<u>Math 100 section 104 (LAM)</u> Oct 18, 2004 <u>Additional Course Material</u>

Two important (and famous) limits established by the use of logarithm.

(**I**) $\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$ <u>Proof</u> Let $A_n = (1 + \frac{1}{n})^n$. The strategy is to investigate first the limit of $\ell n A_n$ as $n \to \infty$. By the laws of logarithm

$$\lim_{n \to \infty} \ln A_n = \lim_{n \to \infty} n \ln \left(1 + \frac{1}{n}\right) = \lim_{n \to \infty} \frac{\ln \left(1 + \frac{1}{n}\right)}{\frac{1}{n}}$$
$$= \lim_{h \to \infty} \frac{\ln (1 + h) - \ln (1)}{h} = \ln' (1) = 1.$$

where we have set $\frac{1}{n} = h$ and used $\ln(1) = 0$.

The limit, by the very definition of derivative, is $\ln'(1)$, value of the derivative of the $\ell n(x)$ function at x = 1. Since $\ell n'(x) = (\ell n x)' = \frac{1}{x}$, that value is indeed $\frac{1}{1} = 1$. We now return to A_n by exponentiating $\ell n A_n$: $\lim_{x \to \infty} A_n = \lim_{x \to \infty} e^{\ell n A_n} = e^1 = e^{\ell n A_n}$

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} e^{\ln An} = e^1 = e^1$$

That the last limit equals e^1 is because as $n \to \infty$, $\ln A_n \to 1$ and e^t is a continuous function at t = 1.

<u>NOTE</u> The above proof is an excellent example showing the interplay between limit, continuity, differentiability and inverse functions.

<u>Suggested numerical experimentation</u> : Get a close approximation to e by putting n = 2,000,000 into $(1 + \frac{1}{n})^n$, with the use of a pocket calculator.

(II). $\lim_{t\to\infty} \frac{e^t}{t^m} = \infty$ for any fixed positive integer m.

<u>Proof</u> Note $\ln\left(\frac{e^{t}}{t^{m}}\right) = \ln\left(e^{t}\right) - \ln\left(t^{m}\right) = t - m(\ln t).$

As in the discussion of the limit in part (**I**), it suffices to prove that $\lim_{t \to \infty} [t - m(\ell n t)] = \infty$

Let the real number t be expressed as a decimal with k digits occurring before the decimal point. This means that $10^k \ge t \ge 10^{k-1}$. Taking \ln gives $k(\ln 10) \ge \ln t \ge (k-1)(\ln 10)$, or $kC \ge \ln t \ge (k-1)C$ if we write $C = \ln 10 \approx 2.30258 \dots$ Now

(III)

$$t - m \ (\ell n \ t) \ \ge \ 10^{k - 1} - m \ (\ell n \ t) \ \ge \ 10^{k - 1} - m \ kC, \qquad \text{or} \qquad t - m \ (\ell n \ t) \ \ge \ k^2 - m \ kC$$

if we remember that $10^{k-1} \ge k^2$ for k = 0, 1, 2, 3, ... (The proof of this is left to you).

As
$$t \to \infty$$
, t has more and more integer digits, so $k \to \infty$ as well. It follows that
 $\lim_{t \to \infty} [t - m(\ell n t)] \ge \lim_{k \to \infty} k(k - mC) = \infty$,

which establishes (III) as well as (II).