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Lecture 1

Consider a finite set A inside a group/field, |A| = n. The sumset is |A+A| = {ai + aj : ai, aj ∈ A}.
The questions here often concern the size of this sumset depending on properties of A. Let’s start
by considering A ⊂ R.

Theorem 1.1. |A+ A| ≥ 2|A| − 1. If equality holds, then A is an aritmetic progression (AP).

Proof. Write A = {a1 < a2 < ... < an}, ordered. The sumset has elements

a1 + a1, a1 + a2, ... , a1 + an, a2 + an, a3 + an, ... , an + an

which are ordered as well.
We want to show A is an arithmetic progression, so A = {a1 + kd : k = 0, 1, ..., n− 1}. We

can show ai + aj+1 = ai+1 + aj. Essentially consider the same list of ordered sums from above,
but note that you can take any taxicab path in the matrix below and get an ordered path. You
can take a path to ai + aj+1, and then just switch to ai+1aj without knowing these are equal and
continue. This gives 2|A| − 1 elements, which forces ai + aj+1 to equal ai+1aj.

an + a1 ... an + ai ... an + an
... ... ... ... ...

ai + a1 ... ai + aj ... ai + an
... ... ... ... ...

a1 + a1 ... a1 + aj ... a1 + an

What about products? A · B = {aibj : ai ∈ A, bj ∈ B}. If A,B ∈ R+, the same theorem as
before holds (because you can just take log of all the elements). But if negative numbers are
allowed, you can take A = {−1, 0, 1} which gives |AA| = 3, not 2|A| − 1 = 5. We will need a tool
to explore this further.

Theorem 1.2 (Hilbert’s Nullstellensatz). If Z is the common zero set (the intersection of zero
sets) of polynomials g1, g2, ..., gk in an algebraically closed field, and f is a polynomial that vanishes
exactly on Z, then we can write

fm =
∑
i

higi

for some m ∈ N and polynomials hi.

Theorem 1.3 (Combinatorial Nullstellensatz). If F is a field and F (x, y) ∈ F[x, y] is a polynomial
that vanishes on the common zero set of g(x) ∈ F[x] and h(y) ∈ F[y], then we can write f(x, y) =
k(x, y)g(x) + `(x, y)h(y), where deg k ≤ deg f − deg g and deg ` ≤ deg f − deg h.

Note that f(x, y) vanishing on the common zero set of g(x) and h(y) really means that it is
vanishing on a Cartesian product.

Theorem 1.4 (Cauchy-Davenport). Let A,B ⊆ Fp. Then |A+B| ≥ min {p, |A|+ |B| − 1}.
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Proof. Let ci be the elements of A+B, and suppose d := |A+B| < p. Define

F (x, y) =
∏
i

(x+ y − ci)

The degree of F is d = |A + B|. Let’s define g(x) =
∏

i(x − ai) and h(y) =
∏

i(y − bi), which
satisfy the conditions of Theorem 1.3. The degrees of these are |A| and |B|. Write

F (x, y) = k(x, y)g(x) + `(x, y)h(y)

Consider a term of F (x, y), x|A|−1yd−|A|+1, which has coefficient
(

d
|A|−1

)
. The maximal degree of k

is d−|A| by the theorem, so the y-degree of this term implies that this term must be present in the
`(x, y)h(y) part. In particular, the x-degree of ` satisfies degx ` ≥ |A|−1. The largest y-degree of `
is ≤ d−|B| from the theorem since h has degree |B|. Together this means |A|−1 ≤ deg ` ≤ d−|B|,
and rearranging yields d ≥ |A|+ |B| − 1.

Lecture 4

We are talking about generalized arithmetic progressions (GAPd where d is the dimension), and
know that

|GAPd| ≤
d∏
i=1

`i.

Freiman’s dimension Lemma says that if A ⊆ Rd, and A is truly d-dimensional, (i.e., A is not
contained in a d− 1 dimensional flat), then

|A+ A| ≥ (d+ 1)|A| − d(d+ 1)

2

Proof. Induction, both on the size of A and d. The base case d = 1 is done. Specifically, suppose
it is true for any set in d−1 dimensions and try to prove it for d by doing induction on |A|. Recall
Conv(A) is the convex hull of A ⊂ Rd. Choose a point p from the vertex set of the polytope
defined by ConvA.

Consider the convex hull of all the vertices with p removed (i.e., Conv(A\p)). From p, we can
“see” at least d vertices of this new convex hull, unless it is d − 1 dimensional. In other words,
there are at least d vertices q1, ... , qd of Conv(A\p) such that the qip interval has only one point qi
from Conv(A\p). There are two cases

1. dim(Conv(A\p) = d. In this case, the induction hypothesis is

|(A\p) + (A\p)| ≥ (d+ 1)(|A| − 1)− d(d+ 1)

2
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All the halving points are in the convex hull of A\p. p+qi
2

are outside (d of them).

2. dim(Conv(A\p) = d − 1. In this case, there are still d vectros visible from p, otherwise
everything can be expressed as d− 1 vectors but A was supposed to be d dimensional. Then
W.L.O.G., suppose p = 0 and the other points lie in the plane x1 = 1. The sumset has
elements where x0 = 0, 1, or 2. The first class comes only from p+ p, the second class comes
from p+ qi, which are |A| − 1 in number, and the third are handled by the induction, giving

|(A\p) + (A\p)| ≥ d(|A| − 1)− d(d− 1)

2
.

Adding these together gives the right bound.

Corollary 4.1. Let A ⊂ Rd and |A + A| ≤ C|A|. Then A is contained in a flat of dimension at
most C.

Corollary 4.2. Let A ⊂ N and |A ·A| ≤ C|A|. Then the rank of the multiplicative group generated
by A (which we henceforth refer to as 〈A〉 is at most C.

To see this second one, let B = {log a : a ∈ A} and apply Freiman’s lemma to show that
|B +B| ≤ C|B|.

Theorem 4.3 (Schmidt’s Subspace). Let a, b ∈ C, and we looking for the solutions to ax+ by = 1
for x, y ∈ A, where rank〈A〉 ≤ r. Then the number of solutions is ≤ B(r).

Lecture 5

Theorem 5.1 (Baker’s). Unstated. (this would make a good presentation if you want to!)

Today we return to theorem 4.3. But first, a problem: what can you say about |2n − 3m| as n
goes to infinity, and m is chosen to minimize this value? What is a lower bound: |2n − 3m| ≥?

Fix an integer k, we want to show that the number of solutions to 2n − 3m = k is bounded.
Let A = {2n3m : n,m ∈ Z}. We take a, b = 1

k
, and note 〈A〉 = 2. So the solutions to this are at

most B(2) for each k. This means There is an f(n)→∞ so that |2n− 3m| ≥ f(n) for any m. We
have f(n) = Ω(n).

Without using this tool, can we show 2n− 3m = 1 only happens finitely many times? You can
show this by noting that that 2n − 3m = 1 mod 8, which doesn’t happen if n ≥ 3.

Theorem 5.2 (Subspace – Schmidt, Evertse, . . . ). Let a1, ... , an ∈ C, and

a1x1 + a2x2 + ... + anxn = 1 (5.1)

be a linear form. There exists a bound B(n, r) such that the number of non-trivial solutions to
(5.1) when xi ∈ S where rank〈S〉 ≤ r is ≤ B(n, r).

Note that subsets where subsets add up to 0 give infinitely many solutions, like consider n = 3,
you can get lots of the form x1 = −x2 and x3 = 1. So ‘non-trivial’ here means that no subsets add
up to 0.

4



Conjecture 5.3 (Erdős-Szemerédi Sum-Product). Let A ⊂ N be a finite set (there are versions
for Q, C, Fp, Fq...). For any ε > 0, there is n0(ε) so that if n ≥ n0, then |A+A|+ |A ·A| ≥ |A|2−ε.

For now, let A ⊂ R+, and let |A ·A| < C|A|. We can show that |A+A| = 1
2
|A|2 +O(|A|). To

do this, first note that Freiman’s dimensional lemma implies that rank〈A〉 ≤ C. Now, we want to
say the number of solutions too x1 + x2 = x3 + x4 is very small. For x4 6= 0, we can rewrite this as

x1
x4

+
x2
x4
− x3
x4

= 1.

Which is Y1 + Y2 − Y3 = 1. From the subspace theorem, the number of non-trivial solutions is at
most B(3, C). This has some trivial solutions Y1 = 1 and Y2−Y3 = 0, and Y2 = 1 and Y1−Y3 = 0.
Looking back to where these came from, the number of trivial solutions is O(|A|).

Recommended reading : Combinatorial applications of the subspace theorem.

Lecture 6

Suppose |A + A| is small (that is, ≤ |A|1+c). Consider A1 = A× A. The lines x + y = c are lines
with slope −1, and notice that lines of this slope cover all the points and we have an equality of
sum if and only if two points lie on the same line. So, each line contains ≈ n2

n1+c = n1−c points.

Choose `1, a slope −1 line with ≥ n1−c points on it. Select points Ax1 = projx(A×A∩ `1) and
Ay1 = projy(A×A ∩ `1). Let B1 = Ax1 ×Ay1. The size of |B1| ≥ n2−2c (roughly), and the sumset
still satisfies |Ax1 + Ax1| ≤ n1+c. Notably,

n1+c =
(
n(1−c)) 1+c

1−c ≈ |Ax1|
1+c
1−c = |Ax1|1+

2c
1−c ,

so by the above, we have that |Ax1 + Ay1| ≤ |Ax1 |1+c1 with c1 = 2c
1−c . Now, repeat this process

with B1 and c1 to create a new set C1. Repeat this over and over finding Ax2 and Ax3 and so on
until we find some Axi where |Axi × Ayi| ≤ n1+c, i.e. the cartesian product has become so small
that the sumset bound doesn’t say anything. (If c = 0, you can do log log n steps.)
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The x-projection is a ‘Hilbert cube’ generated by {x0, x1, ... , xd}, i.e. the set

Hd =

{
x0 +

d∑
i=1

ηixi : ηi ∈ {0, 1}

}
. (6.1)

You can see this by starting at x0 (bottom left corner in diagram) which comes from the very last
step in the process above, and moving towards the top-right. Each step has distance xi, and ηi
depends on whether you go up (came from an x projection) or right (y projection).

Corollary 6.1. For d ∈ N, there is a cd > 0 such that if |A + A| ≤ n1+cd, then A contains a
Hilbert cube of dimension d.

Theorem 6.2 (Falting’s (special case)). Let y2 = f(x), a polynomial (over the rationals) such
that the curve defined over CP2 has genus q ≥ 2, then the number of rational solutions is finite.

We apply this next time to the polynomial y2 = (x2 + a)(x2 + b)(x2 + a+ b) with a 6= b.

Lecture 7

We begin the class with a claim: For the complex polynomial f(x) with distinct roots and degree
≥ 5, the algebraic curve y2 = f(x) has genus ≥ 2. Today we are talking a bit about about
hyperelliptic curves, but not going far into the algebraic geometry.

Recommended reading : Heights in Diophantine Geometry by Bombieri and Gubler.

Conjecture 7.1 (Bombieri-Lang/Uniformity (special case)). In Falting’s theorem (6.2), the num-
ber of solutions is uniformly bounded by the genus.

Recommended watching : a Wiles interview wherein he is sad. His problem was Fermat’s Last
Theorem: to show that xn + yn = zn has no solutions for n ≥ 3.

Conjecture 7.2. Let A ⊂ {squares in N}. Then |A+ A| ≥ |A|2−ε.

Exercise 7.3. prove that |A+ A| ≥ |A|1+c for some c > 0, assuming Bombieri-Lang.
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Solution. If A + A is smaller than this, then there is a Hilbert cube of dimension d, for any d we
want. What we need is that there are “many” x ∈ N so that x, x+ a, x+ b, x+ a+ b. You find as
many such x by choosing d larger... in particular, the number of such x is at least d.

We then consider the polynomial

y2 = (w2 + a)(w2 + b)(w2 + a+ b).

This has six distinct roots, hence genus two1. The uniformity conjecture says that we have

|{x ∈ N : x, x+ a, x+ b, x+ a+ b ∈ A}| ≤ B

where B is independent of a and b. So for the bound, we are choosing the dimension of the Hilbert
cube to be d = B.

Theorem 7.4 (Mei-Chu-Chang). In the problem above, we have the lower bound |A + A| >
|A| · log |A|

Proof. (Steps only)

• Freiman’s theorem

• Szemerédi’s theorem (about AP4s in dense subsets of a larger AP)

• Squares contain no AP of length 4 (Fermat)

The last statement, ‘Squares contain no AP of length 4’, can be proven with ‘Fermat descent’:
suppose there are some of those, find the smallest one, and then you can do some operations to
find an even smaller one (but it is tricky).

Problem 7.5. What is the max number of squares in an AP of length n?

Note: This problem has an upper bound of c1N
3/5(logN)c2 for two positive absolute, and

computable, constants c1, c2 by Bombieri and Zannier. The conjecture is that O(
√
n) is right.

1We didn’t discuss genus too precisely, so could be helpful to see the wiki: https://en.wikipedia.org/wiki/
Hyperelliptic_curve
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Problem 7.6. (Homework Q1) Assume the uniformity conjecture and use it to give a n1−c type
upper bound on the previous problem (7.5).

A (bad) homework Q1 solution. Call the arithmetic progression A, and consider a set S ⊂ A of
squares. We know that the sumset of A is small, |A + A| = 2n − 1. So |S + S| ≤ 2n − 1. From

exercise 7.3 we know that |S+S| > |S|1+c′ , so we get |S| < (2n−1)
1

1+c′ ≈ n1− c′
1+c′ . So our constant

is c = c′

1+c′
. From the proof of 7.3, the constant c′ = cB in the notation of Corollary 6.1, where B

is the bound coming from the uniformity conjecture.

Lecture 9

We began by proving Ramsey’s theorem, that a two-colouring of Kn contains a monochromatic
clique of any size we want, if we take n to be large enough. We get R(k, k) ≤ 4k, which has recently
been beaten with ≈ 3.99k with some advanced tools.

By random colouring, using Lovasz-Local-Lemma, we get the lower bound of 2
√

2
k
.

Let R(

k︷ ︸︸ ︷
3, 3, ... , 3) be the number such that the k colouring of the edges of KR(3,3,... ,3) results in

a monochromatic triangle. We abbreviate this notation with Rk(3), and can prove the result for
this similar to what we did last time: choose any vertex and take the most popular color among
edges, say, red in this case. The size of edges with the same color is ≥ n−1

k
, and suppose there is

no triangle; then there is no more of that color in the subgraph. We then have Rk(3) ≤ kRk−1(3),
and so Rk(3) . k!

For the other direction we can consider that the complete bipartite graph has no triangle, so
colour edges joining two halves one colour, then use a new colour between the bipartite classes,
and repeat this to get a lower bound of 2k. This is depicted in the following figure.

A related question: how many colours can we have at most so there is a mono -χ solution to
the equation x + y = z? The idea behind this is: Say we have a colouring of the integers. Let’s
create a graph on the first n integers, where the edge joining i and j is the colour of the vertex
i− j. A triangle made out of three edges, say between vertices i < j < k was coloured according
to the points a = k− j, b = j− i and c = k− i. Thus if the triangle is mono -χ, then a, b, c received
the same same colour, and we can see that a+ b = c. So the number of colours needed is at least
2k from the previous stuff.
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We can use this info to prove Fermat’s conjecture: For any n ∈ N there is a p′ in Z so that for
any prime p ≥ p′, the equation xn + yn = zn mod p has a non-trivial solution. The proof will be
based on colouring Zm according to cosets. All elements in the coset receive the same colour, so
we are using (p− 1)/n colours.

Lecture 10

Recall the Hilbert cube (equation (6.1)):

Hd =

{
x0 +

d∑
i=1

εixi : εi ∈ {0, 1}

}
.

This is kind of a weaker structure than a GAP, it’s sort of like a GAP with only one point in each
direction. We showed that sets with small sumsets have Hilbert cubes, and last time we showed
some things about colouring.

We can combine them to show for example: A stronger statement is:

Theorem 10.1 (Hindman’s). For any k-colouring of N, there is an S ⊂ N where |S| =∞ so that
elements of S and all its finite sums have the same colour.

Theorem 10.2 (Finite Union/Folkman’s). For any k, d ∈ N, there is a threshold n0(k, d) such
that for any k-colouring of 2S (the subsets of S) where |S| ≥ n0, there will be S1, S2, ... , Sd, disjoint
subsets of S, such that ∪di=1εiSi have the same colour.

Exercise 10.3. Use Theorem 10.2 to show: For any d, k ∈ N, there is an n0(k, d) such that any
k-colouring of [n] where n ≥ n0, there is a mono -χ Hilbert cube of dimension d with x0 = 0.

Solution. Take m = dn to be ‘large enough’ (larger than n2
0/2) where n0 comes from 10.2. Colour

the subsets of [m] according to the colour of the sum of its elements. The theorem says that there
will be d disjoint subsets of [n] of the same colour and the union of them is also the same colour.
Such a set system corresponds to a mono -χ Hilbert cube.

Alternatively: we have a k-colouring of [n]. Colour a subset of [n] according to the colour of
its cardinality.

Now, I think it was stated that an exercise is to show that with non-empty S0, You can show
there is a monochromatic set

S0 ∪
⋃

εiSi.

Towards proving the Union theorem, the first step/idea is: let S0∪
⋃d1
i=1 Si be monochromatic,

and colour S0 by its colour... Consider the d1 elements Si as the atoms, and now repeat. Find a
monochromatic S

(1)
0 ∪

⋃d2
i=1 S

(1)
i and repeat again.

Lecture 11

In this lecture we construct a large subset of [n] that has no 3-APs. To begin, something you might
think of is to take all numbers which have no 2 in their base-3 expansion. How many numbers is
this? Well, it is nlog3 2. That’s pretty good, but we can do even better! To summarize the results
of this section, we have the following theorem.
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Theorem 11.1. There exists a subset of [n] which has no 3-term arithmetic progressions, and
whose size is at least:

• n · e−
c logn

log logn from Salem-Spencer’s construction, or even larger,

• n · e−c
√
logn from Behrend’s Construction.

Salem-Spencer

Consider two numbers m and k to be chosen later. The n we are using is n = (2k)m. Let ` = m
k

.
We want to choose numbers from [n] in where

• all digits in base 2k are less than k,

• all digits are used the same number of times, i.e. each digit from 0 to k − 1 appears exactly
` times.

Why is this 3AP free? Think about how we could have a + b = 2c from numbers in this set.
Because all digits are less than k, the only way this equation can hold is if we have an arithmetic
progression in each digit ai + bi = 2ci. In particular, ci will be 0 iff ai and bi are both 0. Therefore,
the 0s of a and b must occur in the same spots, else c would have fewer 0s. With this established,
you can see the same thing holds for the digit 1, and 2, and so on. So the only way this equation
holds is trivially, when a, b, and c are all the same number.

Now we count how many numbers there are in our set. We have(
m

`

)
·
(
m− `
`

)
·
(
m− 2`

`

)
· ... =

m!

`!(m− `)!
· (m− `)!
`!(m− 2`)!

· (m− 2`)!

`!(m− 3`)!
· ... =

m!

(`!)k

such numbers. Call the set of these X. Using Sterling’s approximation, we get

m!

(`!)k
≈
√

2πm (m/e)m(√
2π` (`/e)`

)k =
√

2πm(2π`)−k/2km =
√
k(2π`)(1−k)/2km

So we want to maximize roughly |X| ≈ (γm
k

)−k/2km for γ = 2π, subject to (2k)m = n. Salem and

Spencer suggest defining k to be the number where (2k)k log
2 k = n. So then m = k log2 k, and

m
k

= log2(k). We compute the size of X to be

|X| ≈ γ−k/2(log−k(k))kk log
2 k = γ−k/2(log−k(k))2−k log

2 kn. (11.1)

Now, from the definition of k, we have the following two identities,

log n = k log2 k log(2k),

log log n = log k + 2 log log k + log log(2k).

The most significant term in log log n is the log k term, which leads us to

log n

log log n
> k log2 k(1 + o(1)).
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Now, using (11.1), we have

log |X| = −k
2

log γ − k log(log(k))− k log2 k log 2 + log n > log n− log n

log log n
(1 + o(1)),

and finally, raising e to the power of both sides, we have

|X| ≈ n1− c
log logn .

Remark 11.1. Alternatively, you can take k = 1
2

log2 n. Then

m = log2k n =
log n

2 log log n
, and ` =

m

k
=

logn
2 log logn

1
2

log2 n
=

1

log log n log n
,

so that
|X| = (log log n log n)

1
4
log2 n (2)−

logn
2 log logn n > n · e−

c logn
log logn .

Behrend

Behrend had a different approach which does better, and involves some geometry. His major idea
is that strictly convex surfaces in higher dimension do not have collinear triples, so we could try
mapping one of those with many points on it to our integers.

Again pick integers k and m, and set n = (2k)m. Consider an k-dimensional lattice cube
[k]m ∩Zm and family of spheres x21 + x22 + · · ·+ x2m = t for t = 1, . . . ,mk2. Each point in the cube
is contained in one of the spheres, so by the pigeonhole principal, some sphere has km/mk2 lattice
points. Call the set of these points A ⊂ Rm.

Since spheres do not contain any collinear triples, A does not contain any either. Now we map
the set A to a subset X ⊂ [n] by sending

a = (a1, a2, . . . , am) to x = a1 + a2(2k) + a3(2k)2 + · · ·+ am(2k)m−1,

that is, we treat ai as i’th digit of x in base 2m. Just like in Salem-Spencer, a 3AP here would
be a 3AP in each digit, but that would correspond to a 3AP in A. Setting m = c

√
log n, we get

k = 1
2
e

1
c

√
logn, so there cardinality of the construction is

|X| = km

mk2
=

(1
2
)c
√
lognn

c
√

log n · 1
4
· e 2

c

√
logn

=
n

c
4

√
log ne

√
logn(c log 2+2/c)

= ne−
√
logn(c log 2+2/c)− 1

2
log logn,

so there is a progression-free subset of {1, 2, . . . , n} of size at least ne−
√
logn(c log 2+2/c+o(1)). You can

choose c =
√

2/ log(2) to maximize the constant.

Lecture 12

A circulant matrix is an n× n matrix where the rows are shifts of each other. So they look like

W =


c1 c2 . . . cn−1 cn
cn c1 . . . cn−2 cn−1
. . . . . . . . . . . . . . .
c2 c3 . . . cn c1

 .

11



Let ω = e
2πi
n . The eigenvalues of this matrix are

n∑
j=1

cjw
kj, k = 0, 1, . . . , n− 1

which each have multiplicity 1. Something we will see is that Cayley graphs have circulant adja-
cency matrices.

Let’s consider Z/11Z, and draw the Cayley graph of the generators {2, 3}. The graph looks
like this, where blue edges come from generator 2 and red from 3.

We can compute the adjacency matrix of this, which is

W =


0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0 0
0 1 1 0 0 0 1 1 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 .

Writing down the eigenvalues in this case, we have Eigenvalues of ω3k + ω4k + ω9k + ω10k for
k = 0, . . . 10.

Simpler question: write the Eigenvalues of C5, the cycle on five vertices. Solution: C5 is also
circulant, so we get from the sum formula 1 + ω2k for k = 1, 2, 3, 4.

Definition 12.1. The largest (also called “second”) eigenvalue of a graph with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn is λ = max {|λ2| , |λn|}.

Note that if Gn is d-regular, then λ1 = d since (1, 1, . . . , 1) is an eigenvector. Why can’t we
have a larger one? Consider another eigenvector v, the entries of this are all at most 1. A row of
G has exactly d 1s, so we can see the eigenvalue for this v cannot be larger than d.

Lemma 12.2 (Mixing). If Gn is d-regular graph on n-vertices and λ is its second eigenvalue, then
for any distinct vertex sets A,B ⊂ V (Gn), we have∣∣∣∣e(A,B)− d|A||B|

n

∣∣∣∣ ≤ λ
√
|A||B| (12.1)

This is also called an “isoperimetric inequality” or “Cheeger inequality”.

12



Theorem 12.3 (Roth’s). If S is a subset of the first n integers and |S| ≥ cn
log logn

, then S has a
3-term arithmetic progression.

Towards proving this, we can actually solve this mod p since a progression from the middle
third (which is a positive fraction) of n mod p will be a genuine 3AP in [n]. Consider the Cayley
graph on p vertices and generated by p, and connect two vertices with an edge if their difference
is in S.

The key steps will be

• Show that if S is 3AP free, then G has large second eigenvalue.

• Density increment argument.

We will begin but not finish the proof today. Note this graph is 2|S|-regular. Every edge has its
midpoint somewhere, and there are 2p possible halving points. Take one halving point, which has
many edges, and collect the two endpoints of these into two sets A and B. There cannot be any
other edge between A and B now, so we just have this matching of parallel edges. This is because
if we had `1 and `2 between A and be in the parallel-matching, and we also had another edge
joining them, then we’d have a threeAP.

Lecture 13

Today we went over in detail a proper solution to Homework 1 (Problem 7.6). What is the bound
required on the sumset before you see a small Hilbert cube Ha,b = {x0, x0 + a, x0 + b, x0 + a+ b}?
Precisely, if S ⊂ [n] and |S| ≥ n1−δ, for which δ is S forced to have an Ha,b? Note that 2n − 1
lines cover the n× n grid, and |S ×S| = n2−2δ =: m, so there is a line containing ≈ 1

2
n1−2δ points.

But in fact, you can find a line ({x = y}) which contains actually |S| points, since we are starting

13



with an arithmetic progression. So we start with |S| on a line and then we have n− 1 lines below,
and

(|S|
2

)
points below. So there is a line below this which contains m

n
points, call it `1.

Out of the ≥ m
n

points on `1, at least
((m/n)

2 )
n

pairs are at the same distance apart by the
pigeonhole principle, so their difference is the same. Therefore, the number of Ha,b with some x0
is ≥ m2

n3 . The uniformity conjecture says that the number of solutions to

y2 = (w2 + a)(w2 + b)(w2 + a+ b).

is bounded, so in particular, we have

|{x ∈ N : x, x+ a, x+ b, x+ a+ b ∈ A}| ≤ B

So this means m2

n3 ≤ B, which simplifies to |S| . n1− 1
4 .

Lecture 14*

Elementary Sum-Product Phenomena

Under what circumstances do we know that A + A (or A · A) is large? ‘Large’ usually means
≥ |A|1+c.

Definition 14.1. Let A = {a1 < · · · < an} ⊆ Rn be a set where a2− a1 < a3− a2 < a4− a3 < . . . .
Then A is called convex.

A maybe conjecture: convex sets have close to maximal size sumset.

Theorem 14.2 (Elekes, Nathanson, Ruzsa). Let A be convex. Then |A+ A| & |A|3/2.

Proof. Divide A+A into at most |A|/2 intervals, each containing at most 4|A+A|
|A| elements of A+A.

14



Count pairs p, q ∈ A+ A that have the following properties:

• p, q are in the same interval.

• p = b+ ai and q = b+ ai+1 for some b ∈ A, q ≤ i ≤ n = 1.

For a fixed b ∈ A, there are n− 1 elements b+ ai.
Towards a a lower bound, at most n/2 pairs b+ ai and b+ ai+1 can be split up by one of the

dividers. So at least n− 1− n
2
≥ n

4
are in the same interval. Summing over all the possibilities b,

we get n ·
(
n
4

)
pairs. However, have we counted the same thing multiple times? Notice that for a

given p = b + ai, and q = b + ai+1, the difference q − p = ai+1 − ai. These differences are unique,
so from p and q, we can recover ai and therefore b. That is, you cannot generate the same pair p,
q from different ai and b. So in the counting, we only counted each thing once.

Towards the upper bound, in each interval, we have at most |A+A|
2

|A|2 such pairs. We have |A|/2
intervals, so the total is at most |A+A|

2

|A| . The two bounds together give |A+ A| & |A|3/2.

Note that we only needed that consecutive pairs have distinct differences, not convexity! There
are a lot of generalizations of this. You can replace the second set with an arbitrary set B for
example and bound |A+B|.

We now show a 2D version of this, and give an application to the sum product problem
(Conjecture 5.3).

Theorem 14.3. Let A = {a1 < · · · < an} and B = {b1 < · · · < bn}, and suppose all vectors
(ai+1 − ai, bi+1 − bi) are distinct. Then

|A+ A| · |B +B| & n5/2. (14.1)

Proof. Divide R into at most n
4

intervals of at most 8|A+A|
|A| elements, and do the same for B. This

divides the cartesian product (A + A) × (B + B) into at most |A||B|
4

= n2

16
intervals, each with at

most 64|A+A||B+B|
n2 elements of (A+ A)× (B +B).

15



Lecture 15*

Today we continue the proof of 14.3. We want to count pairs p, q ∈ (A+ A)× (B +B) such that

1. p and q are in the same cell

2. ∃c ∈ A, d ∈ B, i ∈ [n− 1] such that

p = (c+ ai, d+ bi), q = (c+ ai+1, d+ bi+1)

For the lower bound, there are n options of c, d and n− 1 options for i. This gives n2(n− 1) pairs
p and q. We have n

4
vertical divisions and n

4
horizontal. For a fixed c, d, this can divide at most n

2

of our pairs. So for each c, d, there are at least n
4

remaining pairs, for a total of n2 n−1
4

.
As in the previous proof, we need to check we are not counting the same pair p and q multiple

times though. Notice that p− q = (ai+1 − ai, bi+1 − bi), so each pair p, q we recover i and so b, c.

Towards the upper bound, there are at most . |A+A|2|B+B|2
n4 pairs in each cell, and . n2 cells,

so there are . |A+A|2|B+B|2
n2 pairs. Altogether, simplifying,

n3 . {#pairs p, q} . |A+ A|2|B +B|2

n2

so |A+ A| · |B +B| & n5/2.

We now show the Elekes bound on sum-product (though, he didn’t use this method).

Theorem 15.1. max {|A+ A|, |A · A|} & |A|5/4

Proof. We may assume A is positive, otherwise choose the larger half of A that lies in the posi-
tive/negatives, and work just with that. Let B := log(A), so |B +B| = |A ·A|. Note that log is a
convex curve, so the difference vectors of points on this curve are all distinct because the slope is
decreasing. Applying the previous theorem, |A+A| · |A ·A| & n5/2, so at least one of them is size
n5/4.

The goal now is to show max {|A+ A|, |A · A|} & |A|4/3

log1/3 |A| due to Solymosi. To start, we will

show |A+ A|2|A/A| & |A|4, which means max {|A+ A|, |A/A|} & |A|4/3. Observe that:

• (A+ A)× (A+ A) = (A× A) + (A× A). This implies

• |A+ A|2 = |(A× A) + (A× A)|.

• A point (a, b) in the cartesian product is on the line through the origin of slope b
a
. So,

• We can cover A× A with ≤ |A/A| lines through the origin.

• All sums of vectors from consecutive lines are distinct, and lie between the lines.

16



Intuitively, if there are very few lines (so |A/A| is small), the lines have many points on them,
which will make the sumset large.

Lecture 16

We have a set A, what can we say if |A + A| is small (≤ |A|)? One reason we are interested in
these things is convolution. For two discrete valued functions f and g, the convolution is

f ∗ g(x) =
∑
y+z=x

f(y)g(z).

Now, triangle inequalities for sumsets. If we have two sets A,B ⊆ G, then

|A−B| ≤ |A− C||C −B|
|C|

(16.1)

Note that the sum of a− c and c− b is a− b.

|A+B| ≤ |A+ C||C +B|
|C|

(16.2)

Interestingly, (16.1) is relatively easy to prove, but (16.2) is hard. From these two we can get all
combinations, so any choice of plus/minuses in the following inequality holds.

|A±B| ≤ |A± C||C ±B|
|C|

(16.3)

Now, can we use these to show something of the form |A + A| ≤ k|A| =⇒ |A− A| ≤ |A + A|?
The answer is:

|A− A| ≤ |A+ A||A+ A|
|A|

≤ k2|A|2

|A|
= k2|A| (16.4)

Now, what is the best exponent you can get showing that |A− A| ≤ |A+ A|α? One thing we
can show is

|A− A| ≤ |A+ A|2

|A|
≤ |A+ A|2

|A− A|1/2
.

Simplifying, we get |A − A| ≤ |A + A|4/3. This is the best known bound. The best construction
gives us a set where α has to be at least 1.18... though.

17



Consider Zn and a radius m. Take the set
{

(x1, x2, ... , xn) :
∑
|xi|≤m

}
. This set is the octa-

hedron O(n,m), and we now count the number of points in it. To do so, we first consider the
positive quadrant O+ where xi ≥ 0. We have O+ =

(
n+m
n

)
, so the whole octahedron is

O =

min(m,n)∑
k=0

2k
(
m

k

)(
n

k

)
.

If the positive quadrant is our A, then |A| =
(
n+m
n

)
and |A + A| =

(
n+2m
n

)
. The content of the

whole octahedron is contained in the difference set. To see that, any vector in the set can be
broken into a sum of its positive and negative entries. That vector is the difference of those two
vectors in the positive quadrant. Optimizing the n and m leads to the number 1.18...

In particular,

A− A =

{
(x1, ... , xn) :

∑
i∈P

|xi| ≤ m,
∑
i∈N

|xi| ≤ m

}
.

So

A− A ≈
(
n

n/2

)(
2

(
n
2

+m

m

))
≥ 2n√

n

(
n
2

+m

m

)
Optimizing, let r = n

m
. Then |A| =

(
(r+1)m
rm

)
, |A− A| ≥ 2rm√

rm

(( 1
2
r+1)m
1
2
r

)
.

(Update: using the simplex, you can actually achieve around n1.24...)

Lecture 17*

More sum product today!

Theorem 17.1 (Li, Shen, Solymosi). Let A ⊂ R, then |A + A|2|A/A| & |A|4. In particular, we
get max |A+ A|, |A/A| & |A|4/3.

Proof. Recall: cover A×A with a bunch of lines through the origin. |A/A| of them cover the set.
The sums of elements on two lines are in (A×A)+(A×A), whose size is equal to (A+A)×(A+A).

We now throw away lines with fewer than |A|2
2|A/A| points on them. We lose at most |A|2/2 points

doing this. Index the remaining lines by i1, ... , ik. Then

|A|2

2
≤

k∑
j=1

∣∣Lij ∩ (A× A)
∣∣

Now, since
∣∣Lij ∩ (A× A)

∣∣ ≤ |A| ≤ |A|2
4

, we can also let go of the top element. I.e.,

|A|2

4
≤

k−1∑
j=1

∣∣Lij ∩ (A× A)
∣∣

Now,

|A+ A|2 = |(A× A) + (A× A)| ≥
k−1∑
j=1

∣∣Lij ∩ (A× A)
∣∣ ∣∣Lij+1

∩ (A× A)
∣∣

18



so

|A+ A|2 ≥ |A|2

2|A/A|

k−1∑
j=1

∣∣Lij ∩ (A× A)
∣∣ & |A|4

2|A/A|

which completes the argument.

Definition 17.2. For a set A ⊂ R, the additive energy and multiplicative energy of A are

E+(A) :=
∣∣{(a, b, c, d) ∈ A4 : a+ b = c+ d

}∣∣ , E×(A) :=
∣∣{(a, b, c, d) ∈ A4 : a+ b = c+ d

}∣∣
Note that the trivial bounds are |A|2 . E+(A) . |A|3, from the number of trivial quadruples

and the fact that picking three elements determines the fourth respectively. Random sets will have
energies around |A2|, and arithmetic/geometric progressions have respective energies around |A3|.

This is going to be useful for us, since multiplicative and ‘divisive’ energies are equivalent, i.e.,

E×(A) :=

∣∣∣∣{(a, b, c, d) ∈ A4 :
a

c
=
d

b

}∣∣∣∣
Lemma 17.3. E×(A) ≥ |A|4

|A×A| .

Proof. Let h1, ... , hA·A index the different products in A · A. The number of pairs of elements
sharing the same product is minimized when all products are represented a roughly equal number
of times (this is Cauchy-Schwartz). More specifically, define

r×A(h) = |{(a, b) ∈ A× A : a · b = h}| .

Then we have

|A|4 = (|A× A|)2 =

( ∑
h∈A·A

r×A(h)

)2

≤

( ∑
h∈A·A

12

)( ∑
h∈A·A

(r×A(h))2

)
= |A · A||E×(A)|,

using Cauchy Schwartz.

We now complete the proof that max {|A+ A|, |A · A|} & |A|4/3

log1/3 |A| from before. We showed

previously that |A/A| being small implied |(A×A)+(A×A)| is large. Now, the goal is to show that
|A/A| being small implies |(A×A)+(A×A)| is large. We see that E×(A) =

∑m
j=1 ||Lj ∩ (A× A)|2 .

From the proof of 17.1, recall

|(A× A) + (A× A)| ≥
k−1∑
j=1

∣∣Lij ∩ (A× A)
∣∣ ∣∣Lij+1

∩ (A× A)
∣∣ .

We can regularize this this, losing a log factor using ‘dyadic pigeonholing’

Lecture 18

Last time we had the triangle inequality on A,B,C ⊂ G, this time we prove it.

|A−B| ≤ |A− C||C −B|
|C|

. (18.1)
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Proof. We’ll define a map M : (A − B) × C 7→ (A − C) × (C − B). For an x ∈ A − B, choose
representative functions a(x) ∈ A, b(x) ∈ B so that a(x) − b(x) = x. Then our map is M(x, c) =
(a(x) − c, c − b(x)). This map is injective, because we can recover x and c from the output:
x = (a(x)− c) + (c− b(x)) and then c = (c− b(x)) + b(x).

The following lemma was used in Ruzsa’s simpler proof of Freiman’s theorem.

Lemma 18.1 (Ruzsa’s covering). For any A,B, there exists an X ⊂ B such that B ⊂ (A−A)+X

and |X| ≤ |A+B|
|A| .

Proof. Let X be a maximal subset of B such that {A+ x : x ∈ X} are disjoint. Let b ∈ B. Then
note A + X is intersected by A + b otherwise X wouldn’t be maximal. So b ∈ (A + X) − A. We
see |A+X| ≤ |A+B|.

Corollary 18.2. If |A+ A| ≤ k|A| then there is an X : |X| ≤ k4 : 2A− A ⊂ A− A+X.

Proof. Define B = 2A−A, then there is an X in there so that |X| ≤ |3A−A|
|A| ≤

|4A||A+A|
|A|2 ≤ k |4A||A| .

Theorem 18.3 (Plünecke-Ruzsa(-Petridis)). If |A+B| ≤ k|A| then there is an X ⊆ A such that
|X +B + C| ≤ k|X + C| for any set C.

Theorem 18.4 (Balog-Szemerédi-Gowers). Suppose you have a graph which has many edges,
|A| = |B| = n and cn2 edges. |A + B| ≤ kn. Then there are are A′ ⊆ A, B′ ⊆ B such that
|A′| ≥ δ|A| and |B′| ≥ δ|B| and |A′ +B′| ≤ k′n.

Theorem 18.5 (Freiman’s theorem). (for bounded torsion group) G is of torsion r 6= 0 if each
x ∈ G satisfies rx = 0.

Note (r − 1)x = −x. 〈A〉 =
⋃
s≥0 sA. If |A + A| ≤ k|A| then A is contained in a subgroup of

G of size at most f(r, k)|A|.

Lecture 19*

Theorem 19.1 (Solymosi). If A ⊆ R, then |A+ A|2|A · A| & |A|4
log |A| .

Assume A is all positive, and cover A×A with lines L1, . . . L|A/A| of increasing slope. For any
subset i1, . . . ik, of these indices, recall

|A+ A|2 ≥
k−1∑
j=1

∣∣Lij ∩ (A× A)
∣∣ ∣∣Lij+1

∩ (A× A)
∣∣ .

On the other hand,

E×(A) =
∑
d∈A/A

∣∣∣∣{(a, b) ∈ A× A :
b

a
= d

}∣∣∣∣2 =
∑
i≥1

|Li ∩ (A× A)|2 .

To combine these things, we want to find some indices i1 < · · · < ik such that∣∣Lij ∩ (A× A)
∣∣2 ≈ ∣∣Lij ∩ (A× A)

∣∣ ∣∣Lij+1
∩ (A× A)

∣∣ .
20



So we use dyadic pigeonholing: write the energy as

E×(A) =

dlog |A|e∑
j=0

∑
2j≤|Li∩(A×A)|<2j+1

|Li ∩ (A× A)|2.

So by pigeonhole principal, there is a J where

E×(A)

log |A|
.

∑
2J≤|Li∩(A×A)|<2J+1

|Li ∩ (A× A)|2,

so let i1 < · · · < ik be the indices where 2J ≤ |Lik ∩ (A × A)| < 2J+1. In this case we have that∣∣Lij ∩ (A× A)
∣∣ ≤ 2

∣∣Lij+1
∩ (A× A)

∣∣, so then

E×(A)

log |A|
.

k∑
j=1

|Lij ∩ (A× A)|2 ≈
k−1∑
j=1

|Lij ∩ (A× A)|2,

so we just threw away the top line, because of the pigeonholing, no single line is too large here so
this loses at most a constant factor. We also assumed k > 1 doing this. If k = 1, |Lik ∩ (A×A)|2 ≤
|A|2 ≤ |A+ A|2 so we’re good. Now,

k−1∑
j=1

|Lij ∩ (A× A)|2 .
k−1∑
j=1

∣∣Lij ∩ (A× A)
∣∣ ∣∣Lij+1

∩ (A× A)
∣∣ ,

≤ |A+ A|2.

(19.1)

Combining that with |A|4
|A·A| ≤ E×(A) from before, we get the result.

Incidence Geometry

Given a set of points P , and a set of curves C, an incidence is a pair (p, c) ∈ P × C such that
p ∈ C. For example, in the following figure, there are 9 incidences. We can count this by visiting
each line and counting how many points lie on it.

In this field, we are interested in upper bounds on the number of possible incidences for various
types of P and C. Denote by I(P,C) the set of incidences.
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Theorem 19.2 (Szemerédi-Trotter). Let P be a set of points, and L a set of lines in R2. Then

|I(P,L)| . |P |2/3|L|2/3 + |P |+ |L|.

An equivalent version of this theorem is in terms of r-rich lines (a line containing at least r
points of P .

Theorem 19.3 (Szemerédi-Trotter (two alternate version)). Let P be a set of points in R2. The
number of r-rich lines satisfies

|Lr| .
|P |2

r3
+
|P |
r

Also, let L a set of lines in R2. The number of r-rich points satisfies

|Pr| .
|L|2

r3
+
|L|
r

These versions are both equivalent to Theorem 19.2. We will first prove this in the special case
that the point set is a cartesian product. Many applications only use this case, and the full proof
works very similarly. For now, in fact we make two simplifying assumptions,

• assume P is a catesian product, and

• assume “everything” is “evenly distributed”.

So if P =
√
n×
√
n

Lecture 20

Today we studied something with surprising relevance to Kakeya, where we have an addition of

elements in a set only along some graph edges |A
G
+ A| ≤ |A|. I.e., the vertices of a graph are

labelled with some ai and edges are labelled with ai + aj if it joins those vertices. This is based
on a paper of Katz-Tao from 2000.

Trivially, we have |A
G
− A| ≤ |e(G)|. Today, we are going to show:

Theorem 20.1. For any graph G with labelled vertices, if |A
G
+ A| ≤ |A| then |A

G
− A| ≤ |A|11/6.

There is a construction showing that we can get an exponent of 1.75.
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Proof. Consider A× A. Collect the lattice points where (ai, aj) ∈ e(G).

Looking at this product, the slope −1 lines cover all the sums, and the slope 1 lines cover all
the differences. We select just one point from all of the slope 1 lines, and thus create a new graph
G′ ⊆ G which has all unique differences.

If you have an n×n lattice with m points in it, let di be the number of points in column i. We
have m =

∑
di. By Cauchy Schwartz, the number of pairs sharing a column ≈

∑
d2i ≥ 1

n
m2. We

use this fact to define a new object W which comes from these selected points, it’s the collection
of all pairs of lattice points within one column.

We now consider a particular configuration of points that can appear in the grid.

We count the number of times it will appear in the point set. We know from a combinatorial

counting (not shown today) that #(config) ≥ |W |4
|A|6 . You can find how to do this in “Bounds

on Arithmetic Projections, and Applications to the Kakeya Conjecture” by Katz and Tao. Use
Lemma 2.1.

On the other hand, by fixing the parameters of one segment on the top left, and the coordinates
of two points from the two rightmost segments, we completely fix the the structure. So we fixed
one element of W and two of A, so combining the bounds, we get |W |3 ≤ |A|8. By the definition
of W , we have (

|G′|2

|A|

)3

≤ |W |3 ≤ |A|8

and simplifying this leads to |A
G
− A| = |G′| ≤ |A|11/6.
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Lecture 21*

We are talking about 19.2 in cartesian products some more. We have a point set P which is size√
n×
√
n, L a set of m lines, and I incidences. On an average line, we have ≈ I

m
. A naive attempt

is to count pairs of points in P . There are about n2 pairs of points, and each line gives about
(
I
m

)2
pairs. so we have (

I

m

)2

≤ n2,

and rearranging gives n
√
m. In the balanced case, this is an exponent of 3

2
, which is not good

enough.
Instead, we want to count pairs of points at x and y-distance at most

√
nm
I

(where the ‘distance’
is in units of the cartesian product itself). This is because the average distance between consecutive
pairs of points is √

n(
I
m

) =

√
nm

I
.

Because of the ‘even-ness’ of the distribution, the number of close pairs on a given line is just
about the number of points on that line. On the upper end, since this is a cartesian product, for
every point we find the close pairs involving it, which is just the points in a box of height and
width

√
nm
I

. Combining both these bounds, we have

m

(
I

m

)
≤ # of “close pairs” ≤ n

(√
nm

I

)2

rearranging this gives us the bound I3 ≤ n2m2,

Theorem 21.1. Let P = A×B and r ≤ |A|, |B|. The number of r-rich lines is . |P |2
r3

.

Proof. . . .

The Szemeredi-Trotter Theorem is tight (up the constants). To see this, we can construct a
grid example. Take the r × n

r
grid, and define

L =
{
y = mx+ b : 1 ≤ m ≤ n

2r2
; 1 ≤ b ≤ n

2r
; m, b ∈ Z

}
We see |L| = n2

4r3
≈ n2

r3
, and all of them hit r points.

Using this, we can give another proof of Elekes’ sum-product bound: |A + A||A · A| . |A|5/2.
The following is more similar to his original proof.

Proof. Define the cartesian product (A+A)× (A ·A). Let L = {y = ai(x− aj) : ai, aj ∈ A}. For
every aj + ak with ak ∈ A, we have an incidence, so these lines are all |A|-rich. There are |A|2
lines, all |A|-rich, and |A+ A||A · A| points. Szemeredi-Trotter completes the proof.

Lecture 23*

Sum-product and incidence geometry over Fq

Quick facts about F2
q:
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• There are q2 points.

• A line is just the solution set of a linear equation y = mx+ b.

• There are q + 1 slopes, and thus q(q + 1) lines total.

• Each line has q points.

Theorem 23.1 (Vinh). Let P ⊆ F2
p, and L a set of lines. Then∣∣∣∣I(P,L)− |P ||L|

q

∣∣∣∣ ≤ q1/2|P |1/2|L|1/2 (23.1)

The second term on the left side is the “expected” # of incidences. That is, there is a 1/q
chance p ∈ ` for every p, ` pair, so this theorem says the number of incidences is not too far from
the expected value, as long as the expected value is smaller than the error term. So the equation
is useful when |P ||L| ≥ q3.

Proof. ∣∣∣∣I(P,L)− |P ||L|
q

∣∣∣∣ =

∣∣∣∣∣∑
`∈L

|` ∩ P | − |P |
q

∣∣∣∣∣
≤
∑
`∈L

∣∣∣∣|` ∩ P | − |P |q
∣∣∣∣ · 1

≤

(
|L|
∑
`∈L

(
|` ∩ P | − |P |

q

)2
)1/2

≤

(
|L|
∑
`∈L

(
|` ∩M | − |P |

q

)2
)1/2

= ∗

Where M is the set of all lines in F2
q. We focus on the sum:

∑
`∈L

(
|` ∩M | − |P |

q

)2

=
∑
`∈L

|` ∩M |2 − 2|` ∩M | |P |
q

+
|P |2

q2
(23.2)

The final term doesn’t depend on `, it gives us |P |
2q(q+1)
q2

. The first term can be counted as the
number of pairs on lines. Distinct points determine a line, so the first term below comes from
distinct points and the second from individual points (pairs of the same point).∑

`∈L

|` ∩M |2 = |P |(|P | − 1) + |P |(q + 1).

For the middle term is multiplied by |P |
q

, not depending on `. Ignoring that, it counts the
number of points on each line. We can switch that into counting the number of lines through each
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point. This gives us:
∑

`∈L−2|` ∩M | |P |
q

= −2|P |(q + 1) |P |
q

. Putting this all together, we have

∑
`∈L

(
|` ∩M | − |P |

q

)2

=
|P |2q(q + 1)

q2
− 2|P |(q + 1)

|P |
q

+ |P |(|P | − 1) + |P |(q + 1)

= |P |2 + |P |q − |P |
2(q2 + q)

q2

= |P |q − |P |
2

q

≤ |P |q

We can get rid of the extra term since |P |q ≥ |P |2
q

for all sizes of P . Going back to the main
equation now,

∗ ≤ (|L||P |q)1/2

as claimed.

Note that if |P | = |L| = N , this gives |I(P,L)| ≤ q1/2N when N ≤ q3/2, and |I(P,L)| ≈ N2

q

when N ≥ q3/2. When N ≈ q3/2, the bound is |I(P,L)| ≤ N4/3.
Suppose q = p2 and N = p2 = q. Let P = F2

p, and L = {y = mx+ b : m, b ∈ Fp}. We have

N points and lines, and N3/2 incidences (since there is p = N1/2 points in each line). So When
N = p2 = q, this theorem is tight. For q ≤ N ≤ q3/2, we can take translates of this. Take N

q

disjoint translates P + (0, ai) for 1 ≤ i ≤ N
q

. Then there are N point and lines, and Np − Nq1/2

incidences. For q ≤ N ≤ q3/2 and q = p2 this is also sharp, but for example when q = p we don’t
know.

26


	Lecture 1
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 9
	Lecture 10
	Lecture 11
	Salem-Spencer
	Behrend

	Lecture 12
	Lecture 13
	Lecture 14*
	Elementary Sum-Product Phenomena

	Lecture 15*
	Lecture 16
	Lecture 17*
	Lecture 18
	Lecture 19*
	Incidence Geometry

	Lecture 20
	Lecture 21*
	Lecture 23*
	Sum-product and incidence geometry over Fq


