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Lecture 1

First, some notation. Work on the interval [0, 1] and consider functions f : [0, 1) 7→ C. Extend this
to a periodic function f : R 7→ C which, as can be seen in Figure 1, may make it discontinuous at
every integer.
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Figure 1: A function f extended into periodicity

1. T is the Torus. The Torus itself is really just the interval [0, 1] but with the endpoints
identified, making it a closed circle.

2. Define the special class C (T) = {f ∈ C ([0, 1]) | f(0) = f(1)}.

3. Let Lp (T) =
{
f | ‖f‖p <∞

}
where ‖f‖p =

(∫ 1

0
|f |p dx

)1/p
. Note that L2 is an inner

product space. That is, there is an inner product defined by

〈f, g〉 =

∫ 1

0

f · g dx (1.1)

Definition 1.1 (Fourier coefficients). Let f ∈ L1(T). We define

f̂(n) =

∫ 1

0

f(x)e−2πinxdx (1.2)
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for all n ∈ Z. The Fourier Series associated with f is

f ∼
∞∑

n=−∞

f̂(n)e2πinx (1.3)

Note that since f ∈ L1, ∣∣∣∣∫ 1

0

f(x)e−2πinxdx

∣∣∣∣ ≤ ∫ 1

0

|f(x)| dx <∞ (1.4)

so the coefficients f̂(n) are well defined.

With this, we come to two initial questions about Fourier Series.

Question 1.2. The first major question to ask is when does the Fourier series converge to f? To
be more specific, let

SNf =
N∑

n=−N

f̂(n)e2πinx (1.5)

Do we have that SNf → f pointwise? How about uniformly? In an Lp norm?

Question 1.3. Are there other approximations of f by trigonometric polynomals
∑N

n=−N ane
2πinx?

The following lemma is an answer to these questions in a special case.

Lemma 1.4. Suppose that
∑∞

n=−∞ |an| < ∞. Then
∑∞

n=−∞ ane
2πinx converges uniformly to a

continuous function. Further, in this case an = f̂(n).

Proof. Note that {e2πinx} are orthonormal in L2. That is,∫ 1

0

e2πinxe−2πimxdx =


∫ 1

0
1dx = 1 n = m∫ 1

0
e2πi(n−m)x = 1

2π(n−m)
e2πi(n−m)x

∣∣∣1
0

= 0 n 6= m
(1.6)

Let

SN =
N∑

n=−N

ane
2πinx (1.7)

and I claim that this is a uniform Cauchy sequence. Indeed, if M > N then

|SM − SN | =

∣∣∣∣∣∣
∑

N<|n|≤M

ane
2πinx

∣∣∣∣∣∣ ≤
∑

N<|n|≤M

|an| → 0 (1.8)

as N → ∞. Thus the partial sums converge uniformly and SN is continuous, so it converges
uniformly to f and f is continuous. Finally we show that these coefficients are equal to the
Fourier coefficients. Recall

f̂(n) =

∫ 1

0

f(x)e−2πinx

=

∫ 1

0

(
∞∑

m=−∞

ame
2πimx

)
e−2πinxdx

=
∞∑

m=−∞

(∫ 1

0

ame
2πimxe−2πinxdx

) (1.9)

which is 0 if m 6= n, and am = an if m = n.
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Now, some Properties of Fourier coefficients:

1. Linearity: ̂af + bg(n) = af̂ + bĝ(n)

2. Conjugation: Observe that

f̂ =

∫ 1

0

f(x)e−2πinxdx =

∫ 1

0

f(x)e2πinxdx = f̂(−n) (1.10)

As a consequence, if f : T→ R, f̂(n) = f̂(−n)

3. Translation: Let ft(x) = f(x− t). Then

f̂t(n) =

∫ 1

0

ft(x)e−2πinx

=

∫ 1

0

f(x− t)e−2πin(x−t+t)dx

= e−2πint
∫ 1

0

f(x− t)e−2πin(x−t)

= e−2πintf̂(n)

(1.11)

Lecture 2

Lemma 2.1. Suppose f ∈ L1 (T), f̂(n) = 0 for all n ∈ Z. Then f(x) = 0 for all x such that f is
continuous at x.

Proof. If f̂(n) = 0 for all n, then ∫ 1

0

f(x)e−2πinxdx = 0 (2.1)

for all n, and further if P (x) =
∑N
−N ane

−2πinx,∫ 1

0

f(x)P (x) = 0 (2.2)

That is, f is orthogonal to all trigonometric polynomials. Suppose that there is an x0 ∈ [0, 1]
where f is continuous and f(x0) 6= 0. We will construct a trigonometric polynomial where (2.2)
fails. We may assume that f(x0) > 0, f is real valued, and that x0 = 0. Indeed, if x0 6= 0, consider
f(x− x0) instead of f(x).

Now, start with p(x) = cos(2πx) + ε for some ε > 0. Let δ > 0 be such that f(x) > f(0)
2

for all |x| < δ. We choose ε sufficiently small so that |p(x)| < 1 − ε
2

for |x| ≥ δ. Finally, let

PN(x) = (p(x))N . I claim that for large enough N , equation (2.2) fails.∫ 1/2

−1/2
f(x)PN(x)dx =

∫ δ

−δ
f(x)PN(x)dx+

∫
δ<|x|≤1/2

f(x)PN(x)dx (2.3)
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I claim the first integral goes to infinity and the second goes to 0 as N →∞. For the second one

on |x| ≥ δ, we have |p(x)| < 1− ε
2
, |PN | (x) <

(
1− ε

2

)N
. Now∣∣∣∣∫

δ<|x|≤1/2
f(x)PN(x)dx

∣∣∣∣ ≤ ∫ ...
(

1− ε

2

)N
≤
(

1− ε

2

)N
→ 0 as N →∞

(2.4)

Now, let 0 < η < δ be such that p(x) > 1 + ε
2

for all |x| < η. We can do this because
p(0) = 1 + ε.

∫
|x|<δ

PN(x)f(x)dx ≥
∫
|x|<η

PN(x)f(x)dx

≥ 2η
(

1 +
ε

2

)N f(0)

2
→∞

(2.5)

Corollary 2.2. Suppose f, g ∈ C (T) and f̂(n) = ĝ(n) for all n ∈ Z. Then f = g.

Proof. Just apply lemma 2.1 to the function f − g.

Corollary 2.3. Assume that f : T 7→ C is continuous, and
∑∞

n=−∞

∣∣∣f̂(n)
∣∣∣ <∞. Then SNf → f

uniformly.

Proof. Let an = f̂(n). By lemma 1.4, we have SNf → g ∈ C (T) uniformly and ĝ(n) = an = f̂(n),
so f = g.

Lecture 3

Definition 3.1 (Convolution). If f , g ∈ L1(T), we define

f ∗ g(x) =

∫ 1

0

f(x− t)g(t)dt (3.1)

which is defined A.E.

A useful way to think of this is a way of averaging the functions. In many ways, it makes

functions much more regular. If g =

{
0 for |x| > δ
1
2δ

for |x| < δ
, then

f ∗ g(x) =

∫
|t|<δ

1

2δ
f(x− t)dt (3.2)

Lemma 3.2. If f , g ∈ L1(T), then If f ∗ g ∈ L1(T) as well.
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Proof. ∫ 1

0

|f ∗ g(x)| dx =

∫ 1

0

∣∣∣∣∫ 1

0

f(x− t)g(t)dt

∣∣∣∣ dx
≤
∫ 1

0

∫ 1

0

|f(x− t)| |g(t)| dtdx

≤
∫ 1

0

∫ 1

0

|f(u)| |g(t)| dtdu

= ‖f‖1 ‖g‖1

(3.3)

Lemma 3.3.
f̂ ∗ g(n) = f̂(n)ĝ(n) (3.4)

Proof.

f̂ ∗ g(n) =

∫ 1

0

∫ 1

0

f(x− t)g(t)dte−2πinxdx

=

∫ 1

0

∫ 1

0

f(x− t)g(t)e−2πin(x−t)e2πintdtdx

=

∫ 1

0

∫ 1

0

(
f(x− t)e−2πin(x−t)

) (
g(t)e2πint

)
dtdx

= f̂(n)ĝ(n)

(3.5)

Now, an exercise is to prove the following properties of convolution.

1. f ∗ g = g ∗ f

2. f ∗ (g ∗ h)

3. f ∗ (g + h) = f ∗ g + f ∗ h

Lemma 3.4. Let f ∈ L1(T), and define

K(x) =
N∑

k=−N

ake
2πikx (3.6)

Then

(f ∗K)(x) =
N∑

k=−N

akf̂(k)e2πikx (3.7)

Proof. By linearity, it suffices to prove this for K having only one term. So, we will assume it is
K(x) = e2πikx. Thus, using the first property,

(f ∗K)(x) =

∫ 1

0

K(x− t)f(t)dt =

∫ 1

0

e2πik(x−t)f(t)dt = e2πikx
∫ 1

0

f(t)e2πiktdt = e2πikxf̂(k) (3.8)
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Recall that for f ∈ L1(T), we have

SNf =
N∑

n=−N

f̂(n)e2πinx (3.9)

I claim that SNf = DN ∗ f , where

DN(x) =
N∑

n=−N

e2πinx

= esπi(−N)x × e2πi(2N+1)x − 1

e2πix − 1

=
e2πi(N+1)x − e−2πiNx

e2πix − 1

=
eπi(2N+ 1

2
)x − eπi(2N− 1

2
)x

eπix − e−πix

=
2i sin((2N + 1)πx)

2i sin(πx)

=
sin((2N + 1)πx)

sin(πx)

(3.10)

which is called Dirichlet Kernel.

Apply the Lemma with ak = 1 for all −N ≤ k ≤ N . Then

SNf(x) = f ∗
N∑

k=−N

e2πikx (3.11)

Definition 3.5. A sequence of functions {Kn}∞1 ⊆ L1(T) is a summability kernel if

1.
∫ 1

0
Kn(x) = 1

2.
∫ 1

0
|Kn(x)| dx < M for all n

3. For all δ > 0, Kn → 0 uniformly on (δ, 1− δ) as n→∞.

Note that the Dirichlet Kernel Dn is not a summability kernel.

Theorem 3.6. Let f ∈ C(T), and let {Kn} be a summability kernel. Then Kn ∗ f → f uniformly
as n→∞.

Proof. Note that since f ∈ {(T), f is uniformly continuous. Let ε > 0, and choose a δ so that
|f(x− y)− f(x)| < ε for all x whenever |y| < δ. Using the fact that the integral of Kn is 1, we
have

|Kn ∗ f(x)− f(x)| =
∣∣∣∣∫ 1

0

Kn(y)f(x− y)dy −
∫ 1

0

Kn(y)f(x)dy

∣∣∣∣
=

∣∣∣∣∫ 1

0

Kn(y) (f(x− y)− f(x)) dy

∣∣∣∣
=

∣∣∣∣∫
|y|<δ

... dy +

∫ 1−δ

δ

... dy

∣∣∣∣
(3.12)
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Now, the first integral is∫
|y|<δ

... dy ≤
∫ 1

0

|Kn(y)| |f(x− y)− f(y)| dy ≤Mε (3.13)

and the second integral is∫ 1−δ

δ

... dy ≤ sup
δ<y<1−δ

Kn(y)

∫ 1

0

|f(x− y)− f(y)| dy → 0× 2 max
y
|f(y)| (3.14)

as n→∞.

Lecture 4

Corollary 4.1.

• If f ∈ L1(T), then ‖Kn ∗ f − f‖1 → 0 as n→∞.

• If f ∈ L1(T) and f is continuous at x, then Kn ∗ f(x)→ f(x) as n→∞.

Proof. Exercise!

• Approximate f by continuous functions to do the first point, and apply theorem 3.6 and do
some approximating.

• For the second point, work through the details in the proof of theorem 3.6, but you fix x. It
works very similarly.

Recall that

SNf(x) =
N∑

n=−N

f̂(n)e2πinx = DN ∗ f(x) (4.1)

is not a summability kernel, because it fails property 2 and 3 from definition 3.5. However, it does
satisfy property 1. Now, define some average functions

σNf =
1

N

N−1∑
n=0

Snf (4.2)

and recall that if SNf(x) → L, then σNf(x) → L as well. However, it is possible to have
σNf(x) → L even if SNf(x) does not converge. A good example of this is that the sequence
{(−1)n}∞n=0 does not converge, but its sequence of averages does.

Definition 4.2. Rewriting,

σNf =
1

N

N−1∑
n=0

Snf =
1

N

N−1∑
n=0

Dn ∗ f = Fn ∗ f (4.3)

Where Fn := 1
N

∑N−1
n=0 Dn is the Fejér Kernel. We can compute a closed form expression for these,

which is

FN =
1

N

(
sin(Nπx)

sin(πx)

)2

(4.4)
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Lemma 4.3. Fn is a summability kernel.

Proof. We check the properties of summability kernels.

1. ∫ 1

0

FN =
1

N

N−1∑
n=0

∫ 1

0

Dn =
1

N
N = 1 (4.5)

2. ∫ 1

0

|FN | =
∫ 1

0

FN = 1 (4.6)

3. For δ < x < 1− δ,
FN(x) ≤ 1

N

1

(sin(πx))2
≤ 1

N

1

(sin(πδ))2
→ 0 (4.7)

Applying Theorem 3.6 and Corollary 4.1 to this summability kernel, we have that

1. If f ∈ C(T), then σNf → f uniformly.

2. If f ∈ L1(T), then ‖σN ∗ f − f‖1 → 0 as n→∞.

3. If f ∈ L1(T) and f is continuous at x, then σn ∗ f(x)→ f(x) as

Corollary 4.4. If f ∈ L1(T) and f̂(n) = 0 for all n, then f = 0 almost everywhere (w.r.t Lebesgue
measure).

Note that this is a discontinuous version of a previous result applying to f ∈ C(T).

Proof. If f̂(n) = 0 for all n, then SNf ≡ 0 which implies σNf ≡ 0. Thus σNf → 0 in L1, so f is
the zero function in L1.

Corollary 4.5. If f ∈ L1(T) continuous at x and SNf(x)→ L as N →∞, then f(x) = L.

Proof. Apply (3) from above to see that σNf(x) → f(x) and SNf(x) → L, and the limits thus
must be the same.

In particular, if f has a jump discontinuity at x, suppose f ∈ L1(T) and that

lim
h↓0

1

2
(f(x+ h) + f(x− h)) = L (4.8)

exists. Then σNf(x)→ L as N →∞.
To see this, compute

σNf(x)− L =

∫ 1

0

FN(y)(f(x− y)− L)dy

=

∫ 1

0

FN(y)

(
f(x− y) + f(x+ y)

2
− L

)
dy

(4.9)

Where we used symmetry, and the rest is the same reasoning as in Theorem 3.6.
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Lecture 5

Fourier Decay: estimates on
∣∣∣f̂(n)

∣∣∣ as n→∞.

Lemma 5.1 (Riemann-Lebesgue). Suppose f ∈ L1(T). Then f̂(n)→ 0 as n→∞.

Proof. Let ε > 0. Take N large enough so that ‖σNf − f‖L1 < ε and take its Fourier coefficients.∣∣∣ ̂σNf − f(k)
∣∣∣ ≤ ‖σNf − f‖1 < ε (5.1)

But also, σNf is a trig. polynomial of degree ≤ N , so σ̂Nf(k) = 0 for all |k| > N . Thus for all
|K| > N , ∣∣∣f̂(k)

∣∣∣ ≤ ∣∣∣ ̂σNf − f(k)
∣∣∣+
∣∣∣σ̂Nf(x)

∣∣∣ < ε+ 0 (5.2)

When do we have faster decay? (Quantitative estimates) Sometimes we do have it, when f is
regular in some way.

Lemma 5.2. Let F be absolutely continuous on T (i.e. there is a function f ∈ L1(T) so that

F (x) =
∫ x
0
f(t)dt, and that

∫ 1

0
f(t)dt = 0). Then F̂ (n) = 1

2πin
f̂(n) for all n 6= 0. In particular,∣∣∣F̂ (n)

∣∣∣ ≤ ‖f‖1
2πn

. Further, by the R-L lemma,
∣∣∣F̂ (n)

∣∣∣ = o
(
1
n

)
.

Proof. Integrating by parts, we have

F̂ (n) =

∫ 1

0

F (x)e−2πinxdx

= −
∫ 1

0

f(x)
1

−2πin
e−2πinxdx

=
1

2πin

∫ 1

0

f(x)e−2πinxdx

=
1

2πin
f̂(n)

(5.3)

Functions with slow Fourier decay

Suppose {an}∞−∞ ⊂ R, an > 0, an = a−n, an → 0 as |n| → ∞. Also suppose for n > 0,

an+1 − 2an + an−1 > 0. Then there is a function f ∈ L1(T) such that f̂(n) = an. Note that the
an+1 − 2an + an−1 > 0 is really just a condition about concavity, it makes it concave up.

Note also that we cannot just let f(x) =
∑∞

n=−∞ ane
2πinx because the series may not converge

if the sequence of an decays slowly. Define instead

f(x) =
∞∑
n=1

n(an−1 − 2an + an+1)Fn(x) (5.4)
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Where Fn(x) is the Fejér Kernel from before. I claim this converges in L1. Let cn = n(an−1 −
2an + an+1). Then we need to check

∞∑
n=1

‖cnFn‖1 =
∞∑
n=1

cn ‖Fn‖1 =
∞∑
n=1

cn (5.5)

Let AN =
∑N

n=1 cn, and claim that AN = a0−aN −N(aN −aN+1) = a0− (N + 1)aN +NaN+1.You
can prove this relation by induction.

• For N = 1, AN = A1 = c1 = a0 − 2a1 + a2

• assume it holds for N . Then

AN+1 = AN + cN+1

= a0 − (N + 1)aN +NaN+1 + (N + 1)(aN − 2aN+1 + aN+2)

= a0 − (N + 2)aN+1 + aN+2

(5.6)

Thus the relation holds for all N . Now we just need to prove that limN→∞An exists.

An = a0 − aN −N(aN − aN+1) (5.7)

The first two terms are easy. For the last,

N(aN − aN+1) = (aN − aN+1) + ...+ (aN − aN+1)

= 2
(
(aN − aN+1) + (aN−1 − aN) + ...+ (abN/2c − abN/2c+1)

)
= 2

(
abN/2c − aN+1

)
< 2abN/2c → 0

(5.8)

Lecture 6

Theorem 6.1 (From last time). Suppose {an}∞−∞ ⊂ R, an > 0, an = a−n, an → 0 as |n| → ∞.
Also suppose for n > 0, an+1 − 2an + an−1 > 0. Then there is a function f ∈ L1(T) such that

f̂(n) = an.

Cont. So f ∈ L1, so we just need to find the Fourier coefficients of f . First, recall the Fourier
coefficients of Fn.

• D̂N(k) =

{
1 if |k| ≤ n

0 if |k| > n

• F̂N(k) = 1
N

∑N−1
n=0 D̂n(k) =

{
0 if |k| ≥ N

1− |k|
N

if |k| < N

Note that ‖f − fn‖ → 0 in L1, where

fn =
n∑

m=1

m(...)Fm(x)
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Indeed ∣∣∣f̂n(k)− f̂(k)
∣∣∣ =

∣∣∣∣∫ 1

0

(fn − f) e2πikxdx

∣∣∣∣
≤
∫ 1

0

|fn − f | → 0

(6.1)

Hence

f̂(k) =
∞∑
n=1

n (an−1 − 2an + an+1) F̂n(k)

=
∞∑

n=|k|+1

n (an−1 − 2an + an+1)

(
n− |k|
n

)

=
∞∑

n=|k|+1

(an−1 − 2an + an+1) (n− |k|)

= a|k| + (terms that go to 0)

(6.2)

by computations very similar to last time.

6.1 Fourier coefficients of measures

If µ is a measure on T, define

µ̂(k) =

∫
e−2πixkdµ(x) (6.3)

For example, the delta function where
∫
R fdδx = f(x). In this case, δ̂0 = 1 for all k ∈ Z, since

e−2πixk = 1 for x = 0.

6.2 Pointwise convergence

Let f ∈ L1(T)→ f̂(k). When does
∑∞
−∞ f̂(k)e2πikx → f(x) pointwise?

Theorem 6.2. If f ∈ L1(T) and f is differentiable at x, then SNf(x) converges to f(x) as
N →∞.

Proof. Let

F (t) =

{
f(x−t)−f(x)

t
if t 6= 0

−f ′(x) if t = 0
(6.4)

which is continuous at x. Is F ∈ L1(T)? Well, for |t| > δ, |F (t)| ≤ 1
δ

(|F (x− t)|+ |F (x)|) and it’s
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also bounded inside the δ interval if you choose it sufficiently small. Using the fact that
∫
DN = 1,

SNf(x)− f(x) = f ∗DN(x)− f(x)

=

∫ 1/2

−1/2
f(x− t)DN(t)dt−

∫ 1/2

−1/2
f(x)DN(t)dt

=

∫ 1/2

−1/2
(f(x− t)− f(x))DN(t)dt

=

∫ 1/2

−1/2

f(x− t)− f(x)

t
tDN(t)dt

=

∫ 1/2

−1/2
F (t)t

(
sin((2N + 1)πt)

sin(πt)

)
dt

=

∫ 1/2

−1/2
G(t) (sin((2N + 1)πt)) dt

(6.5)

since t
sin(πt)

is bounded, and thus G(t) = F (t)C1 is an L1 function, which means that by Riemann
Lebesgue, ∫

G(t)e−2πiktdt→ 0 (6.6)

and

Lecture 7

Start with a function

g(x) =

{
πi(1− 2x) 0 ≤ x < 1

Extend periodically
(7.1)

ĝ(0) =

∫ 1

0

g = 0

ĝ(n) =

∫ 1

0

πi(1− 2x)e−2πinxdx

= −
∫ 1

0

2πixe−2πinxdx

=
xe−2πinx

n

∣∣∣1
0
−
∫ 1

0

e−2πinx

n
dx

= 1/n

Now define

fN = SNg =
∑

0<|n|<N

e2πinx

n

f̃N =
−1∑

n=−N

e2πinx

n

(7.2)
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two lemmas are that fN is uniformly bounded, and that
∣∣∣f̃N(0)

∣∣∣ ≥ c logN . Finally,

PN(x) = e4πiNxfN(x)

P̃N(x) = e4πiNxf̃N(x)

P̂N(n) =

∫ 1

0

e4πiNxfN(x)e−2πinxdx

= f̂N(n− 2N)

f̂N(n) =

{
0 if n = 0 or |n| > N
1
n

if 1 ≤ |n| ≤ N

Now observe that

SmPN =


PN m ≥ 3N

P̃N m = 2N

0 m < N

(7.3)

More defining. Let {ak}∞k=1 be so that ak ≥ 0,
∑

ak
< ∞. ALSO DEFINE {Nk} so that Nk+1 >

3Nk, and ak logNk →∞ as k →∞. For example, you could let Nk = 32k , ak = 1
k2

.
Finally, define

f(x) =
∞∑
k=1

akPNk
(x) (7.4)

which is uniformly convergence, because hw.

Lecture 8: L2 theory

L2 is a space. L2(T) =
{
f : T→ C |

∫
T |f |

2 <∞
}

. We have a metric. ‖f‖2 =
(∫ 1

0
|2|2 dx

)1/2
,

and we have an inner product. 〈f, g〉 =
∫ 1

0
fgdx

• C(T) is dense in L2, that is for all f ∈ L2(T) and ε > 0, there is a g ∈ C(T) so that
‖f − g‖2 < ε

• Holder inequality holds: ∫ 1

0

|f | dx ≤
(∫ 1

0

|f |2 dx
)1/2

(8.1)

which means ‖f‖1 ≤ ‖f‖2, and hence L2(T) ⊂ L1(T). The containment is proper; just
consider f(x) = x−α for 0 < x < 1, and 1

2
< α < 1.

Now, let en := e2πinx. We proved that

〈en, em〉 =

∫ 1

0

e2πi(n−m)x =

{
1 m = n

0 m 6= n
(8.2)
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This means that {en}n∈Z is an orthonormal set. For f ∈ L2,

f̂(n) =

∫ 1

0

f(x)e−2πinx = 〈f, en〉 (8.3)

Also,

SNf =
∑
|n|≤N

f̂(n)e2πinx =
∑
|n|≤N

〈f, en〉en (8.4)

Lemma 8.1. The linear span of {en}n∈Z is dense in L2(T).

Proof. Let f ∈ L2(T), ε > 0. Let g ∈ C(T) such that ‖f − g‖2 <
ε
2
. Now, if I take N large enough

so that |g(x)− σNg(x)| < ε
2

for all x ∈ T. Then ‖g − σNg‖2 <
ε
2
, so ‖f − σNg‖ < ε. Since σNg is

a finite combination of {en}s, we are done.

Lemma 8.2. if p(x) = a trig polynomial of degree at most N , then

‖SNf − f‖2 ≤ ‖P − f‖2 (8.5)

Proof. Consider P − f = (P − SNf) + (SNf − f). I claim that these functions are orthogonal, so
that

〈P − SNf, SNf − f〉 = 0 (8.6)

So, let |n| ≤ N . Then

〈SNf − f, en〉 = 〈SNf, en〉 − 〈f, en〉

= 〈
∑
|m|≤N

f̂(m)em, en〉 − f̂(n)

= f̂(n)− f̂(n) = 0

(8.7)

If Q(x) =
∑
|n|≤N bnen, then 〈SNf − f,Q〉 = 0 by linearity. Apply this with Q = P − SNf to

prove the claim. We can now take the norm and get

‖P − f‖22 = ‖P − SNf‖2 + ‖SNf − f‖22 ≥ ‖SNf − f‖
2
2 (8.8)

Now combine the lemmas to get

Theorem 8.3. If f ∈ L2(T), then ‖SNf − f‖2 → 0 as N →∞. Also,

∞∑
−∞

∣∣∣f̂(n)
∣∣∣2 = ‖f‖22 (8.9)

Corollary 8.4. If f, g ∈ L2(T) then

〈f, g〉 =
∑
n∈Z

f̂(n)ĝ(n) (8.10)
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8.3 Equidistributed sequences

Definition 8.5. {ζn}∞n=1 for ζn ∈ T is equidistributed if for any open interval (a, b) ⊂ T, we have

lim
N→∞

1

N
# {i : 1 ≤ i ≤ N, ζi ∈ (a, b)} = b− a (8.11)

For example, taking {
0,

1

2
, 0,

1

3
,
2

3
, 0,

1

4
,
1

2
,
3

4
, 0,

1

5
, ...

}
(8.12)

These essentially form a “uniform sampling” of the interval. One thing we would like to have is
that

∫ 1

0
f(x)dx could be evaluated using these, like we might have∫ 1

0

f(x)dx← 1

N

N∑
n=1

f(ζn) (8.13)

The real question is, what functions satisfy this?

Lecture 9

An equivalent definition of equidistant sequences is that we can replace equation (8.11) with∫
χ(a,b)(x)dx = lim

N→∞

1

N

N∑
i=1

χ(a,b)(ζi) (9.1)

and this is also the case for step functions.

Theorem 9.1 (Weyl’s Criterion). The following are equivalent for a {ζn}∞n=1 with ζn ∈ T,

1. {ζn}∞n=1 is equidistributed

2. For any f ∈ C(T), we have ∫ 1

0

f(x)dx = lim
N→∞

1

N

N∑
i=1

f(ζi) (9.2)

3. For all k ∈ Z, k 6= 0, we have

lim
N→∞

1

N

N∑
i=1

e2πikζi = 0 (9.3)

Proof.

1. =⇒ 3: by passing to the special case f(x) = e2πikx.

3. =⇒ 2: Let f ∈ C(T) and let ε > 0. Let P be a trig polynomial such that |f(x)− P (x)| < ε
for all x ∈ T. Then we have ∣∣∣∣∣ 1

N

N∑
i=1

P (ζn)−
∫ 1

0

P (x)dx

∣∣∣∣∣ < ε (9.4)
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if N is large enough. The contribution of the integral here is really just to eliminate the
constant term from the sum! So we have

∣∣∣∣∣ 1

N

N∑
i=1

f(ζn)−
∫ 1

0

f(x)dx

∣∣∣∣∣ ≤ 1

N

∣∣∣∣∣
N∑
i=1

(P (ζn)− P (ζn))

∣∣∣∣∣
+

∣∣∣∣∣ 1

N

N∑
i=1

P (ζn)−
∫ 1

0

P (x)dx

∣∣∣∣∣
+

∫ 1

0

|f(x)− P (x)| dx

< 3ε

(9.5)

2. =⇒ 1: Let g = χ(a,b), and we will approximate g by continuous functions. Given ε > 0, let
f+ and f− be

0.50.5 11 1.51.5 22 2.52.5

0.50.5

11

ggffhh

Figure 2: f− and f+, assuming (a, b) = (1, 2).

Then we have f− ≤ g ≤ f+, and choose them so that∫
f− ≤

∫
g ≤

∫
f+

−ε+

∫
f+ ≤

∫
g ≤ ε+

∫
f−

Then
1

N

N∑
n=1

f−(ζn) ≤ 1

N

N∑
n=1

g(ζn) ≤ 1

N

N∑
n=1

f+(ζn) (9.6)

and taking the limit, we see that if N is large enough

−2ε

∫
g − ε+

∫
f−(ζn) ≤ 1

N

N∑
n=1

g(ζn) ≤ ε+ f+(ζn) < 2ε+

∫
g (9.7)

Corollary 9.2. If ζ is irrational, then the sequence {nζ}∞n=1 is equidistributional

Proof. Use (3.)
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Lecture 10

What about
{
ndγ
}∞
n=1

for d = 2, 3? What about {P (n)γ}∞n=1? What about just {P (n)}∞n=1 when
P (n) has an irrational coefficient? ETC...

Let P (x) = cdx
d + cd−1x

d−1 + ... and fix an h ∈ R. Consider

P (x+ h)− P (x) = cd(d+ h)d + ... − cdxd − .... (10.1)

which is a polynomial of degree one less than d. Based on this, we set up an inductive scheme.
If we know some statement (∗) for polynomials of degree 1, and we know that “(∗) for degree d
=⇒ (∗) for degree d+ 1”, then we know it for all polynomials.

Lemma 10.1. Let an ∈ C, |an| ≤ 1, then for 1 ≤ H ≤ N ,∣∣∣∣∣ 1

N

N∑
n=1

an

∣∣∣∣∣ ≤ C

(
1

H

H−1∑
h=0

∣∣∣∣∣ 1

N

N∑
n=1

an+han

∣∣∣∣∣
)1/2

+O

(
H

N

)
(10.2)

for some C ∈ R.

Proof. For 0 ≤ h < H

1

N

N∑
n=1

an =
1

N

N∑
n=1

an+h +O

(
H

N

)
(10.3)

To see this, call these sums S1 and S2. Then

|S1 − S2| ≤
1

N
(|a1|+ ...+ |ah|+ |aN+1|+ ...+ |aN+h|) ≤

1

N
2h ≤ 2H

N
(10.4)

Now average equation (10.3) for 0 ≤ h ≤ H − 1. We get

1

N

N∑
n=1

an =
1

H

H−1∑
h=0

(
1

N

N∑
n=1

an+h

)
+O

(
H

N

)

=
1

H

N∑
n=1

(
1

N

H−1∑
h=0

an+h

)
+O

(
H

N

) (10.5)

And applying Cauchy Schwartz, we have∣∣∣∣∣ 1

N

N∑
n=1

an

∣∣∣∣∣ ≤ 1

H

N∑
n=1

(
1

N

∣∣∣∣∣
H−1∑
h=0

an+h

∣∣∣∣∣
)

+O

(
H

N

)

≤

 1

N

N∑
n=1

∣∣∣∣∣ 1

H

H−1∑
h=0

an+h

∣∣∣∣∣
2
1/2

+O

(
H

N

)

=

(
1

N

N∑
n=1

1

H2

H−1∑
h,h′

an+han+h′

)1/2

+O

(
H

N

)

=

(
1

N

N∑
n=1

2

H

H−1∑
h=0

an+han

)1/2

+O

(
H

N

)
(10.6)
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At the last step: if h′ ≤ h, relabel n+ h′ → n, and h− h′ → h. You get an additional O
(
H
N

)
error

terms from this. This is apparently very confusing to see. Note that the aiai terms occur twice
in the second sum (see the factor of 2), but once in the first. So we need to check that these are
an acceptable error. Apparently we can’t figure out how to do this atm, but the equation should
hold so we power through. Changing the order of summation now completes the lemma.

Corollary 10.2. If we have a sequence {ζn} ⊂ T, and {ζn+h − ζn}∞n=1 is equidistributed for each
fixed h ∈ N, then {ζn} is equidistributed as well.

Proof. We use Lemma 10.1 with H ≈
√
N . Then∣∣∣∣∣ 1

N

N∑
n=1

e2πikζn

∣∣∣∣∣ ≤ C

(
1

H

H−1∑
h=0

∣∣∣∣∣ 1

N

N∑
n=1

e2πik(ζn+h−ζn)

∣∣∣∣∣
)1/2

+O

(
H

N

)
(10.7)

Lecture 11

Apply this corollary to polynomials.

Corollary 11.1. If η is irrational, then {n2η}∞n=1 is equidistributed.

Proof. Let h ∈ N. Consider

(n+ h)2η − n2η = n2η + 2nhη + h2η − n2η = n(2hη) + h2η = nξ + c (11.1)

is equidistributed.

More generally, any polynomial with at least one irrational coefficient, you get an equidis-
tributed sequence. Other examples: {fractional parts of nσ, for a fixed 0 < σ < 1}. The sequence
{fractional parts of log n} is not equidistributed.

11.4 Fourier transform on Rn

If f ∈ L1(Rn) (that is,
∫
Rn |f | dx <∞), we define the Fourier transform

f̂(ξ) =

∫
Rn

e−2πi(x·ξ)f(x)dx (11.2)

and note that x, ξ ∈ Rn and the · between them is the dot product here. We will also need the
inverse Fourier transform

ǧ(x) =

∫
Rn

e2πix·ξg(ξ)dξ (11.3)
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we would expect that

ˇ̂
f(x) =

∫
Rn

e2πix·ξf̂(ξ)dξ

=

∫
e2πix·ξ

∫
e−2πiy·ξf(y)dydξ

=

∫
f(y)

(∫
e2πi(x−y)·ξdξ

)
=

∫
f(y)δx=ydy

= f(x)

(11.4)

However, this equation is all wrong. Line 3 onward makes no sense! However, we can use some
approximation identities to make something like this rigorous.

If f ∈ L1, then
∣∣∣f̂(ξ)

∣∣∣ ≤ ∫
|f | = ‖f‖1. You can also extend the definition of the Fourier

transform to measures. We can define

µ̂(ξ) =

∫
e−2πix·ξdµ (11.5)

If f ∈ L1, then f̂ is uniformly continuous. To see this, consider∣∣∣f̂(ξ − η)− f̂(ξ)
∣∣∣ =

∫ (
e−2πix·(x+η) − e−2πix·η

)
f(x)dx

=

∫
e−2πix·(x)

(
e−2πix·η − 1

)
f(x)dx

≤
∫ ∣∣e−2πix·η − 1

∣∣ |f(x)| dx

(11.6)

Apply the dominated convergence theorem. Each of the integrals are bounded ≤
∫

2 |f |, so
the whole integral goes to 0 as η → 0 uniformly in ξ, since there is no dependence on ξ.

11.5 Translation/modulation

For a fixed a ∈ Rn, define fa(x) = f(x− a). Then

f̂a(ξ) =

∫
Rn

e−2πix·ξfa(x)dx

=

∫
Rn

f(y)e−2πi(y+a)·ξdx

= e−2πia·ξf̂(ξ)

(11.7)

And another identity is that if ea(x) = e−2πia·x, then êaf(ξ) = f̂(ξ + a).

Now, let T : Rn 7→ Rn be invertible (so it corresponds to a non-singular n× n matrix). Then
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let fT (x) = f(Tx). Then

f̂T (ξ) =

∫
f(Tx)e−2πix·ξdx

=

∫
f(y)e−2πi(T

−1y)·ξ 1

|detT |
dy

=

∫
f(y)e−2πiy·(T

−1)ᵀξ 1

|detT |
dy

=
1

|detT |
f̂
(
(T−1)ᵀξ

)
(11.8)

Lecture 12

Some special cases:

1. If T = λI, then f̂T = 1
|λ|n f̂(λ−1ξ). For example, consider a bump function.

-3-3 -2-2 -1-1 11 22 33 44

11

00

Figure 3: A narrower bump function has a smaller bump for its transform

2. If T is orthogonal (a rotation or reflection), then T−1 = T ᵀ and |detT | = 1, so f̂T (ξ) = f̂(Tξ).

3. If f is radially symmetric (i.e. f(x) = h (|x|) for some function h), then f̂ is also radially
symmetric. This is because radially symmetric implies fT = f for all orthogonal T , which by
the previous property means f̂(Tξ) = f̂T (ξ) = f̂(ξ) giving f̂ the same invariance property.

12.6 Schwartz functions on Rn

Define

J =

{
f ∈ C∞ (Rn) | for any multiindices α, β, we have sup

x∈Rn

∣∣xαDβf(x)
∣∣ <∞} (12.1)
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Notation: for α = (α1, ... , αn), β = (β1, ... , βn) for α1, ... , αn, β1, ... , βn ∈ {0, 1, 2, ...},

xα = xα1
1 · ... · xαn

n Dβf =
∂β1 + ...+ βn

∂xβ11 ... ∂x
βn
n

f (12.2)

Examples:

1. f ∈ C∞c (Rn) ⊂ J (the subscript c means compactly supported), then Dβf ∈ C∞c (Rn) for all

β. But f̂ 6∈ C∞c .

2. f(x) = −e|x|2 ∈ J . This is because e−x goes to 0 faster than any polynomial equation.

Lemma 12.1. If f ∈ J , then

∂̂f

∂xj
(χ) =

∫
∂f

∂xj
(x)e−2πix·ξdx

= −
∫
f(x)(−2πiξj)e

−2πix·ξdx

= (2πiξj)f̂(ξ)

(12.3)

Similarly, we can see

̂(−2πixj) f(ξ) =
∂f̂

∂ξj
(ξ) (12.4)

Corollary 12.2. If f ∈ J , then f̂ ∈ J .

Proof. Iterate the formulas in the lemma.

D̂βf(ξ) = (2πiξ)β f̂(ξ) ̂(−2πix)αf(ξ) = Dαf̂(ξ) (12.5)

So let f ∈ J . Then
∣∣xαDβf

∣∣ ≤ Cα,β for all α, β. Now, f̂ ∈ C∞ and

∣∣∣ξαDβ f̂
∣∣∣ =

∣∣∣ξα ̂(−2πix)βf(ξ)
∣∣∣ =

∣∣∣∣∣ ̂Dα

(2πi)absα
(−2πix)βf(ξ)

∣∣∣∣∣ (12.6)

Lecture 13

Definition 13.1. A Gaussian is a function e−πa|x|
2

for a > 0 and x ∈ Rn. These functions are
C∞ and Schwartz.

Lemma 13.2. Let f(x) = e−πx
2

for x ∈ R. Then f̂(ξ) = f(ξ).

Proof. Note that f satisfies f(0) = 1 and f ′(x) = −2πxf(x). I claim that f̂ also satisfies this. Let

F = f̂ for notation’s sake.

F (0) = f̂(0) =

∫ ∞
−∞

e−πx
2

e2πix·0dx = 1 (13.1)
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Recall, the way to solve this is to do
∫∞
0
e−πx

2
dx and set up a 2d integral and evaluate using polar

coordinates. We now use the fact that f is Schwarts to differentiate under the integral, and then
integrate by parts from line 3 to 4 (note: no boundary terms).

F ′(ξ) =
d

dξ

∫ ∞
−∞

f(x)e−2πixξdx

=

∫ ∞
−∞

f(x)e−2πixξ(−2πix)dx

= i

∫ ∞
−∞

f ′(x)e−2πixξdx

= −i
∫ ∞
−∞

f(x)(−2πiξ)e−2πixξdx

= −i(−2πiξ)

∫ ∞
−∞

f(x)e−2πixξdx

= −2πξF (ξ)

(13.2)

so by uniqueness of ODEs, f = F .

Proposition 13.3. Let f ∈ L1(Rn), and supp f ⊂ {|x| ≤ R}. Then f̂ ∈ C∞ and∣∣∣Dαf̂
∣∣∣ ≤ (2πR)|α| ‖f‖1 (13.3)

(So the decay of f implies regularity of f̂ .)

Proposition 13.4. Assume f ∈ CN(Rn), and Dαf ∈ L1(Rn) for 0 ≤ |α| ≤ N . Then

D̂αf(ξ) = (2πiξ)αf̂(ξ)
∣∣∣f̂(ξ)

∣∣∣ ≤ C(1 + |ξ|)−N (13.4)

Note that we already had proved the first formula for Schwarts functions, it followed from
integration by parts. The same proof actually works here too if f ∈ CNc (Rn), and you might be
able to work though it if f → 0 at ∞, but this proposition does not assume that! We will use
some kind of approximation argument.

Proof. (1) =⇒ (2): For 0 < |α| ≤ N , consider∣∣∣ξαf̂(ξ)
∣∣∣ =

∣∣∣∣∣
(

1

2πi

)|α|
D̂αf(ξ)

∣∣∣∣∣
≤
(

1

2π

)|α|
‖Dαf‖1

(13.5)

Thus
∣∣∣P (ξ)f̂(ξ)

∣∣∣ is bounded for all P polynomials of degree ≥ N .

Lecture 14

Define a continuous bump function φ ∈ C∞c (Rn) so that

φ =


1 |x| ≤ 1

something nice |x| ∈ (0, 1)

0 |x| ≥ 2

, 0 ≤ φ ≤ 1 (14.1)
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and also let φk(x) = φ(x/k) for k ∈ N. We use fk := φkf to approximate f . We do have the
conclusion of the prop for each fk, so consider

1. ∣∣∣∣ ∂∂xj φk(x)

∣∣∣∣ =

∣∣∣∣1k ∂φ∂xj
(x
k

)∣∣∣∣ ≤ 1

k
‖∇φ‖∞ (14.2)

Iterating this, we can get

|Dαφk(x)| ≤ 1

k|α|
‖Dαφ‖∞ (14.3)

2. For |α| ≥ 1, Dαφk is supported in {x : k ≤ |x| ≤ 2k}.

3. We have limk→∞ ‖Dαfk −Dαf‖1 = 0 for |α| ≤ N . To see this, consider

‖Dαfk −Dαf‖1 ≤ ‖D
αfk − φkDαf‖1 + ‖φkDαf −Dαf‖1 (14.4)

By the dominated convergence theorem, the second term on the RHS goes to 0 where we
use 2Dαf as the dominating function (or, “majorant”). Further, if |α| = 0, then fk = φkf ,
so the first term is 0. So now we suppose |α| ≥ 1. Then we have

Dαfk = Dα (φkf) = φkD
αf +

∑
|β|≥1

cβ
(
Dβφk

) (
Dα−βf

)
(14.5)

and so
‖Dαfk − φkDαf‖1 ≤

∑
|β|≥1

cβ
∥∥(Dβφk

) (
Dα−βf

)∥∥
1

(14.6)

so now let’s look at∥∥(Dβφk
) (
Dα−βf

)∥∥
1
≤
∥∥Dβφk

∥∥
∞

∥∥Dα−βf
∥∥
1
≤ 1

k|β|
C(φ, β)

∥∥Dα−βf
∥∥
1
→ 0 (14.7)

as k →∞.
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So recall we have
D̂αfk(ξ) = (2πiξ)α f̂k(ξ) (14.8)

for each fk. As we let k →∞, from property 3, we have∣∣∣D̂αfk(ξ)− D̂αf(ξ)
∣∣∣ ≤ ‖...‖1 → 0 (14.9)

so the right hand side of equation (14.8) converges uniformly to D̂αf(ξ), and f̂k(ξ) goes uniformly

to f̂(ξ), so the whole left hand side of equation (14.8) goes pointwise to (2πiξ)α f̂(ξ). This is only
possible if the equation holds for f .

14.7 Convolution

If f, g : Rn 7→ C, define

(f ∗ g)(x) =

∫
Rn

f(x− y)g(y)dy =

∫
Rn

f(y)g(x− y)dy (14.10)

If f , g ∈ L1 we claim that f ∗ g is well defined as an L1 function. This is because we can write∫
|f ∗ g(x)| dx ≤

∫ ∫
|f(x− y)| |g(y)| dydx =

∫ ∫
|f(u)| |g(y)| dudy = ‖f‖1 ‖g‖1 (14.11)

where we changed variables u = x− y.
Now, if we take f ∈ L1 and g ∈ L∞, then

|f ∗ g(x)| ≤
∫
|f(y)| |g(x− y)| dy ≤ ‖g‖∞ ‖f‖1 (14.12)

so f ∗ g is in L∞ as well. More generally, if f ∈ Lp and g ∈ Lq with 1 ≤ p, q ≤ ∞ dual to each
other (1

p
+ 1

q
= 1), then |f ∗ g(x)| ≤ ‖f‖p ‖g‖q. To see this you must apply Hölder’s inequality.

MORE generally, Young’s inequality says that

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q (14.13)

if 1 + 1
r

= 1
p

+ 1
q
.

It is useful to think of convolution as averaging. If g = 1
|Bε|χBε , where Bε = {x : |x| < ε}, then

f ∗ g(x) =

∫
f(x− y)g(y)dy =

1

|Bε|

∫
Bε

f(x− y)dy =
1

|Bε|

∫
Bε(x)

f(y)dy (14.14)

Lecture 15

Lemma 15.1. Suppose φ ∈ J and f ∈ L1. Then f ∗ φ ∈ C∞ and Dα(f ∗ φ) = f ∗Dαφ.

Proof.

∂

∂xj
(f ∗ φ) =

∂

∂xj

∫
φ(x− y)f(y)dy

= lim
h→0

∫
1

h
(φ(x+ hej − y)− φ(x− y)) f(y)dy

=

∫
∂

∂xj
φ(x− y)f(y)dy

(15.1)
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To justify differentiating under the integral, not that
∣∣ 1
h
(φ(x+ hej − y)− φ(x− y))

∣∣ ≤ ∥∥∥ ∂φ
∂xj

∥∥∥
∞

by

the mean value theorem. So the integrand is bounded by
∥∥∥ ∂φ
∂xj

∥∥∥
∞
|f(y)| ∈ L1, so by the dominated

convergence theorem, ye. We can now iterate this to get all the derivs since φ is schwartz.

Corollary 15.2. If f, g ∈ J , then f ∗ g ∈ J .

Proof. By the lemma, f ∗ g ∈ C∞ and Dα(f ∗ g) ∈ C∞, so we just need to show that (1 +
|x|)NDα(f ∗ g) is bounded for all N . It suffices to show that (1 + |x|)Nf ∗ g bounded for all N ,
f, g ∈ J . This is because Dαf ∈ J as well so.∣∣(1 + |x|)Nf ∗ g(x)

∣∣ ≤ (1 + |x|)N
∫
|f(x− y)g(y)| dy

≤
∫

(1 + |y|)N(1 + |x− y|)N |f(x− y)| |g(y)| dy

=
∥∥(1 + |x− y|)Nf(x− y)

∥∥
∞

∫
(1 + |y|)N |g(y)| dy

(15.2)

The first term in the product is bounded because f ∈ J . For the integral term, note that
|g(y)| (1 + |y|)M ≤ CM for all M ∈ N. So we can take M = N + n+ 1 where n is the dimension of
the space. Then we get (1 + |y|)N |g(y)| ≤ CM(1 + |y|)−n−1 and the right hand side is in L1(Rn).

Also, you might see that moving to the second line here was non trivial. We check this:

(1 + |y|) (1 + |x− y|) = 1 + |y|+ |x− y|+ |x− y| |y|
≥ 1 + |y|+ |x− y|
≥ 1 + |x|

(15.3)

by the triangle inequality on x = (x− y) + y.

Let φ ∈ J ,
∫
φ = 1, ε > 0, and define

φε(x) =
1

εn
φ
(x
ε

)
(15.4)

We want to approximate f by f ∗ φε as ε → 0 (should have decay same or better than f at
infinity).

Lemma 15.3.

1.
∫
φε(x)dx = 1

2.
∫
|φε(x)| dx =

∫
|φ(x)| dx < M uniformly in ε.

3.
∫
|x|>η |φ

ε(x)| dx→ 0 as ε→ 0 for any fixed η > 0.

Lemma 15.4.

1. If f ∈ C(Rn), f → 0 at ∞, then φε ∗ f → f uniformly as ε→ 0.

2. If f ∈ Lp(Rn) for 1 ≤ p <∞, then ‖φε ∗ f − f‖p → 0 as ε→ 0.

Proof.
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1. Assume that f ∈ C(Rn), f → 0 at ∞ (hence, uniformly continuous). Let ε1 > 0. Then by
uniform continuity, there is an η > 0 so that |f(x− y)− f(x)| ≤ ε1

M
for all |y| ≤ η (the M

here is the same one in the previous lemma).

|φε ∗ f(x)− f(x)| =
∣∣∣∣∫ φε(y)f(x− y)dy − f(x)

∣∣∣∣
=

∣∣∣∣∫ φε(y) (f(x− y)− f(x)) dy

∣∣∣∣
≤
∫
|φε(y)| |f(x− y)− f(x)| dy

=

∫
|y|<η

...dy +

∫
|y|>η

...dy

(15.5)

The first equation is ∫
|y|<η

...dy ≤ ε1
M

∫
|φε(y)| dy ≤ ε1

We also have ∫
|y|>η

...dy ≤ 2 ‖f‖∞
∫
|y|>η
|φε(y)| dy → 0

as ε→ 0, so we can make it less than ε1 if ε is small enough.

2. If (2) holds for f ∈ Lp ∩Cc(Rn), then it holds for all f ∈ Lp(Rn). To see this let f ∈ Lp(Rn),
δ > 0, g ∈ Cc(Rn), ‖g − f‖p < δ. Then

‖f ∗ φε − f‖p ≤ ‖(f − g) ∗ φε‖p + ‖g ∗ φε − g‖p + ‖f − g‖p (15.6)

so by some estimates yea.

Lecture 16

Theorem 16.1 (Fourier Duality). If f, g ∈ L1(Rn), then∫
f̂(x)g(x)dx =

∫
f(y)ĝ(y)dy (16.1)

Note that if f ∈ L1, f̂ ∈ L∞ and g ∈ L1 so f̂ g ∈ L1.

Proof. ∫
f̂(x)g(x)dx =

∫ ∫
f(y)e−2πix·ydyg(x)dx

=

∫ ∫
f(y)g(x)e−2πix·ydydx

=

∫ ∫
g(x)e−2πix·ydxf(y)dy

=

∫
f(y)ĝ(y)dy

(16.2)
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Theorem 16.2 (Inversion formula). Assume that f , f̂ ∈ L1 (which is true for example for schwartz
functions). Then

f(x) =

∫
f̂(y)e2πix·ydy (16.3)

for almost every x.

Proof. Let Γε(x) = e−πε
2|x|2 . Then

Γ̂ε(ζ) = Γε(ζ) =
1

εn
e−π|x|

2/ε2 (16.4)

Let Iε(x) =
∫
f̂(ζ)gε(ζ)dζ, and gε(ζ) + Γε(ζ)e2πiζ·x. Now, by Fourier Duality,

Iε(x) =

∫
f̂(ζ)gε(ζ)dζ

=

∫
f(y)ĝε(y)dy

=

∫
f(y)Γ̂ε(y − x)dy

=

∫
f(y)Γε(x− y)dy

= f ∗ Γε(x)

(16.5)

we used in here that Γε is an even function. Hence, Iε → f in L1, but also

Iε =

∫
f̂(ζ)Γε(ζ)e2πiζ·xdζ (16.6)

Now, Γε(x) goes to 1 pointwise, so by dominated convergence theorem,

Iε(x)→
∫
f̂(ζ)e2πiζ·xdζ (16.7)

Lecture 17

Observe that if f̂ 6∈ L1, the integral in the inversion formula may not converge. But what about

lim
R→∞

∫
|y|≤R

f̂(y)e2πix·y (17.1)

is this defined pointwise a.e.? Is it defined in some Lp space? In L2, these functions converge to
f , but otherwise this subject is an open area of research. Consider

lim
R→∞

∫
χ
( y
R

)
f̂(y)e2πix·ydy (17.2)

where χ is a cutoff function, i.e. an indicator function for the unit ball |y| ≤ 1. We had χ = e−π|y|
2

in the proof of the inversion formula. There are complications when χ is a non-continuous thing
though.
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Corollary 17.1.

1. If f ∈ L1(Rn), f̂ ≡ 0 a.e., then f = 0 a.e..

2. F : J → J bijectively. This is because if g ∈ J , take f(x) =
∫
g(y)e2πix·ydy which is

a Schwartz function, then by inversion we have f(x) =
∫
f̂(y)... so this holds by the first

corollary.

3. If f, g ∈ L1(Rn), then f̂ ∗ g = f̂ ĝ.

4. If f, g ∈ J , then f̂ g = f̂ ∗ ĝ.

Proof of 3. f ∗ g is in L1, and

f̂ ∗ g(ξ) =

∫
f ∗ g(x)e−2πix·ξdξ

=

∫ ∫
f(x− y)g(y)e−2πi(x−y)·ξe−2πiy·ξdydξ

=

∫ ∫ (
f(x− y)e−2πi(x−y)·ξ

) (
g(y)e−2πiy·ξ

)
dydξ

= f̂(ξ)ĝ(ξ)

(17.3)

Proof of 4. Take Fourier transform of both sides. Then
̂̂
fg(x) = f(−x)g(−x) using the fact[1] that

F (x) =
∫
F̂ (y)e2πix·ydy with F (x) = f(x)g(x). Now, applying the corollary part (3.), we get

̂̂
f ∗ ĝ =

̂̂
f(x)̂̂g(x) = f(−x)g(−x) (17.4)

again applying fact[1].

Theorem 17.2 (Plancherel). If f , g ∈ J , then∫
f(x)g(x)dx =

∫
f̂(ξ)ĝ(ξ)dξ (17.5)

Proof. By Fourier duality, ∫
f(x)g(x)dx =

∫ ̂̂
f(−x)g(x)dx

=

∫ ̂̂
f(x)g(−x)dx

=

∫
f̂(x)ĝ(−x)dx

=

∫
f̂(x)ĝ(x)dx

(17.6)
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where we got to the last line by change of variables. The variable change was this,

ĝ(−x)(ξ) =

∫
g(−x)w−2πix·ξdx

=

∫
g(−x)e2πix·ξdx

=

∫
g(x)e−2πix·ξdx

= ĝ(ξ)

(17.7)

17.1 L2 theory

‖f‖2 =
(∫
|f |2 dx

)2
and 〈f, g〉 =

∫
fgdx. By Plancherel, if f and g ∈ J , then

〈f̂ , ĝ〉 = 〈f, g〉
∥∥∥f̂∥∥∥

2
= ‖f‖2 (17.8)

This allows us to extend the F.T. to L2. For f ∈ L2, let fn ∈ L1 (or ∈ J ) so that ‖fn − f‖2 → 0
as n→∞. Now define

f̂ = lim
n→∞

f̂n (17.9)

where the limit is taken in L2. This limit exists because L2 is complete, and fn is a cauchy sequence
in L2; ∥∥∥f̂m − f̂n∥∥∥

2
= ‖fm − fn‖2 → 0 (17.10)

as m,n→∞. This definition of F.T. does not depend on the choice of fn, and it is also consistent
with the definition for L1 functions. If f ∈ L1 ∩ L2...

Lecture 18

18.1 Lp theory, 1 ≤ p ≤ 2

Let f ∈ Lp(Rn), 1 ≤ p ≤ 2. Write f = f1 + f2, where f1 = f · χ{x:|f |>1}, f2 = f · χ{x:|f |≤1}. Then

f1 ∈ L1 and f2 ∈ L2. We define f̂ = f̂1 + f̂2. Now if we have a different decomposition f = g1 + g2,
g1 ∈ L1 and g2 ∈ L2, then f1 − g1 = g2 − f2 ∈ L1 ∩ L2. So then, do we have f̂ = ĝ1 + ĝ2 = f̂1 + f̂2
? Since the functions are in both spaces, we have f̂1 − ĝ1 = ĝ2 − f̂2 so yea.

We have
∥∥∥f̂∥∥∥

∞
≤
∥∥∥f̂∥∥∥

1
,
∥∥∥f̂∥∥∥

2
= ‖f‖2. By interpolation, we have the Hausdorff-Young inequal-

ity
∥∥∥f̂∥∥∥

p′
≤ ‖f‖p for 1 ≤ p ≤ 2, 1

p
+ 1

p′
= 1. For 1 < p < 2, there is a constant Cp < 1 so that∥∥∥f̂∥∥∥

p′
≤ Cp ‖f‖p

For p > 2, nothing nice happens. f → f̂ is not bounded. That is, the H.Y. inequality does
not hold.

29



Lecture 19

Lemma 19.1. The Fourier transform is not bounded Lp → Lq for any q < p. That is, there is no

estimate
∥∥∥f̂∥∥∥

q
≤ C ‖f‖p with C independent of f (in particular, the H.Y. inequality does not hold

for p > 2).

The idea is to suppose we could find φ1, φ2, φ3, ... ∈ J such that ‖φ1‖p = ‖φ2‖p = ... and

‖φ1‖q = ‖φ2‖q = ... and the supports of φj are pairwise disjoint, and supports of φ̂j pairwise

disjoint too. If this was possible, then let ΦN =
∑N

j=1 φj. Then ‖ΦN‖p =
(∫

(
∑
|φj|)p

)1/p
which

by the disjoint supports, equals

(∑∫
|φj|p

)1/p

=

(
N∑
1

‖φj‖pp

)1/p

= (NAp)1/p = N1/pA

and for the fourier serieses,∥∥∥Φ̂N

∥∥∥
q

=

(∫ (∑∣∣∣φ̂j∣∣∣)q)1/q

= ... = N1/qB (19.1)

So if we had
∥∥∥f̂∥∥∥

q
≤ C ‖f‖p, then N1/qB ≤ CN1/pA for all N , but N

1
q
− 1

pB ≤ CA, and 1
q
− 1

p
> 0,

a contradiction. This is dependent on finding that crazy sequence of φ though, which isn’t true.

Proof of 19.1. Take φ ∈ C∞c (−1
2
, 1
2
) in dimension 1, and let φk(x) = e2πixakφ(x− k). We compute

φ̂k(ξ) =

∫
e2πixakφ(x− k)e−2πixξdx

=

∫
e−2πix(ξ−ak)φ(x− k)dx

=

∫
φ(u)e−2πi(u+k)(ξ−ak)du

= e−2πi(ξ−ak)kφ̂(ξ − ak)

(19.2)

with the change of variables x − k = u. The claim now is that if ak → ∞ fast enough, then∥∥∥Φ̂N

∥∥∥q
q
≥ N

2

∥∥∥φ̂∥∥∥q
q
.

Lecture 20

We will talk about Localization and the uncertainty principle for awhile. Basically, this is about
two things: First, f̂ is supported in {‖ξ‖ ≤ R} ⇐⇒ f is approximately constant; on the scale of
1
R

. Second, it’s not usually possible for f and f̂ to be compactly supported.

Proposition 20.1. Let f ∈ C(R), f 6≡ 0. Then f , f̂ cannot both be compactly supported.

Proof. Suppose that f ∈ [a, b] compact, and supp f̂ is compact as well. By scaling and translation,
we may assume that 0 < a < b < 1.
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Example 20.2. If F is a trig polynomial on R, F (x) = 0 for all x ∈ E for some |E| > 0, then
f ≡ 0.

Theorem 20.3. Assume f ∈ J with ‖f‖2 = 1. Then(∫
|x|2 |f(x)|2 dx

)(∫
|ξ|2

∣∣∣f̂(ξ)
∣∣∣2 dξ) ≥ 1

16π2
(20.1)

Corollary 20.4. If ξ0, x0 ∈ R, f ∈ J , ‖f‖2 = 1, then(∫
|x− x0|2 |f(x)|2 dx

)(∫
|ξ − ξ0|2

∣∣∣f̂(ξ)
∣∣∣2 dξ) ≥ 1

16π2
(20.2)

We also have an Rn version of this, but the lower bound is n2

16π2 .
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