Solution

1. The derivative of $x \sin^{-1}x$, by the product rule, is clearly

$$\sin^{-1}x + \frac{x}{\sqrt{1-x^2}}$$

Note that another notation for $\sin^{-1}x$ is $\arcsin x$.

2. The height h of the monkey and the angle θ of observation are both functions of time t. Their relationship is given by

$$\tan \theta = \frac{h}{8}.$$
We are given that $\frac{dh}{dt} = 7.5$ ft/s and want to find $\frac{d\theta}{dt}$ when $\theta = \frac{h}{8}$.
h = 16. Applying D_t to the above equation gives, by chain rule $\theta = \frac{h}{8}$
 $\sec^2 \theta \quad \frac{d\theta}{dt} = \frac{1}{8} \frac{dh}{dt} = \frac{1}{8} \times 7.5$

monkey

At h = 16 the longest side of the triangle equals $\sqrt{8^2 + 16^2}$, for which $\sec \theta$ equals $\frac{\sqrt{8^2 + 16^2}}{8} = \sqrt{5}$. So $(\sqrt{5})^2 \frac{d\theta}{dt} = \frac{1}{8} \times 7.5$ and $\frac{d\theta}{dt} = \frac{3}{16}$ rad/s (ANSWER)

3. $y = f(x) = \frac{e^{3x} \cos x}{\sqrt{4 + x^2}}$, In logarithmic differentiation the first step is to

" take ln of both sides ":

$$ln y = ln e^{3x} + ln \cos x - ln \sqrt{4 + x^2}, \text{ or} ln y = 3x + ln \cos x - \frac{1}{2} ln (4 + x^2).$$

Implicit differentiation of the last equation with respect to x gives

$$\frac{1}{y} y' = 3 + \frac{1}{\cos x} \left(-\sin x\right) - \frac{1}{2} \frac{1}{4 + x^2} (2x)$$

Substituting x = 0, and noting y (0) = $\frac{1}{2}$, we get 2 y'(0) = 3 + 0 - 0 = 3. Hence y'(0) = $\frac{3}{2}$ (ANSWER) 4. We want to find the slope of the tangent line to the curve $x^3 + xy + y^2 = 7$ at the point (1,2). First, by a routine check, this point does indeed lie on the curve.

Applying D_x as in implicit differentiation, we obtain

$$3x^{2} + (y + x \frac{dy}{dx}) + 2y \frac{dy}{dx} = 0.$$

Substitution x = 1, y = 2 gives

 $5+5\frac{dy}{dx}=0$, so $\frac{dy}{dx}=-1$ at the point (1,2). This is the required slope.

5. Let y be the coffee temperature at time t with t = 0 corresponding to 1:00 p.m. By Newton's law of cooling, y satisfies the Differential Equation

$\frac{dy}{dt} = k (y-70), y (0) =$	200
-------------------------------------	-----

We can take advantage of the fact that y and y-70 have the same derivative, to rewrite this boxed equation as $\frac{d}{dt}(y-70) = k(y-70)$. If so, $(y-70) = Ce^{kt}$, or $y = 70 + Ce^{kt}$ where C is some constant.

Substitution by t = 0, y = 200 gives C = 130. Substitution by t = 10, y = 150 gives $130 e^{10k} = 150 - 70$, or k = -.04855.

Thus $y = 70 + 130 e^{-.04855 t}$ and so when t = 27, $y = 105.04^{\circ}$.

ANSWER: At 1:27 p.m. the coffee temperature is 105.04° F