1. The derivative of $\mathrm{x} \sin ^{-1} \mathrm{x}$, by the product rule, is clearly

$$
\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}
$$

Note that another notation for $\sin ^{-1} \mathrm{x}$ is $\arcsin \mathrm{x}$.
2. The height h of the monkey and the angle θ of observation are both functions of time t. Their relationship is given by

$$
\tan \theta=\frac{h}{8}
$$

We are given that $\frac{d h}{d t}=7.5 \mathrm{ft} / \mathrm{s}$ and want to find $\frac{d \theta}{d t}$ when $h=16$. Applying D_{t} to the above equation gives, by chain rule

$$
\sec ^{2} \theta \frac{d \theta}{d t}=\frac{1}{8} \frac{d h}{d t}=\frac{1}{8} \times 7.5
$$

At $\mathrm{h}=16$ the longest side of the triangle equals $\sqrt{8^{2}+16^{2}}$, for which $\sec \theta$ equals $\frac{\sqrt{8^{2}+16^{2}}}{8}=\sqrt{5}$. So $(\sqrt{5})^{2} \frac{d \theta}{d t}=\frac{1}{8} \times 7.5$ and $\frac{d \theta}{d t}=\frac{3}{16} \mathrm{rad} / \mathrm{s}$ (ANSWER)
3. $\mathrm{y}=\mathrm{f}(\mathrm{x})=\frac{e^{3 x} \cos x}{\sqrt{4+x^{2}}}$, In logarithmic differentiation the first step is to
" take ℓn of both sides ":

$$
\begin{aligned}
& \ln y=\ln \mathrm{e}^{3 \mathrm{x}}+\ln \cos \mathrm{x}-\ln \sqrt{4+x^{2}}, \text { or } \\
& \ln \mathrm{y}=3 \mathrm{x}+\ln \operatorname{cox} \mathrm{x}-\frac{1}{2} \ln \left(4+\mathrm{x}^{2}\right) .
\end{aligned}
$$

Implicit differentiation of the last equation with respect to x gives

$$
\frac{1}{y} y^{\prime}=3+\frac{1}{\cos x}(-\sin x)-\frac{1}{2} \frac{1}{4+x^{2}}(2 x) .
$$

Substituting $\mathrm{x}=0$, and noting $\mathrm{y}(0)=\frac{1}{2}$, we get

$$
2 \mathrm{y}^{\prime}(0)=3+0-0=3 . \quad \text { Hence } \mathrm{y}^{\prime}(0)=\frac{3}{2} \quad(\text { ANSWER })
$$

4. We want to find the slope of the tangent line to the curve $x^{3}+x y+y^{2}=7$ at the point (1,2). First, by a routine check, this point does indeed lie on the curve.

Applying D_{x} as in implicit differentiation, we obtain

$$
3 \mathrm{x}^{2}+\left(\mathrm{y}+\mathrm{x} \frac{d y}{d x}\right)+2 \mathrm{y} \frac{d y}{d x}=0 .
$$

Substitution $\mathrm{x}=1, \mathrm{y}=2$ gives
$5+5 \frac{d y}{d x}=0$, so $\frac{d y}{d x}=-1$ at the point $(1,2)$. This is the required slope.
5. Let y be the coffee temperature at time t with $t=0$ corresponding to 1:00 p.m.

By Newton's law of cooling, y satisfies the Differential Equation

$$
\frac{d y}{d t}=\mathrm{k}(\mathrm{y}-70), \mathrm{y}(0)=200
$$

We can take advantage of the fact that y and $y-70$ have the same derivative, to rewrite this boxed equation as $\frac{d}{d t}(\mathrm{y}-70)=\mathrm{k}(\mathrm{y}-70)$.
If so, $(y-70)=C e^{k t}$, or $y=70+C e^{k t} \quad$ where C is some constant.
Substitution by $\mathrm{t}=0, \mathrm{y}=200$ gives $\mathrm{C}=130$.
Substitution by $\mathrm{t}=10, \mathrm{y}=150$ gives $130 \mathrm{e}^{10 \mathrm{k}}=150-70$, or $\mathrm{k}=-.04855$.
Thus $\mathrm{y}=70+130 \mathrm{e}^{-.04855 \mathrm{t}}$ and so when $\mathrm{t}=27, \mathrm{y}=105.04^{\circ}$.
ANSWER: At 1:27 p.m. the coffee temperature is $105.04^{\circ} \mathrm{F}$

