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Lecture 1

First, some notation. Work on the interval [0, 1] and consider functions f : [0,1) — C. Extend this
to a periodic function f : R — C which, as can be seen in Figure 1, may make it discontinuous at
every integer.
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Figure 1: A function f extended into periodicity

1. T is the Torus. The Torus itself is really just the interval [0,1] but with the endpoints
identified, making it a closed circle.

2. Define the special class C (T) = {f € C([0,1]) | f(0) = f(1)}.

1/
3. Let L?(T) = {f I, < oo} where [/ f]|, = (fol |f|pdm> " Note that L? is an inner
product space. That is, there is an inner product defined by

1
(r9)= [ 1-9ds (1)
0
Definition 1.1 (Fourier coefficients). Let f € L'(T). We define

Fln) = / f(@)e 2 de (1.2)



for alln € Z. The Fourier Series associated with f is

Fr Y Fm)emne (1.3)

n=—oo

Note that since f € L',
1

g/ |f(x)] dx < o0 (1.4)
0

1
/ f(.T)e_anxdl'
0

so the coefficients f(n) are well defined.
With this, we come to two initial questions about Fourier Series.

Question 1.2. The first major question to ask is when does the Fourier series converge to f? To
be more specific, let

Svf= Y fln)em (15)
n=—N

Do we have that Sy f — [ pointwise? How about uniformly? In an LP norm?
Question 1.3. Are there other approximations of f by trigonometric polynomals ZnN:_N a,e* e ?
The following lemma is an answer to these questions in a special case.

n=—oo

Lemma 1.4. Suppose that > °7 _ |a,| < oo. Then Y7 _ a,e*™™* converges uniformly to a

continuous function. Further, in this case a, = f(n).

Proof. Note that {e*™™*} are orthonormal in L?. That is,

=M TeT MY dy = . : 1 1.6
/0 01 eQm(n—m)m _ 27r(nl_m) esz(n—m)x =0 n # m ( )
0
Let
N
Sy = Z a, 2" (1.7)
n=—N
and I claim that this is a uniform Cauchy sequence. Indeed, if M > N then
1Sy = Svl =1 DY ane®™™| < Y an| =0 (1.8)

N<|n|<M N<|n|<M

as N — oo. Thus the partial sums converge uniformly and Sy is continuous, so it converges
uniformly to f and f is continuous. Finally we show that these coefficients are equal to the
Fourier coefficients. Recall

Fioy = [ syt

1 o)
— am627rim:1: 6727rinx dl’
[(5 e

m=—00
00 1
— E : (/ am€27rzm:c6—27rmxdm)
m=—oo 0
which is 0 if m # n, and a,, = a, if m = n. O



Now, some Properties of Fourier coefficients:
1. Linearity: af/+\bg(n) — af + bg(n)

2. Conjugation: Observe that

/f 2’””“d:c—/ f(z e2mmdq:—f(—) (1.10)

As a consequence, if f: T — R, f( )= f(—n)

3. Translation: Let fi(z) = f(x —t). Then

W= [ e

1
_ / f(l’ . t)efQﬂ'in(azft+t) dr

_ —27rznt / f —27rin(:v—t)

—2mint f

(1.11)

=€

Lecture 2

~

Lemma 2.1. Suppose f € L' (T), f(n) =0 for alln € Z. Then f(x) =0 for all x such that f is

continuous at x.

Proof. If f(n) = 0 for all n, then

/o f(z)e ™ dy = 0 (2.1)

for all n, and further if P(x) = Z]_VN ape 2mine,

/O f(2)P(z) =0 (2.2)

That is, f is orthogonal to all trigonometric polynomials. Suppose that there is an xy € [0, 1]
where f is continuous and f(x¢) # 0. We will construct a trigonometric polynomial where (2.2)
fails. We may assume that f(xg) > 0, f is real valued, and that zo = 0. Indeed, if zq # 0, consider
f(z — xq) instead of f(x).

Now, start with p(x) = cos(2mx) + € for some € > 0. Let § > 0 be such that f(x) > %)
for all |z| < §. We choose ¢ sufficiently small so that |p(z)| < 1 — § for |z| > 4. Finally, let
Py(z) = (p(x))N. T claim that for large enough N, equation (2.2) falls.

1/2

(@) Py (z)dz = /_ (@) Py () + /5 PR (2.3)

—1/2



I claim the first integral goes to infinity and the second goes to 0 as N — oo. For the second one
on |z| > 4, we have |p(z)| < 1—%, |Py|(z) < (1 - %)N Now

g/...<1—g)N

/ F(2)Py(z)dz
5<|x|<1/2 (2.4)

Now, let 0 < 1 < § be such that p(x) > 1+ § for all [z[ < 1. We can do this because
p(0) =1+e¢.

/ mmvmmz/ Py(2) f(x)dz
|z|<d lz|<n (25>

ZZn(l—F%)N@—)oo

~

Corollary 2.2. Suppose f,g € C(T) and f(n) =g(n) for alln € Z. Then f = g.

Proof. Just apply lemma 2.1 to the function f — g. n

Corollary 2.3. Assume that f : T — C is continuous, and » - ’f(n)’ < o0o. Then Sxf — f

uniformly.

~ ~

Proof. Let a, = f(n). By lemma 1.4, we have Sy f — g € C (T) uniformly and g(n) = a, = f(n),
so f=g. O]

Lecture 3
Definition 3.1 (Convolution). If f, g € L'(T), we define
1
Frg@ = [ fla-ngtar (3.1)
0

which is defined A.FE.

A useful way to think of this is a way of averaging the functions. In many ways, it makes

0 f )
functions much more regular. If g = q | or|z| > , then
35 for |z[ <4
1
frglz) = / e — eyt (3.2)
/<5 20

Lemma 3.2. If f, g € LY(T), then If f x g € L*(T) as well.



Proof.

dx

[1reaiar=[| [ 16 - oo
< [ [ 15t =0l ane

< [ [ s
= 1171l Nl

Lemma 3.3.

—_— ~

fxg(n) = f(n)g(n)
Proof.

[z —t)g(t)dte ™™ dg
f(ZL' . t)g(t)6727Tin(zft)€27rintdtdx

_ (f(l‘ . t)e—QTrin(x—t)) (g(t)€27rint) dtdr

Now, an exercise is to prove the following properties of convolution.
1. fxg=gxf
2. fx(gxh)
3. fx(g+h)=fxg+f=*h

Lemma 3.4. Let f € L'(T), and define

N
K(l’): Z ak€2m’km

k=—N

Then v
(f*K)(x) = Y apf(k)er ™

k=—N

(3.3)

(3.5)

(3.6)

(3.7)

Proof. By linearity, it suffices to prove this for K having only one term. So, we will assume it is

K(x) = e*™** Thus, using the first property,

1
0

(f % K)(x) = /0 K(z—t)f(t)dt = / TR (1) dt = ¥ /0 F(t)e*mktdt = ek f(k) (3.8)

]



Recall that for f € LY(T), we have

N
Snf=Y" Fln)eine (3.9)
n=—N

I claim that Sy f = Dy * f, where

N

DN<37) _ Z e27rin:r;
n=—N
627ri(2N+1)1‘ -1

esm’(fN)x %

627ri3: -1

2mi(N+1)z _ e—27riNz

e*mr — 1 (3.10)
(N4 1 J(aN_1
67r7,(2N-|—2):I: _ 67r7,(2N 3)T

e

omic _ p—mix
_ 2isin((2N + 1)7x)
B 2i sin(mz)

_ sin((2N + 1)7x)
B sin(mx)

which is called Dirichlet Kernel.
Apply the Lemma with a;, = 1 for all =N < k < N. Then

N

Snf(z)=fx Y ek (3.11)

k=—N
Definition 3.5. A sequence of functions {K,};” C L'(T) is a summability kernel if
1 [y Ku(z) =1
2. fol | K (z)| dx < M for alln
3. For all § >0, K, — 0 uniformly on (6,1 —9) as n — oo.
Note that the Dirichlet Kernel D,, is not a summability kernel.

Theorem 3.6. Let f € C(T), and let {K,,} be a summability kernel. Then K, *x f — f uniformly
as m — oo.

Proof. Note that since f € {(T), f is uniformly continuous. Let ¢ > 0, and choose a § so that
|f(z —y) — f(z)] < e for all x whenever |y| < §. Using the fact that the integral of K, is 1, we
have

K% f(x) — F(2)] = / Koy (e — y)dy - / Kn(y)f(w)dy'
-/ Kn(y)(f(af—y)—f(w))dy‘ (3.12)

1-6
= / ...dy+/ dy‘
ly|<é 6

6




Now, the first integral is

1
/ Ly < / Ka(w)] 1/ (2 — ) — f(y)] dy < Me (3.13)
ly|<o 0
and the second integral is
1-6 1
[ wdy< sw K [ 15— - f)ldy 0 x 2max|f)] (39
1) d<y<l—é 0 Y
as n — 00. ]
Lecture 4

Corollary 4.1.

o If f e LYT), then | K, * f— fll;, = 0 as n = oo.

o If f € LY(T) and f is continuous at x, then K, * f(z) — f(x) as n — oo.
Proof. Exercise!

e Approximate f by continuous functions to do the first point, and apply theorem 3.6 and do
some approximating.

e For the second point, work through the details in the proof of theorem 3.6, but you fix x. It
works very similarly.

O]
Recall that

Sy f(x Z f(n)e™* = Dy « f(x) (4.1)

is not a summability kernel, because it fa1ls property 2 and 3 from definition 3.5. However, it does
satisfy property 1. Now, define some average functions

1 N—-1
aNf:NZSnf (4.2)
n=0

and recall that if Syf(x) — L, then onyf(x) — L as well. However, it is possible to have
onf(x) — L even if Syf(x) does not converge. A good example of this is that the sequence
{(=1)"}2, does not converge, but its sequence of averages does.

Definition 4.2. Rewriting,

N-1
1

aNf_N; ZD x« f=F,*f (4.3)
Where F,, := « Z D, is the Fejér Kernel. We can compute a closed form expression for these,

which is )

1 [sin(Nmz)

Fy=———= 4.4
NTN < sin(mz) ) (4.4)

7



Lemma 4.3. F), is a summability kernel.

Proof. We check the properties of summability kernels.

1.
1 1N_1 1 1
| P Nz/ = (45)

AmM:AEWZI (4.6)

11 1 1
N (sin(7x))? = N (sin(76))”

3. Foré <x<1-9,

Fy(z) < — 0 (4.7)

Applying Theorem 3.6 and Corollary 4.1 to this summability kernel, we have that
1. If f € C(T), then on f — f uniformly.
2. If f € LY(T), then [jon x f — f]|; = 0 as n — oco.

3. If f € LY(T) and f is continuous at x, then o, x f(z) — f(z) as

~

Corollary 4.4. If f € LY(T) and f(n) =0 for alln, then f = 0 almost everywhere (w.r.t Lebesque
measure).

Note that this is a discontinuous version of a previous result applying to f € C(T).

-~

Proof. If f(n) = 0 for all n, then Sy f = 0 which implies oxf = 0. Thus oxf — 0in L', so f is
the zero function in L. O

Corollary 4.5. If f € L}(T) continuous at v and Sy f(x) — L as N — oo, then f(z) = L.

Proof. Apply (3) from above to see that onf(z) — f(x) and Syf(x) — L, and the limits thus
must be the same. O

In particular, if f has a jump discontinuity at z, suppose f € L'(T) and that

1g£%(f(x+h)+f(x—h)) L (4.8)

exists. Then oy f(z) = L as N — oo.
To see this, compute

oxf(x) — L= / Fn(y)(f(z —y) — L)dy

=/01FN(y) (f(x—y);rf(wry) _L> i

(4.9)

Where we used symmetry, and the rest is the same reasoning as in Theorem 3.6.

8



Lecture 5

~

Fourier Decay: estimates on ‘f(n)‘ as n — 00.

Lemma 5.1 (Riemann-Lebesgue). Suppose f € L*(T). Then f(n) — 0 as n — oc.

Proof. Let € > 0. Take N large enough so that ||onf — f||;: < ¢ and take its Fourier coefficients.

o = FR)| < llowf = 11l < 2 (5.1

But also, on f is a trig. polynomial of degree < N, so O'/N\f(k‘) = 0 for all |[k| > N. Thus for all
K| >N,

[F)| < |owd = 1) + |onf@)| < e +0 (5.2)

O

When do we have faster decay? (Quantitative estimates) Sometimes we do have it, when f is
regular in some way.

Lemma 5.2. Let F be absolutely continuous on T (i.e. there is a function f € L'(T) so that
= [y f(t)dt, and that fo ydt = 0). Then F(n) = =~ f(n) for all n # 0. In particular,

2min
‘F ‘ < Hful Further, by the R-L lemma,

Fn)| = o (1),

Proof. Integrating by parts, we have

1
F(n)= / F(z)e 2™ dg
0

1
1 .
_/ f(f]?) : 6727rmxd$
0 —2min (53)
I omi
_ —2minz 1
277@'71/0 J(w)e g
1 ~
= Sin? ")
[l

Functions with slow Fourier decay

Suppose {a,}>_  C R, a, > 0, a, = a_,, a, — 0 as |n| — oo. Also suppose for n > 0,
Uni1 — 20, + ap—1 > 0. Then there is a function f € L'(T) such that f(n) = a,. Note that the
Gni1 — 2a, + a,_1 > 0 is really just a condition about concavity, it makes it concave up.

Note also that we cannot just let f(z) => 7 a,e*™™* because the series may not converge
if the sequence of a,, decays slowly. Define instead

= " n(an1 — 20, + api1) Fo(x) (5.4)



Where F,,(z) is the Fejér Kernel from before. I claim this converges in L'. Let ¢, = n(a,_1 —
2a,, + ap+1). Then we need to check

dolleaFulli = callEalli =) ca (5.5)
n=1 n=1 n=1

Let Ay = Zivzl Cn, and claim that Ay = ap—ay — N(ay —ans1) = ag— (N +1)ay + Nayi1.You
can prove this relation by induction.

L] FOerl, AN:A1261:a0—2a1+a2
e assume it holds for N. Then

Ani1 = An +evi
=ap— (N +1ay + Nay1 + (N + 1)(an — 2an+41 + any2) (5.6)
=qag — (N + 2)aN+1 + any2

Thus the relation holds for all N. Now we just need to prove that limy_,. A, exists.
A, =ag—ay — N(ay —an1) (5.7)
The first two terms are easy. For the last,

N(ay —any1) = (ay —any1) + .. + (any — any1)
=2 ((ay — an+1) + (an—1 — an) + ... + (apnj2) — a|ny2)+1))
=2 (CLLN/2J - aN+1)
< 2ain/2) — 0

(5.8)

Lecture 6

Theorem 6.1 (From last time). Suppose {a,}>, C R, a, >0, a, = a_,, a, — 0 as |n| — cc.
Also suppose for n > 0, apy1 — 20, + an_y > 0. Then there is a function f € L'(T) such that

f(n) = a,.

Cont. So f € L', so we just need to find the Fourier coefficients of f. First, recall the Fourier
coeflicients of F,.

— 1 if [k <n
D (k) = =
* D(k) {0 it k| > n

0 if k| > N

11— if k<N

o Fy(k) =1 N Da(k) = {

Note that || f — fu]| = 0 in L', where



Indeed

1
Fu) = )| = | [ (= pymieas
0
. (6.1)
0
Hence
Fk) =" n(an-1 — 2a, + ansr) Fo(k)
n=1
= Z n (an—l - 2a, + an—i—l) (n — ‘k‘)
n=[kl+1 " (6.2)
= Z (an—l — 2a, + an-H) (n - |k|)
n=|k|+1
= ajk + (terms that go to 0)
by computations very similar to last time.
]
6.1 Fourier coefficients of measures
If 11 is a measure on T, define
i) = [ 2k (6.3)

For example, the delta function where fR fdo, = f(x). In this case, (f:\l for all k € Z, since
e~k — 1 for o = 0.

6.2 Pointwise convergence

Let f € LY(T) — f(k). When does Y% f(k)e2™* — f(z) pointwise?

Theorem 6.2. If f € LY(T) and f is differentiable at x, then Syf(z) converges to f(x) as
N — oc.

Proof. Let

f(ﬂﬁfti*f(ff) if ¢ 7& 0
Ft) = {— () if t =0 (6.4)

which is continuous at z. Is F € L*(T)? Well, for [t| > 4, |F(t)| < 5 (|[F(z —t)| 4+ |F(x)]) and it’s

11



also bounded inside the ¢ interval if you choose it sufficiently small. Using the fact that [ Dy =1,

Snf(x) —

f(x) = f* Dn(x) — f(2)
1/2 1/2

= Sz —t)Dn(t)dt — f(z)Dy(t)dt

~1/2 —-1/2

1/2
- / (f(x 1) — f(z) Dn(t)dt

1/2

1/2
J@=0= 1@, dyar

1/2

/
/1/2 Fr <sm (2N + 1)7rt)) o

sin(7rt)

1/2
v G(t) (sin((2N + 1)7t)) dt

—-1/2

since ( is bounded, and thus G(t) = F(t)C; is an L' function, which means that by Riemann

Lebesgue

and

Lecture 7

Start with a function

Now define

/ G(t)e ™kt dt — 0 (6.6)

]

mi(l — 2x 0<z<l1
o)== (1)
Extend periodically

500 = [ 9=0

1
g(n) = / mi(1 — 2x)e ™" dy
0

1
= —/ 2mize 2Ty
0

1 1 e~ 2minz
— dx
0 0 n

:L‘6727r1n:1:

n
=1/n

627rinz
Jn = 5Sng = Z -

0<|n|<N

(7.2)

ey

n=—N

e27rmm

n

12



two lemmas are that fy is uniformly bounded, and that ’fN(O)‘ > clog N. Finally,

=
8

) = TN fy(x)

) = €4WiNmfN($)

P _ ! 47rz'sz (:L,)e—27rimcdx
N(n) = /0 € N

—

= fn(n —2N)

— 0 ifn=0or |n >N
fN<n>:{; n]

=
8

if1<|n|<N

Now observe that

PN m Z 3N
SmPy =< Py m=2N (7.3)
0 m < N

More defining. Let {a;},—, be so that a;, > 0, >°, < oo. ALSO DEFINE {N,} so that Ny, >

3Ny, and ai log N, — oo as k — oo. For example, you could let N, = 32k, ap = 1%2
Finally, define

f(x) = arP(x) (7.4)

k=1

oo
which is uniformly convergence, because hw.

Lecture 8: L? theory

1/2

I

L% is a space. L2(T) = {f:T—C| [;|f]° < oo}. We have a metric. |f|, = (fol 12)? das)
and we have an inner product. (f,g) = fol fgdx

e C(T) is dense in L?, that is for all f € L*(T) and ¢ > 0, there is a g € C(T) so that

1~ gll, <e
1 1 1/2
d 2d> 8.
/Olfl xs(/ fP de (8.1)

which means ||f]|; < [|f]l,, and hence L*(T) C L'(T). The containment is proper; just
consider f(z) =a~* for 0 <z < 1, and % <a<l.

e Holder inequality holds:

Now, let e, := €™ We proved that

1

. 1 =

<€n7€m> :/ 627rz(n—m);r _ {0 m n (82)
0 m#n

13



This means that {e,}, ., is an orthonormal set. For f € L?,

Fn) = / Fl@)e e = (f. e,) (8.3)
Also, R
Snf=Y )™ = > (f,en)en (8.4)
[n|<N [n|<N

Lemma 8.1. The linear span of {e,}, ., is dense in L*(T).

Proof. Let f € L*(T), e > 0. Let g € C(T) such that ||f — g, < 5. Now, if I take N large enough
so that |g(z) — ong(w)| < § for all z € T. Then ||g — ongll, < 5, so ||f — ong|| < e. Since ong is
a finite combination of {e,}s, we are done. O

Lemma 8.2. if p(x) = a trig polynomial of degree at most N, then

ISnf = Flly < (1P = £l (8.5)

Proof. Consider P — f = (P — Sxf)+ (Svf — f). I claim that these functions are orthogonal, so
that

(P—=Snf,Snf—f)=0 (8.6)
So, let |n| < N. Then

<SNf_f7 €n> = <SNf,€n> - <f,€n>

- <|¥N Fm)en, en) = F(n) (8.7)
— A(n) — f(n) =0

If Q(x) = 3|, <n bnén, then (Sn f — f,Q) = 0 by linearity. Apply this with @ = P — Sy f to
prove the claim. We can now take the norm and get

1P = FI5 = 1P = SnfII* + 1Sn f = £l > I1Sx f = I3 (8.8)
Il

Now combine the lemmas to get

Theorem 8.3. If f € L*(T), then ||Sxf — fll, = 0 as N = oo. Also,

X~ 2
> [Fe| =11 (8.9)
Corollary 8.4. If f,g € L*(T) then
(f.9)=>_ f)g(n) (8.10)
nez

14



8.3 Equidistributed sequences
Definition 8.5. {(,} >, for ¢, € T is equidistributed if for any open interval (a,b) C T, we have

1
lim —#{i:1<i<N,{€(a,b)f=b—a (8.11)
N—>ooN
For example, taking
01012011301 (8.12)
727 7373’ 7472747 757"‘ *

These essentlally form a “uniform sampling” of the interval. One thing we would like to have is
that fo x)dx could be evaluated using these, like we might have

| res e 53 1) (5.13)

The real question is, what functions satisfy this?

Lecture 9

An equivalent definition of equidistant sequences is that we can replace equation (8.11) with

N
. 1
/X(a,b) (x)dx = ]\}1_13;0 N Zl X(a,b) (i) (9.1)

and this is also the case for step functions.
Theorem 9.1 (Weyl’s Criterion). The following are equivalent for a {¢,},—, with ¢, € T,
1. {Gu ), is equidistributed

2. For any f € C(T), we have
1 1 X
/0 f(x)dx = ]&gréoﬁg (9.2)

3. Forallk € Z, k # 0, we have
N

: 1 2mik(;
lim N Z e =0 (9.3)

N—o00 -
=1

Proof.
2mikx

1. = 3: by passing to the special case f(x) =¢

3. = 2: Let f € C(T) and let £ > 0. Let P be a trig polynomial such that |f(z) — P(z)| < ¢
for all z € T. Then we have

<e (9.4)

1 & L
N;P((n)—/o P(z)dx

15




if NV is large enough. The contribution of the integral here is really just to eliminate the
constant term from the sum! So we have

< LIS ric) - P<cn>>|

=1
N

+ }VZ (G) - / P()d

/ f(z) = P(a)] da
< 3¢

2. = 1: Let g = X(a), and we will approximate g by continuous functions. Given ¢ > 0, let
f+ and f_ be

g(z)

1 15 2 25

Figure 2: f_ and f,, assuming (a,b) = (1,2).

Then we have f- < g < fi, and choose them so that

[r<[a< s
e+ [ris foses [ 1

NZf (Ga) < Nchn < ;mcn) (9.6)

and taking the limit, we see that if N is large enough

Then

2 [g—c+ [ 1@ <3 0l e+ fiG <2+ [ g (9.7)

Corollary 9.2. If  is irrational, then the sequence {n(} -, is equidistributional

Proof. Use (3.) O

16



Lecture 10

What about {ny}™  for d =2, 37 What about {P(n)y},-,? What about just {P(n)} ", when
P(n) has an irrational coefficient? ETC...

Let P(z) = cqz® + c4_12971 + ... and fix an h € R. Consider
Pz +h)— P(x) =cq(d+h)*+... —coz®— .. (10.1)

which is a polynomial of degree one less than d. Based on this, we set up an inductive scheme.
If we know some statement (x) for polynomials of degree 1, and we know that “(x) for degree d
= () for degree d + 1”7, then we know it for all polynomials.

) o (®) 102

Lemma 10.1. Let a, € C, |a,| <1, then for 1 < H < N,

1H—1 1 N
SC(EZ NzanJrhaJ_n

h=0 n=1

for some C' € R.

Proof. For 0 < h < H
N N
1 1 H

To see this, call these sums S7 and S;. Then

2H

2h < — 10.4
<z (10.4)

1 1
|51 = 82l = 57 (Jaa] + oo 4 lan] + lawsa| + oo+ lansn]) < 5

Now average equation (10.3) for 0 < h < H — 1. We get

(10.5)

1 N
— o<
N;a

IN

(10.6)

I
/\ /‘\ —

=z =
[]=
5| -
=
L

S

3

+

>

S

S

+

X
N——
S

+

S
VRS
==
N———



At the last step: if A’ < h, relabel n+h' — n, and h — h' — h. You get an additional O (%) error
terms from this. This is apparently very confusing to see. Note that the a;a; terms occur twice
in the second sum (see the factor of 2), but once in the first. So we need to check that these are
an acceptable error. Apparently we can’t figure out how to do this atm, but the equation should
hold so we power through. Changing the order of summation now completes the lemma. O]

Corollary 10.2. If we have a sequence {(,} C T, and {Gorn — Cutooy @S equidistributed for each
fized h € N, then {(,} is equidistributed as well.

Proof. We use Lemma 10.1 with H ~ v/N. Then

1 iv: e2mikGn | < O (l S 1 iv: 2k (Crtn—Cn) >1/2 +0 (E) (10.7)
N B Hiz NS N .
O
Lecture 11
Apply this corollary to polynomials.
Corollary 11.1. If n is irrational, then {n*n} ~, is equidistributed.
Proof. Let h € N. Consider
(n 4 h)*n — n*n = n*n + 2nhn + h*n — n*n = n(2hn) + h*n = né + ¢ (11.1)
is equidistributed. O

More generally, any polynomial with at least one irrational coefficient, you get an equidis-
tributed sequence. Other examples: {fractional parts of n?, for a fixed 0 < o0 < 1}. The sequence
{fractional parts of logn} is not equidistributed.

11.4 Fourier transform on R"

If f e L'(R") (that is, [;. |f]dz < 00), we define the Fourier transform

for = [ 9 sy (112

and note that x, £ € R™ and the - between them is the dot product here. We will also need the
inverse Fourier transform

o) = [ emegleag (11.3)

18



we would expect that
Floy = [ emefiepa
RTL
:/627ria:~§/6—27riy~§f(y)dyd§

_ / () ( / ezwiu—y)-sdg) (11.4)

:/f(y)5x=yd3/
= f(x)

However, this equation is all wrong. Line 3 onward makes no sense! However, we can use some
approximation identities to make something like this rigorous.

If f € L' then ’f(g)’ < [1f] = IIfll,- You can also extend the definition of the Fourier
transform to measures. We can define

e = [ <y (11.5)
If f € LY, then ]?is uniformly continuous. To see this, consider
fie=m = Fe)| = [ (et - o) fayas
= / 2w lw) (e=2mien 1) f(z)dx (11.6)
< [le -] @) o

Apply the dominated convergence theorem. Each of the integrals are bounded < [2]f], so
the whole integral goes to 0 as n — 0 uniformly in &, since there is no dependence on &.

11.5 Translation/modulation

For a fixed a € R", define f,(z) = f(z — a). Then
o= [ e
_ f(y)e—%ri(y—l—a)fdx (117)
R”
= e T f(€)

And another identity is that if e,(z) = e then e/a?(f') = f(£ +a).

Now, let T : R™ — R™ be invertible (so it corresponds to a non-singular n x n matrix). Then

19



let fr(x) = f(T'z). Then

fr §) = /f(T:c)e%mfdx

. 1
_ —2mi(T~1y)-€ d
/f(y)e et 7]
I 1
_ —2miy(T—1)T¢ d
/f(y)e Aot

|de1T| (@)

(11.8)

Lecture 12

Some special cases:

~

1. If T = A, then f = /\L (A71E). For example, consider a bump function.

f(x) (bump function)
-3 2 1 0 1 2 3 4
f
f(z)
/[ J(©)
— oto —
—€ |e

Figure 3: A narrower bump function has a smaller bump for its transform

2. If T is orthogonal (a rotation or reflection), then T-! = TT and |det T'| = 1, so };(5’) = f(T¢).

3. If f is radially symmetric (i.e. f(x) = h(|z|) for some function h), then f is also radially
symmetric. This is because radially symmetric implies fr = f for all orthogonal 7', which by
the previous property means f (T§ )= fT(§ y=1f (§ ) giving f the same invariance property.

12.6 Schwartz functions on R"

Define

= {f € C*(R™) | for any multiindices «, 3, we have sup }anﬁf(x)’ < oo} (12.1)

z€R™

20



Notation: for a = (ay, ..., ), = (b1, ..., Bn) for ay, ..., an, B1,..., Bn € {0,1,2,...},

0B+ ...+ B,
... Oz

o 00 . rOn B —
x* =at - Ty D" f =

f (12.2)

Examples:

1. f € C®(R") C J (the subscript ¢ means compactly supported), then D?f € C°(R") for all
B. But f & C.

2. f(z) = —elel” € 7. This is because e~® goes to 0 faster than any polynomial equation.

Lemma 12.1. If f € J, then

5? af —2mix-&
500 = [ G- e)e s
/f 27TZ£] 27riz~§dx (123>
= (2mi&;) f(€)
Similarly, we can see R
i) f(€) = 1 12.4
(—2miz;) f(€) = a_gj@ (12.4)
Corollary 12.2. If f € J, then f € J.
Proof. Iterate the formulas in the lemma.
Dpf(€) = (2mi€)’f(6)  (—2miz)*f() = D"F(€) (12.5)
Solet f € J. Then |z*Df| < C, 4 for all a, . Now, f € C* and
faDﬁﬂ fa —2mix 6f ‘ = W< 27TZIL')5f(€) (126)
O

Lecture 13

Definition 13.1. A Gaussian is a function e=malel’ fora >0 and x € R". These functions are
C*> and Schwartz.

Lemma 13.2. Let f(z) = ™" for x € R. Then f(£) = f(£).
Proof. Note that f satisfies f(0) =1 and f'(z) = =27z f(x). I claim that ¥ also satisfies this. Let

F= ffor notation’s sake.

F(0) = f(0) = / ¢ 20y — 1 (13.1)

o0
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Recall, the way to solve this is to do fooo e~™dx and set up a 2d integral and evaluate using polar
coordinates. We now use the fact that f is Schwarts to differentiate under the integral, and then
integrate by parts from line 3 to 4 (note: no boundary terms).

d [ ,
F©) =% [ fa)e i
= /00 f(z)e ™8 (—2miz)da
_ Z/Oo f/(x)e—%rixgdx

(13.2)
= —z'/ f(z)(—2mi€)e ™" dg
= —z'(—27m'§)/ f(z)e ™ dy
= =21 (€)
so by uniqueness of ODEs, f = F. ]
Proposition 13.3. Let f € L'(R"), and supp f C {|z| < R}. Then f € C* and
D°f| < @)l |11l (13.3)

(So the decay of f implies reqularity of f)
Proposition 13.4. Assume f € CN(R"), and D*f € L'(R") for 0 < |a| < N. Then

Dy(e) = erig) fle)  |Fo] <o+ ien™ (13.4)

Note that we already had proved the first formula for Schwarts functions, it followed from
integration by parts. The same proof actually works here too if f € C¥ (R"), and you might be
able to work though it if f — 0 at oo, but this proposition does not assume that! We will use
some kind of approximation argument.

Proof. (1) = (2): For 0 < |a| < N, consider

—

e = ‘ (5) ’ D“f(§)|

2m
(13.5)
1 |ot]
<[ — D*
<(5) 101,
Thus ‘P(g) A(g) is bounded for all P polynomials of degree > N. O
Lecture 14
Define a continuous bump function ¢ € C°(R™) so that
1 lz] <1
¢ = ¢ something nice |z| € (0,1), 0<¢ <1 (14.1)
0 x| > 2
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and also let ¢p(x) = ¢(x/k) for k € N. We use fi := ¢pf to approximate f. We do have the

conclusion of the prop for each fj, so consider

L.
< IVl
<7 o

s = o (7)

Iterating this, we can get
(e 1 (6%
D*0x(@)] < 73 D%l

2. For |a| > 1, D*¢y, is supported in {x : k < |z| < 2k}.

3. We have limj_, ||D* fx — D*f||, = 0 for |a| < N. To see this, consider

1D fi = Dflly < 1D fio = oD f ||y + [[@x D f — D*f

(14.2)

(14.3)

(14.4)

By the dominated convergence theorem, the second term on the RHS goes to 0 where we
use 2D f as the dominating function (or, “majorant”). Further, if || = 0, then f, = ¢rf,

so the first term is 0. So now we suppose |« > 1. Then we have

D fi, = D (¢nf) = o D°f + > _ c5 (D) (D7 f)

181=1

and so

1D fi = 6x D fIly < D ea [|(D i) (D),

181=1

so now let’s look at

(0% (D" 1)], < D%l D11, < 5 C6. ) 0721, =0

as k — oo.
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So recall we have o N
De fi(§) = (2mi&)” fu(§) (14.8)

for each fr. As we let k — oo, from property 3, we have
D fi(§) = Df(&)] < [.-[l; = 0 (14.9)

so the right hand side of equation (14.8) converges uniformly to 5‘;]” (€), and ﬁc(

to f(€), so the whole left hand side of equation (14.8) goes pointwise to (2mi)®
possible if the equation holds for f.

I

) goes uniformly

(£). This is only

)

—

14.7 Convolution

If f,g:R"+— C, define
(f*g)(z) = . flxz—y)gly)dy = . fWg(r —y)dy (14.10)

If f, g € L' we claim that f * g is well defined as an L' function. This is because we can write

[1rg@lar< [ 1@ =wlloldss = [ [ 170 1gt)]dudy = 151, 1ol (1210

where we changed variables u = x — .
Now, if we take f € L' and g € L™, then

|+ g(2)] < /|f(y)| l9(z = y)ldy < llgll /1], (14.12)

so f* g is in L as well. More generally, if f € LP and g € LY with 1 < p,q < oo dual to each
other (3 + ;= 1), then [f * g(x)| <[ f[l, lgll,- To see this you must apply Holder’s inequality.
MORE generally, Young’s inequality says that

1f * gl < I1£11, lgll, (14.13)

- 1_ 1,1
lf1+;_p+q'

It is useful to think of convolution as averaging. If g = ﬁx B., where B. = {z : |z| < €}, then

1
|B8| B.(x)

frglz /frc— y)dy = ! flz —y)dy =

~ 151 s f(y)dy (14.14)

Lecture 15

Lemma 15.1. Suppose ¢ € J and f € L'. Then fx ¢ € C> and D*(f x ¢) = f * D*¢.
Proof.

- ;lfi% 7 L (o + he; —y) — ol — ) Fw)dy (15.1)
- [ Grota =)y
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To justify differentiating under the integral, not that |1( r+he; —y) — oz —y)) % by
I oo

the mean value theorem. So the integrand is bounded by H 99 H |f(y)| € L', so by the dominated
convergence theorem, ye. We can now iterate this to get all the derivs since ¢ is schwartz. O]

Corollary 15.2. If f,ge J, then fxge J.

Proof. By the lemma, f* g € C* and D*(f x g) € C*, so we just need to show that (1 +
|z|)ND?(f * g) is bounded for all N. Tt suffices to show that (1 + |z|)" f % g bounded for all N,
f,g € J. This is because D*f € J as well so.

(4 Jal) 2 g(a)| < (141D [ 15 = gt dy
< /(1+ D™ (1 + |z = yD™ 1f (@ = )l lg(y)] dy (15.2)
— 1+ b= )Y e = )l [+ o)l dy
The first term in the product is bounded because f € J. For the integral term, note that
lg(y)] (1 + |y|)M < C)yy for all M € N. So we can take M = N +n+ 1 where n is the dimension of

the space. Then we get (1+ |y|)Y [g(y)| < Car(1+ |y])™™ ! and the right hand side is in L'(R").
Also, you might see that moving to the second line here was non trivial. We check this:

(I+1Jy) X+ —y) =1+ |yl + |z —y[ + |z —y| |y

> 1+ [yl + |z -yl (15.3)
> 1+ |z
by the triangle inequality on = = (z — y) + . O
Let g € J, [¢ =1, >0, and define
5 (@)= o (%) (15.4)
r)=—¢ (= .
en’ \e

We want to approximate f by f * ¢ as ¢ — 0 (should have decay same or better than f at
infinity).

Lemma 15.3.
1. [¢*(x)dz =1
2. [|¢*(x)|dx = [ |p(z)| dx < M uniformly in e.
3. fx|>n|gz5 x)| dx — 0 as e — 0 for any fixzed n > 0.
Lemma 15.4.
1. If f e C(R™), f — 0 at 0o, then ¢° x f — f uniformly as e — 0.
2. If f € LP(R") for 1 < p < oo, then [|¢° * f — f||, = 0 as € = 0.
Proof.
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1. Assume that f € C(R"), f — 0 at oo (hence, uniformly continuous). Let £; > 0. Then by
uniform continuity, there is an 7 > 0 so that |f(z —y) — f(z)| < 5t for all |y| < n (the M
here is the same one in the previous lemma).

6° 5 |—‘/¢f (x — y)dy — f(x)
. \ [ewue—y —f(w))dy'
< [16)1 11 - ) - s@) dy

/ Ldy + / dy
lyl<n ly|>n

(15.5)

The first equation is

We also have

[ car<20fl. [ 1eldy o
lyl>n lyl>n

as € — 0, so we can make it less than ¢; if € is small enough.

2. If (2) holds for f € LPNC.(R™), then it holds for all f € LP(R™). To see this let f € LP(R"),
6>0,g€C(R), [|lg — fll, <. Then

10" = fll, < I(f—9)x°ll, + llg*o—gll, + If —gll, (15.6)

so by some estimates yea.

Lecture 16

Theorem 16.1 (Fourier Duality). If f,g € L*(R"), then

/f dx_/f (16.1)

Note that if f € L*, fe L* and g € L' so fg e L.

[ Fag@ar= [ [ e =rayga)as

Proof.

_ / / Fy)g(w)e > Vdydaz (16.2)
_ / / gla)e > Vduf (y)dy |
= / fW)g(y)dy

]
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Theorem 16.2 (Inversion formula). Assume that f, fe L' (which is true for example for schwartz
functions). Then

@)= [ Fpermeay (16.3)
for almost every x.
Proof. Let T.(z) = e~™’l#I. Then
= 1 —7|z|?/e
FQ) =I°(0) = e /e (16.4)

~ [ H)Ey -2y (16.5)

we used in here that I'® is an even function. Hence, I, — f in L!, but also

L= [ Forenea (16.6)

Now, I'.(z) goes to 1 pointwise, so by dominated convergence theorem,
L) = [ Foemsac (16.7)
O

Lecture 17

Observe that if fgz L', the integral in the inversion formula may not converge. But what about

lim Fly)e?mie (17.1)

B=eo Jiy<r

is this defined pointwise a.e.? Is it defined in some LP space? In L?, these functions converge to
f, but otherwise this subject is an open area of research. Consider

lim | x (}%) f(y)e%ix'ydy (17.2)

R—o00

where x is a cutoff function, i.e. an indicator function for the unit ball |y| < 1. We had y = eI’
in the proof of the inversion formula. There are complications when Yy is a non-continuous thing
though.
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Corollary 17.1.

1. If f € LY(R"), fE 0 a.e., then f =0 a.e..

2. F : J — J bijectively. This is because if g € J, take f(z) = [ g(y)e*™™¥dy which is

a Schwartz function, then by inversion we have f(x) = ff(y)

corollary.
5. If f.g € L'R"), then f g = fg.
4 1f f.g€ T, then fg= [ %3.

Proof of 3. f *¢gisin L', and

Fea(e) = / [+ glw)e i

= / / fla = y)g(y)e ™02 e dydg

so this holds by the first

(17.3)

- / / (& — y)e 27 @) (gy)e20E) dyde
= F(&)3(6)

[]

Proof of 4. Take Fourier transform of both sides. Then E(z) = f(—x)g(—=) using the fact!!] that
F(z) = [ F(y)e*™¥dy with F(z) = f(x)g(z). Now, applying the corollary part (3.), we get

—

x g =

)
)
~—~
8
5
=
I
=
|
8
S~—
Q
N
=

again applying fact!!.

Theorem 17.2 (Plancherel). If f, g € J, then

Proof. By Fourier duality,
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where we got to the last line by change of variables. The variable change was this,

a0 = [ gEaw s
— _ Tix-&
/g< zjetntéde (17.7)
:/g(x)e—zmx‘fdx
=396
0
17.1 L? theory
Iflly = ([ 1f?de)” and (f,g) = [ fgda. By Plancherel, if f and g € 7, then
Gy =ihe ||, =191, (178)

This allows us to extend the F.T. to L2. For f € L? let f, € L' (or € J) so that ||f, — f]l, = 0
as n — oo. Now define

f=lim f, (17.9)

n—oo
where the limit is taken in L?. This limit exists because L? is complete, and f, is a cauchy sequence
in L?;
Hfm—fn , = Ifm = fall, =0 (17.10)

as m,n — 0o. This definition of F.T. does not depend on the choice of f,,, and it is also consistent
with the definition for L! functions. If f € L' N L2...

Lecture 18

18.1 L? theory, 1 <p <2

Let f e LP(R"), 1 < p < 2. Write f = fi + fo, where fi = [ - X(zpi>1}, J2 = [ - Xqwis1<1y- Then
fi € L' and f, € L?. We define f = fi + fo. Now if we have a different decomposition f = gy + g,
g1 € L' and gy € L?, then fi — g1 = go — f> € L' N L?. So then, do we have f = g1 + ¢2 = f1 + f
? Since the functions are in both spaces, we have f; — g1 = g2 — fo so yea.

wenve 7] < |7],. 4
o0 1
ity HJ?H < |Ifll, for 1 <p <2, %—1—1% = 1. For 1 < p < 2, there is a constant C,, < 1 so that
p/

17l < i,

For p > 2, nothing nice happens. f — ]?is not bounded. That is, the H.Y. inequality does
not hold.

= ||f|l,- By interpolation, we have the Hausdorff-Young inequal-
2
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Lecture 19

Lemma 19.1. The Fourier transform is not bounded LP — L9 for any q < p. That is, there is no

estimate ﬂ‘ < C||fll, with C independent of f (in particular, the H.Y. inequality does not hold
q
forp>2).
The idea is to suppose we could find ¢, @2, ¢3,... € J such that ||¢>1||p = ||¢2||p = ... and
[¢ll, = llé2ll, = .. and the supports of ¢; are pairwise disjoint, and supports of Q/S\J pairwise

disjoint too. If this was possible, then let 5 = Zjvzl ¢j. Then x|, = (J & |¢j|)p)1/p which
by the disjoint supports, equals

(Z / l%ip) " (i H<z>j||§;> " (NAP)Y? = NYPA

and for the fourier serieses,

~

f(/(Z &

So if we had Hf” < C|f],, then NY2B < CN'?A for all N, but Ni 5B < CA, and ! — 1 >0,
q

a contradiction. This is dependent on finding that crazy sequence of ¢ though, which isn’t true.

|

1/q
)q) — .. =NYip (19.1)

Proof of 19.1. Take ¢ € C°(—3, 1) in dimension 1, and let ¢x(z) = e*™**¢(z — k). We compute

Gu(6) = [ emmota — bye s
= /62””(5%%(:6 — k)dx
:/¢ e 2GR (E—on) g

—2mileak (¢ — ay)

with the change of variables x — k = u. The claim now is that if ay — oo fast enough, then
— |19

|o| = O
q

(19.2)

Lecture 20

We will talk about Localization and the uncertainty principle for awhile. Basically, this is about
two things: First, f is supported in {[[{]| < R} <= f is approximately constant; on the scale of

. Second, it’s not usually possible for f and f to be compactly supported.
Proposition 20.1. Let f € C(R), f £ 0. Then f, f cannot both be compactly supported.

Proof. Suppose that f € [a, b] compact, and supp fis compact as well. By scaling and translation,
we may assume that 0 < a < b < 1. O]
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Example 20.2. If F is a trig polynomial on R, F(x) = 0 for all x € E for some |E| > 0, then
f=0.

Theorem 20.3. Assume f € J with ||f||, =1. Then

(f1et 1 a) ([ re

Corollary 20.4. If &, z0 € R, f € J, ||fll, =1, then

([1e-alfirora) ([le-al o] «) = -

_n?
1672 *

f(&))2d§> > 1617T2 (20.1)

(20.2)

We also have an R™ version of this, but the lower bound is
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