,}. Then v; = Z%,wj where (a;;) is invertible.
Then
v A A = det(ag)wr A A wy (12.10)
Now assume v; A...Avg = Awi A... Awy and suppose span {vy, ..., v} # span {wy, ..., w}. Then
there is some w; ¢ spanwv;. Then {w;, vy, ...,v)k} is linearly independent, so w; A vy A ... A vy # 0.
But then
wi/\vl/\.../\vk:)\wi/\wl/\.../\wkzo (1211)
since the w; factor repeats. O]
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This lemma then gives a map

Gr(k,n) — p(i)-!

(12.12)
span {vy, ..., U } {line through v1 A ... A vy in A* C”}

For example, the image of Gr(k,n) in P() 1 are given by “pure tensors” in /\k C™, i.e. vectors
of the form vy A ... A vg.

Example 12.5. Consider w = ey Nes+e3 Aey. Is it possible that w = vy A vy in /\2 C*? Consider

C* — A3C* = C* with basis ey Aes Nes, ex ANea Aeg, e1 ANes Aeq, e Nes Aey

(12.13)
ur—uNw

If w = vy Awvg, then both vy and vy would be in the kernel of the map, so the map u — u A w would
be at most rank 2. however, we see

er— e Nes /ey

€y — o ANesg /ey

(12.14)
esr—re3NegNeyg=e ANeg N eg
esrres NepNey=¢e; ANeyg N\ey
so the map has full rank.
Lemma 12.6. For w € /\k C™, w0, let
k+1
fiC e AC (12.15)
V= UvAwW

Then rank f > n — k with rank f =n — k iff w = Ay A ... Ay for some vy...,v, € C*, A € C*.

Proof. Let r = n —rank f so that dimker f = r. Let v;..., v, be a basis for ker f, and extend it to

a basis vy..., Vp, Upg1, .o, Up. Then {v;; Ao A Uz-k}l.1 i, is a basis for A" C™. So
w = E Qi .5, Vi NN (%7 (1216)
11 <... <0

where v; € ker f iff 1 <7 <r. For these, we have

0= V; Nw = Z Qi .3, Vi A Uiy AL A Uy, (1217)

11<...<tp

which is 0 iff ¢ € {iy, ..., 4, }. This means that a;, _,, if i & {i1,..., 4} for 1 <i <r.
Thus w # 0 implies a;, . ;, can be non-zero only if

{1,....,r} C{iy,....ix} = r<k (12.18)

so then n — rank f < k. For the equality statement, if n — rank f = k, then we get equality in
equation (12.18). O
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Corollary 12.7. Gr(k,n) C P s ¢ closed set.
Proof. Gr(n,n) is a point, so assume k < n. Then w € Gr(k,n) C P iff = [v1 A ... A vg] for
some ... , Vg, which happens iff
k+1
fu:C = \C (12.19)
v U AW

has rank f = n — k, which happens iff rank f < n — k, which happens iff all n — k£ minors of f,
have determinant 0. ]

Lecture 13

Last time we talked about Gr(k,n) C ]P)@)*l, and if a line Ly C C™ is the span of {vq, ..., v}, then

77777777

as rows.
(n
Cover Gr(n,k) by affine spaces. Let Uy C Gr(k,n) C P be the open set where the
coefficient of e; A ... A e, is non-zero.

Proposition 13.1.
Gr(k,n) = Gr(n — k,n) (13.1)

under L — L+, where L+ = {x € C" | (x,y) =0 for ally € L}.

Definition 13.2. Let X and Y be varieties. a rational map f : X oo »Y is a morphism f :
U w— Y where U is an open set. fi1j fo: U; — Y define the same rational map if on any V C U;

open fi| = fa|V

A rational map f : X oo »Y is dominant if there is an open set in the image of f, if
fo X yY L g Y e »Z and [ is dominant, then go f: X - »Z makes sense.
f o X »Y is a birational map if there is a rational inverse g : Y e » X such that

go f=1idyx and fog =idy. In this case we say that X is birational to Y (X ~Y ), i.e. X and
Y contain isomorphic open sets.

Example 13.3. THe varieties P Gr(k,n), P x ... x P! (k(n —k) terms), and A**=) are all
birationally equivalent. Jargon: a variety X with X ~ AV is called a rational variety. Note that
if fro X e »Y s a birational map, then we get an isomorphism f*: K(Y) — K(X).

13.1 Blowups

These are a very important class of birational morphisms. They are honest morphisms f : X=X

with rational inverses g : X - » X , i.e. f is a morphism which is an isomorphism on an open
set.

Let X C A" affine variety. Let fi,...,f. € A[X] and U = X — Z(f1,..., f-). We have a
map [ : U — P by sending z — (fi(2),..., f-(X)) which is a well defined morphism. Let
Iy = {(z,f(z))} € U x P! be the graph, then I'y C U x P"! is a closed subset. (Why?
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Iy = (id, f)~'(A).) Morover, I'; = U by projection onto U. Let X be the closure IycXxprt
Then X +— X by the map 7 is an isomorphism on U. So this construction is of X = Bly, .. s, is
the blowup of X along the ideal (f1,..., f.). Notice

X c {(z,y) € X x P ' | 1 fi(zx) =y, f;(x) for all i, 5} (13.2)
Example 13.4. Let’s blow up A" at the origin, using the functions (x1,...x,). Then
A" C {(a:,y) e A" x P |y = yjiﬁi}

and we claim that this inclusion is actually equality.

Lecture 14
Lemma 14.1. B(,(P' x P') = B¢, ;, P?

Proof. Note by automorphisms of P! x P! and P2, the assertion is independent of the choice of
points. Consider P! x P! C P? as the Veronese surface given by {z¢r3 = z;75} with the point
p=(0:0:0:1). This has the ideal (zg,x1,z3). (Veronese is the map P! x P! s P3, taking
(Yo : y1), (20 : ZJ) = (Y020 : Yo21 : Y120 : Y121)-)

Consider X = Bl,(P' x P') C P? x P2, then

X ={(xg:x w9 x3)(x0: 21 1 T2) | ToT3 = X122} (14.1)

Leta=(0:1:0),b=(0:0:1) € P2, and P2 = By, P> = Bl P? where

I'= (y0,92) - (Yo, 11) = (yg,yoyl,yoyz,ylyz)

so now we blow up,

P? = {(yo : y1 : ¥2) (U5, Yoy1, Yoy2, y1y2) } C P? x P? (14.2)
so the claim is that X = P2 under the obvious isomorphism P? x P? = P3 x P2, To prove this
claim, we must find explicit open sets where O

Recall

e Forae X Cc AN, a=(0,...,0) then the tangent cone of X at a C,X is the affine cone over
X=Z(fi,....f), 7 a) CP", Bl, X & X

We saw that C,X is ddefined by keeping the lowest homogeneous terms of f/s, T,X =
Z((fl)(1)> ceey (fr)(l)) and CaX g TaX.

Definition 14.2. a € X s smooth if C, X =T,X.
Lemma 14.3. X C A", a = (0,...,0) € X, m = (z1,...,x,), m/m? = (T,X)".

if we define T,X = (m/m?)” where m = I(a) C A(X) is the ideal of the point a, then we see
T, X is independent of embedding.
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