Math 100 section 104 (LAM) Oct 18, 2004

Additional Course Material

Two important (and famous) limits established by the use of logarithm.
(I) $\operatorname{Lim}_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{\mathrm{n}}=\mathrm{e}$
Proof Let $A_{n}=\left(1+\frac{1}{n}\right)^{n}$. The strategy is to investigate first the limit of $\ell n A_{n}$ as $n \rightarrow \infty$. By the laws of logarithm

$$
\begin{aligned}
\operatorname{Lim}_{n \rightarrow \infty} \ln \mathrm{~A}_{\mathrm{n}} & =\operatorname{Lim}_{n \rightarrow \infty} \mathrm{n} \ln \left(1+\frac{1}{n}\right)=\operatorname{Lim}_{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{1 / n} \\
& =\operatorname{Lim}_{h \rightarrow \infty} \frac{\ln (1+h)-\ln (1)}{h}=\ell \mathrm{n}^{\prime}(1)=1 .
\end{aligned}
$$

where we have set $1 / n=\mathrm{h}$ and used $\ln (1)=0$.
The limit, by the very definition of derivative, is $\ell \mathrm{n}^{\prime}(1)$, value of the derivative of the $\ell n(x)$ function at $x=1$. Since $\ell^{\prime}(x)=(\ln x)^{\prime}=\frac{1}{x}$, that value is indeed $\frac{1}{1}=1$.
We now return to A_{n} by exponentiating $\ln \mathrm{A}_{\mathrm{n}}$:

$$
\operatorname{Lim}_{n \rightarrow \infty} \mathrm{~A}_{\mathrm{n}}=\operatorname{Lim}_{n \rightarrow \infty} \mathrm{e}^{\ln \mathrm{An}}=\mathrm{e}^{1}=\mathrm{e}
$$

That the last limit equals e^{1} is because as $\mathrm{n} \rightarrow \infty, \ln \mathrm{A}_{\mathrm{n}} \rightarrow 1$ and e^{t} is a continuous function at $\mathrm{t}=1$.

NOTE The above proof is an excellent example showing the interplay between limit, continuity, differentiability and inverse functions.

Suggested numerical experimentation : Get a close approximation to e by putting $\mathrm{n}=2,000,000$ into $\left(1+\frac{1}{n}\right)^{\mathrm{n}}$, with the use of a pocket calculator.
(II). $\operatorname{Lim}_{t \rightarrow \infty} \frac{e^{t}}{t^{m}}=\infty$ for any fixed positive integer m .
Proof Note $\ln \left(\frac{e^{t}}{t^{m}}\right)=\ln \left(\mathrm{e}^{\mathrm{t}}\right)-\ln \left(\mathrm{t}^{\mathrm{m}}\right)=\mathrm{t}-\mathrm{m}(\ln \mathrm{t})$.
As in the discussion of the limit in part (I), it suffices to prove that

$$
\begin{equation*}
\operatorname{Lim}_{t \rightarrow \infty}[t-m(\ln t)]=\infty \tag{III}
\end{equation*}
$$

Let the real number t be expressed as a decimal with k digits occurring before the decimal point. This means that $10^{\mathrm{k}} \geq \mathrm{t} \geq 10^{\mathrm{k}-1}$.
Taking ℓn gives $\mathrm{k}(\operatorname{\ell n} 10) \geq \ell \mathrm{n} t \geq(\mathrm{k}-1)(\ln 10)$, or $\mathrm{kC} \geq \ln \mathrm{t} \geq(\mathrm{k}-1) \mathrm{C}$ if we write $\mathrm{C}=\ln 10 \approx 2.30258 \ldots$. Now

$$
\mathrm{t}-\mathrm{m}(\ln \mathrm{t}) \geq 10^{\mathrm{k}-1}-\mathrm{m}(\ln \mathrm{t}) \geq 10^{\mathrm{k}-1}-\mathrm{mkC}, \quad \text { or } \quad \mathrm{t}-\mathrm{m}(\ln \mathrm{t}) \geq \mathrm{k}^{2}-\mathrm{mkC}
$$

if we remember that $10^{\mathrm{k}-1} \geq \mathrm{k}^{2}$ for $\mathrm{k}=0,1,2,3, \ldots$ (The proof of this is left to you).
As $\mathrm{t} \rightarrow \infty$, t has more and more integer digits, so $\mathrm{k} \rightarrow \infty$ as well. It follows that $\operatorname{Lim}_{t \rightarrow \infty}[\mathrm{t}-\mathrm{m}(\ln \mathrm{t})] \geq \operatorname{Lim}_{k \rightarrow \infty} \mathrm{k}(\mathrm{k}-\mathrm{mC})=\infty$,
which establishes (III) as well as (II).

