$$
\text { § 2.3, (P.86), \#46 } \quad \operatorname{Lim}_{x \rightarrow 0^{-}} \frac{x}{x-|x|}=?
$$

Solution That $\mathrm{x} \rightarrow 0^{-}$implies that x is negative.
If so, $|x|=-x$, just like $|-2|=-(-2)$.
Hence $?=\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{x}{x-(-x)}=\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{x}{2 x}=\frac{1}{2} \quad($ ANSWER)
§ 2.4, (P. 97), \#33
Continuity for $\frac{1}{\sin 2 x}$ fails when $\sin 2 x=0$,
which means $2 \mathrm{x}= \pm m \pi$, or $\mathrm{x}=\frac{m}{2} \pi$,
where $\mathrm{m}=0,1,2,3,4 \ldots$ These however, are also the points where the function is undefined. Thus : $\frac{1}{\sin 2 x}$ is continuous whenever it is defined.

§ 3.1, (P. 114) \#52 (b)

The average rate of change of population from 1983 to 1988 is $\frac{P(8)-P(3)}{8-3}$ where $\mathrm{t}=3$ means 1983 and $\mathrm{t}=8$ means 1988.
Now get this average by substitution. The important point here is to understand what "average rate" means.
§ 3.2, (P. 115), \#59
Note that $\mathrm{f}(\mathrm{x})=\mathrm{x}+|\mathrm{x}|=\left\{\begin{array}{ccc}x+x=2 x & \text { if } & x \geq 0 \\ x-x=0 & \text { if } & x<0\end{array}\right\}$

Hence its graph is

At all $\mathrm{x} \neq 0, \quad \mathrm{f}^{\prime}(\mathrm{x})$ exists, and is given by $\mathrm{f}^{\prime}(\mathrm{x})=\left\{\begin{array}{ccc}(2 x)^{\prime}=2 & \text { when } & x>0 \\ (0)^{\prime}=0 & \text { when } & x<0\end{array}\right\}$
It is also clear from the graph that $\mathrm{x}=0$ is a point of nondifferentiability.
There, left derivative $=0$, right derivative $=2$ and no overall derivative is defined.

Note that this problem asks for the value of $\frac{d V}{d h}$ when $\mathrm{h}=600 \mathrm{~cm}$. It is not asking for the value of $\frac{d V}{d t}$.

§ 3.3, P. 133 \#55

The purpose of this exercise is to practise with the chain rule, using the notation $\mathrm{G}(\mathrm{t})=\mathrm{f}(\mathrm{h}(\mathrm{t}))$. In this notation $\mathrm{G}^{\prime}(\mathrm{t})=\mathrm{f}(\mathrm{h}(\mathrm{t})) \mathrm{h}^{\prime}(\mathrm{t})$
Substituting $t=1$ gives $G^{\prime}(1)=f^{\prime}(h(1)) \times h^{\prime}(1)=f^{\prime}(4) h^{\prime}(1)$

$$
=3 \times(-6) \quad=-18(\text { ANSWER }) .
$$

§ 3.3, P.135, \# 58

$\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$. Differentiating with respect to time t gives
$\frac{d V}{d t}=\frac{4}{3} \pi \cdot 3 \mathrm{r}^{2} \frac{d r}{d t}=4 \pi \mathrm{r}^{2} \frac{d r}{d t}$.
When $\mathrm{r}=5, \frac{d V}{d t}=200 \pi$;
One has $\frac{d r}{d t}=\frac{d v / d t}{4 \pi r^{2}}=\frac{200 \pi}{4 \cdot \pi \cdot 5^{2}}=2 \mathrm{~cm} / \mathrm{s}$.

$$
\S 3.4, \text { P. } 140, \# 69
$$

Let the normal line through $(0,2.5)$ to $y=x^{2 / 3}$ meet the curve at $\left(x, x^{2 / 3}\right)$.
Since $y^{\prime}=\frac{2}{3} x^{-1 / 3}$, the slope of the normal line is $\frac{-1}{y^{\prime}}=\frac{-3}{2} x^{1 / 3}$.
Thus $\frac{x^{2 / 3}-2.5}{x-0}=-\frac{3}{2} x^{1 / 3}$, or, clearing denominator, $x^{2 / 3}-\frac{5}{2}=-\frac{3}{2} x^{4 / 3}$.
Write this as $3 x^{4 / 3}+2 x^{2 / 3}-5=0$ and factor it as $\left(3 x^{2 / 3}+5\right)\left(x^{2 / 3}-1\right)=0$.
Since $x^{2 / 3}=\left(x^{1 / 3}\right)^{2}$ is always positive, we get $x^{2 / 3}-1=0$ or $x= \pm 1$.
ANSWER: There are 2 normal lines through ($0,2.5$).
They intersect the curve $y=x^{2 / 3}$ at $(1,1)$ and $(-1,1)$ respectively.

$$
\S 3.5, \mathrm{P} .148, \# 3
$$

The function $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ on the open interval $(-1,1)$ does not attain a maximum value. From the graph, it is clear that it attains a minimum value 0 at $\mathrm{x}=0$.

§3.6, P.172, \# 48

$\mathrm{x}=(\sec \sqrt{t})+\tan \sqrt{t}$.
One must get $\frac{d \mathrm{x}}{d t}$ carefully with chain rule and product rule.

$$
\begin{aligned}
& \frac{d \mathrm{x}}{d t}=\left[(\sec \sqrt{t} \tan \sqrt{t}) \frac{1}{2} t^{-1 / 2}\right] \tan \sqrt{t}+\sec \sqrt{t}\left[\left(\sec ^{2} \sqrt{t}\right) \frac{1}{2} t^{-1 / 2}\right] \\
& =\frac{1}{2 \sqrt{t}} \cdot \sec \sqrt{t}\left(\tan ^{2} \sqrt{t}+\sec ^{2} \sqrt{t}\right) \cdot(\text { ANSWER) }
\end{aligned}
$$

§ 3.7 P. 173, \#79

The trapezoidal area A is obtained from the rectangular area minus the areas of the two triangles. These
 triangles have horizontal side $2 \cos \theta$ and vertical side $2 \sin \theta$. Thus

$$
\begin{aligned}
\mathrm{A} & =(2+2 \times 2 \cos \theta) \times 2 \sin \theta-2 \times \frac{1}{2}(2 \cos \theta)(2 \sin \theta) . \\
\text { or } \quad \mathrm{A} & =4(1+2 \cos \theta) \times \sin \theta-4 \cos \theta \sin \theta \\
& =4 \sin \theta+4 \cos \theta \sin \theta .
\end{aligned}
$$

To maximize A, set $\frac{d A}{d \theta}=4 \cos \theta-4 \sin ^{2} \theta+4 \cos ^{2} \theta=0$
Dividing by 4 and using $\sin ^{2} \theta=1-\cos ^{2} \theta$, we get $2 \cos ^{2} \theta+\cos \theta-1=0$. Thus $(2 \cos \theta-1)(\cos \theta+1)=0$, giving $\cos \theta=\frac{1}{2}$ or $\theta=\frac{\pi}{3}$.
This clearly is the value of θ to giver $\mathrm{A}_{\max }$.

$$
\S 3.7,(\mathrm{P} .173), \# 87
$$

This is a highly recommended exercise for those who want more practices with optimization problems. Please try it.
§ 3.7, (P. 173) \#87
To differentiate the function $f(x)$ at $x=0$ means to try to get the following limit :
$\operatorname{Lim}_{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{h \sin \frac{1}{h}-0}{h}$
$=\operatorname{Lim}_{h \rightarrow 0}\left(\sin \frac{1}{h}\right)$.

Referring to Figure 2.3 .5 of P. 76 we see that this limit does not exist. Hence $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$.

§ 3.8, (P. 187), \#57
 Use logarithmic differentiation :

$\mathrm{y}=(\sqrt{x})^{\sqrt{x}}$. Take \ln of both sides :
$\ln \mathrm{y}=\sqrt{x} \ln \sqrt{x}=\sqrt{x}\left(\frac{1}{2} \ln \mathrm{x}\right)=\frac{1}{2} \sqrt{x} \ln \mathrm{x}$.
Taking derivative with respecti to x yields :

$$
\begin{aligned}
& \quad \frac{1}{y} \frac{d y}{d x}=\frac{1}{2} \cdot \frac{1}{2 \sqrt{x}} \ln \mathrm{x}+\frac{1}{2} \sqrt{x} \cdot \frac{1}{x}=\frac{\ln \mathrm{x}+2}{4 \sqrt{\mathrm{x}}} \\
& \text { So } \quad \frac{d y}{d x}=\mathrm{y} \cdot \frac{\ln \mathrm{x}+2}{4 \sqrt{\mathrm{x}}}=(\sqrt{x})^{\sqrt{x}} \cdot \frac{\ln \mathrm{x}+2}{\sqrt{\mathrm{x}}} \quad \text { (ANSWER) }
\end{aligned}
$$

§ 8.1, (P.557) \#1
$\frac{d y}{d x}=2 \mathrm{y}, \mathrm{y}(1)=3$ has solution $\mathrm{y}=\mathrm{Ce}^{2 \mathrm{x}}$.
Substitution by $\mathrm{x}=1, \mathrm{y}=3$ gives $3=\mathrm{Ce}^{2}$, so $\mathrm{C}=\frac{3}{e^{2}}$.
The final solution is $\mathrm{y}=\frac{3}{e^{2}} \mathrm{e}^{2 \mathrm{x}}=3 \mathrm{e}^{2 \mathrm{x}-2}$ (ANSWER)
§ 8.1, (P.557) \#2
$\frac{d y}{d x}=-3 \mathrm{y}, \mathrm{y}(5)=10$ has solution $\mathrm{y}=\mathrm{Ce} \mathrm{e}^{-3 \mathrm{x}}$.
Substitution by $\mathrm{x}=5, \mathrm{y}=-10$, gives $-10=C \mathrm{e}^{-15}$,
So $C=-10 e^{15}$.
The final solution is $y=-10 \times e^{15} e^{-3 x}=-10 e^{-3 x+15} \quad$ (ANSWER)
§ 8.1, (P.557) \# 7
Write the D.E. as $\frac{d}{d x}(\mathrm{y}+1)=\mathrm{y}+1, \mathrm{y}(0)=5$.
This makes the $(y+1)$ on the left match precisely with the $(y+1)$ on the right.
Note here that $\frac{d y}{d x}=\frac{d}{d x}(\mathrm{y}+1)$ because y and $\mathrm{y}+1$ have the same derivative.
The solution is $\mathrm{y}+1=\mathrm{C} \mathrm{e}^{\mathrm{x}}$.
Substitution by $x=0, y=5$ gives $5+1=C \times e^{0}$, or $C=6$
So the solution is $\mathrm{y}=6 \mathrm{e}^{\mathrm{x}}-1$ (ANSWER)
$\S 8.3,(\mathrm{P} .576) \# 23$ To solve $\frac{d y}{d x}=2 \mathrm{y}-3, \mathrm{y}(0)=2$.
Note that $2 \mathrm{y}-3=2(\mathrm{y}-3 / 2)$. So we write the $\frac{d y}{d x}$ on the left side as $\frac{d}{d x}(\mathrm{y}-3 / 2)$, Noting that y and $(y-3 / 2)$ have the same derivative.
The D.E. now reads $\frac{d}{d x}(y-3 / 2)=2(y-3 / 2)$, with perfect match of $y-3 / 2$ on both the left and the right side. From this we can immediately get the solution $(y-3 / 2)=C e^{2 x}$
Substitution by $\mathrm{x}=0, \mathrm{y}=2$ gives $\mathrm{C}=\frac{1}{2}$.
Hence the final solution is $y=\frac{3}{2}+\frac{1}{2} \mathrm{e}^{2 \mathrm{x}} \quad$ (ANSWER)
$\frac{d v}{d t}=10(10-\mathrm{v})$. Rewrite as
$\frac{d v}{d t}=-10(\mathrm{v}-10)$, and then as
$\frac{d}{d t}(\mathrm{v}-10)=-10(\mathrm{v}-10)$.
Hence $\mathrm{v}-10=\mathrm{Ce}^{-10 \mathrm{t}}$.
Substitution by $t=0, v=0$ gives $-10=C$.
The final solution is therefore $\mathrm{v}=10-10 \mathrm{e}^{-10 \mathrm{t}}$.
§ 8.3, (P. 576) \#31
According to the question, Zembla's population P , in millions, satisfies $\frac{d P}{d t}=0.04 \mathrm{P}+0.05, \quad \mathrm{P}(0)=1.5$

Where the year 1990 corresponds to time $t=0$.
Rewrite this equation as $\frac{d P}{d t}=0.04(\mathrm{P}+1.25)$
and then as $\frac{d}{d t}(\mathrm{P}+1.25)=0.04(\mathrm{P}+1.25)$.
We have $\mathrm{P}+1.25=\mathrm{Ce}^{0.04 \mathrm{t}}$ and $\mathrm{C}=2.75$
by substitution of the initial conditions. Thus the population in t years will be

$$
\mathrm{P}=-1.25+2.75 \mathrm{e}^{0.04 \mathrm{t}} \text { million. }
$$

For the year 2010 substitute $\mathrm{t}=20$ to get
$P(20)=-1.25+2.75 \mathrm{e}^{0.8}=4.87$ million (ANSWER)
§ 8.3, (P.576), \#32
This is entirely parallel to Question \#5, in our quiz I, Oct. 29, 2004. Please do it yourself.
§ 8.3, (P.576), \# 33, 34
Use these as further practice! How would you rewrite the equation $\frac{d P}{d t}=r \mathrm{P}-\mathrm{C}$?

> §8.3, (P.477), \#72

To show $\sin ^{-1} x=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$, let $\theta=\sin ^{-1} x$.
This means $\sin \theta=\mathrm{x}=\mathrm{x} / 1$, as in the diagram shown .
By Pythagoras theorem the horizontal side is $\sqrt{1-x^{2}}$,
 and so $\tan \theta=\frac{x}{\sqrt{1-x^{2}}}$. This means $\theta=\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}$ and the desired equality is established.

The equation of the lemniscate curve L is

$$
\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}
$$

We take the view point that at points $\left(x_{0}, y_{0}\right)$ on L it is theoretically possible, with few exceptions, to solve y as a function of x from (I), satisfying $y\left(x_{0}\right)=y_{0}$. However, the slope $y^{\prime}\left(x_{0}\right)$ of the tangent line at $\left(x_{0}, y_{0}\right)$ can be much more conveniently obtained via the method of implicit differentiation. Thus we apply D_{x} to the terms of (I) and use chain rule to get

$$
2\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\left[2 \mathrm{x}+2 \mathrm{y} \frac{d y}{d x}\right]=2 \mathrm{x}-2 \mathrm{y} \frac{d y}{d x}
$$

which leads to $\frac{d y}{d x}=\frac{2 x-4 x\left(x^{2}+y^{2}\right)}{2 y\left[1+2\left(x^{2}+y^{2}\right)\right]}$.
At points with horizontal tangent line $\frac{d y}{d x}=0$, so

$$
2 x-4 x\left(x^{2}+y^{2}\right)=0 \quad \text { or } \quad 2 x\left[1-2\left(x^{2}+y^{2}\right)\right]=0 .
$$

The case $x=0$ is discarded because it leads to the point $(0,0)$ on L for which slope is not defined. We are then left with $1-2\left(x^{2}+y^{2}\right)=0$, or

$$
x^{2}+y^{2}=\frac{1}{2} \quad \text { Substitution back into (I) gives }
$$

$$
\mathrm{x}^{2}-\mathrm{y}^{2}=\frac{1}{4} \quad \text { and the two boxed equations yield four solutions }
$$

$(\mathrm{x}, \mathrm{y})=\left(\sqrt{\frac{3}{8}}, \sqrt{\frac{1}{8}}\right),\left(\sqrt{\frac{3}{8}},-\sqrt{\frac{1}{8}}\right),\left(-\sqrt{\frac{3}{8}}, \sqrt{\frac{1}{8}}\right),\left(-\sqrt{\frac{3}{8}},-\sqrt{\frac{1}{8}}\right)$.
These correspond to 4 points on L with horizontal tangent line, as can be visually checked from the graph.
For points on L with vertical tangent line we need $\frac{d y}{d x}= \pm \infty$. This requires

$$
2 y\left[1+2\left(x^{2}+y^{2}\right\}\right]=0 \quad \text { and } \quad 2 x-4 x\left(x^{2}+y^{2}\right) \neq 0
$$

Since $1+2\left(x^{2}+y^{2}\right)$ is always positive, the first requirement leads to $y=0$ whose substitution back into (I) gives $x^{4}=x^{2}$, or $x=1,-1,0$. We exclude $x=0$ because it violates the second requirement. That leaves $(x, y)=(1,0)$ or $(-1,0)$, two points on L where the tangent lines are vertical.
§3.9, (P.198) \#59

The diagram shows the situation of the 2 planes at a general time moment t . (Note, it is very essential to produce this diagram). At this time the distance between the two airplanes is

$$
\mathrm{L}=\sqrt{(8 t)^{2}+(12 t-208)^{2}}
$$

The question asks for the absolute minimum value of L on the interval $[0, \infty)$.
This can be done by the usual critical point method :

$$
\frac{d L}{d t}=\frac{128 t+2(12 t-208) \times 12}{2 \sqrt{(8 t)^{2}+(12 t-208)^{2}}}
$$

Setting this derivative equal 0 gives $416 \mathrm{t}-2 \times 208 \times 12=0$,
or $\mathrm{t}=12$ minutes, for which $\mathrm{L}=32 \sqrt{13}$ or roughly 115.38 miles.
One must not fail to check end point, and point out that $32 \sqrt{13}$ is less than 208,
the value of L at the end point $\mathrm{t}=0$. Physically then, $32 \sqrt{13}$ must be the minimum distance between the 2 planes, at the critical time of 12 minutes after flight started.

$$
\text { § } 3.9 \text { (P.198) \#63 }
$$

For this kind of rate problem about leaking water from a bucket, the important step, again, is to draw a diagram showing the situation, at a general time t. The substitution $h=12$ inches should be done only at the end, after all differentiations with respect to time has been accomplished.
At time t let the water level be h inches with water surface radius equal to r inches. Here h and r are functions of time, a, b and the height of the bucket are constants, with water volume at time t given by

$$
\begin{equation*}
\mathrm{V}=\frac{\pi h}{3}\left(36+6 \mathrm{r}+\mathrm{r}^{2}\right) \tag{I}
\end{equation*}
$$

I---- 12------I
The important point now is to find the relationship between h and r. Use the auxiliary diagram shown. By similar triangles

$$
\begin{aligned}
\frac{r-6}{12-6} & =\frac{h}{24} \\
\mathrm{r} & =6+\frac{1}{4} \mathrm{~h} .
\end{aligned}
$$

or
(II)

Applying D_{t} to both (II) and (I), and using the chain rule correctly, we get

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{1}{4} \frac{d h}{d t} \\
\frac{d V}{d t} & =\frac{\pi}{3} \frac{d h}{d t}\left(36+6 \mathrm{r}+\mathrm{r}^{2}\right)+\frac{\pi h}{3}\left(6 \frac{d r}{d t}+2 r \frac{d r}{d t}\right) \\
& =\frac{\pi}{3}\left[\frac{d h}{d t}\left(36+6 r+r^{2}\right)+h(6+2 r) \frac{d r}{d t}\right]
\end{aligned}
$$

At the specific moment when $\mathrm{h}=12$ inches, we deduce from (II)
that $\mathrm{r}=9$. Substitution into the last equation using $\mathrm{h}=12, \mathrm{r}=9$,
$\frac{d V}{d t}=-10$, and $\frac{d r}{d t}=\frac{1}{4} \frac{d h}{d t} \quad$ will give

$$
-10=\frac{\pi}{3}\left[\frac{d h}{d t} \times 171+(12 \times 24) \times \frac{1}{4} \frac{d h}{d t}\right]
$$

or $\quad-10=\frac{\pi}{3} \times 243 \frac{d h}{d t}$, i.e. $\frac{d h}{d t}=\frac{-10}{81 \pi}$

ANSWER At the moment when water is exactly up to 12 inches, the water level is dropping at the rate of $\frac{10}{81 \pi}$ inches per minute.
§ 4.2 (P.225) \#18
$f(x)=(1+x)^{-1 / 2}, f^{\prime}(x)=-\frac{1}{2}(1+x)^{-3 / 2}, f(0)=1, f^{\prime}(0)=-\frac{1}{2}$.
Thus the linear approximation $f(x) \approx f(0)+f^{\prime}(0)(x-0)$ is simply $(1+x)^{-1 / 2} \approx 1-\frac{1}{2} x$.
§4.2 (P.225) \#27

To estimate $\sqrt[4]{15}$ without any calculator help, observe that 15 is close to 16 and $\sqrt[4]{16}=2$ is easy to get. So, introduce the function $f(x)=x^{1 / 4}$ with $a=16, x=15, f^{\prime}(x)=\frac{1}{4} x^{-3 / 4}$ and use tangent line approximation

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

This gives

$$
\begin{aligned}
& \sqrt[4]{15} \approx \sqrt[4]{16}+\frac{1}{4}(16)^{-3 / 4} \cdot(15-16) \\
& \sqrt[4]{15} \approx 2+\frac{1}{32} \times(-1)=2-\frac{1}{32}=\frac{63}{32}
\end{aligned}
$$

or
so that $\frac{63}{32}$ is an approximate value of $\sqrt[4]{15}$.
[Check : $\left(\frac{63}{32}\right)^{4}=15.023038$, quite close to 15].
Suggestion: Try to estimate the error in this approximation using the second derivative f^{\prime} of f .
§ 4.2 (P225) \#31
We want to get an approximate value of $\cos 43^{\circ}$ by hand, and to estimate the error of this approximation.
Note that $\cos 45^{\circ}=\frac{\sqrt{2}}{2}$ is known and that 43° is quite close to 45°. We must, however, convert all degrees into radians before using calculus.
So, introduce $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$, with $\mathrm{a}=\frac{\pi}{4}, \mathrm{x}=\frac{43 \pi}{180}$ (which corresponds to 43°).
Now, $f^{\prime}(x)=-\sin x$ and tangent line approximation $f(x) \approx f(a)+f^{\prime}(a)(x-a)$
gives $\cos \frac{43 \pi}{180} \approx \cos \frac{\pi}{4}-\sin \frac{\pi}{4}\left(\frac{43 \pi}{180}-\frac{\pi}{4}\right)$,
or $\cos \frac{43 \pi}{180} \approx \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \times \frac{(-2 \pi)}{180}=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \times \frac{\pi}{90}$
or $\quad \cos \frac{43 \pi}{180} \approx 0.73179$
To estimate the error committed, note $\mathrm{f}^{\prime}(\mathrm{x})=-\cos \mathrm{x}$ and that throughout the interval
$\left[\frac{43 \pi}{180}, \frac{\pi}{4}\right] \quad$ one has $\quad\left|\mathrm{f}^{\prime \prime}\right| \leq \mathrm{K} \quad$ for the constant value $\mathrm{K}=1$.
Hence, in using 0.73179 to approximate $\cos 43^{\circ}$, the error satisfies

$$
\mid \text { error } \left\lvert\, \leq \frac{K}{2}(\mathrm{x}-\mathrm{a})^{2}=\frac{1}{2}\left(\frac{43 \pi}{180}-\frac{\pi}{4}\right)^{2}=0.00061\right.
$$

We summarize the situation into a diagram,

and claim that the true value of $\cos 43^{\circ}$ lies in the interval $[.73118, .73240]$.
Suggestion Use a pocket calculator to obtain $\cos 43^{\circ}$ and see if it indeed lies inside this interval.

Selected solutions to Assignment I

Section 2.3, p.85, \#27

Start with the fact $-1 \leq \cos \frac{1}{\sqrt[3]{x}} \leq 1$ which is true for all $x \neq 0$.
Multiply by the positive quantity x^{2} to get $-x^{2} \leq \cos \frac{1}{\sqrt[3]{x}} \leq x^{2}$
Since $\lim _{x \rightarrow 0}\left(-x^{2}\right)=0=\lim _{x \rightarrow 0}\left(x^{2}\right)$,
the Squeeze Principle implies immediately
that $\lim _{x \rightarrow 0} x^{2} \cos \frac{1}{\sqrt[3]{x}}=0 \quad$ (Answer !)

Discussion : $\cos \frac{1}{\sqrt[3]{x}}$ is undefined at $x=0$.
Why is this fact irrelevant as far as our problem is concerned?
[Suggested further practice : p.85, \#26]

Section 2.4, p.97, \#55

Consider the continuous function $f(x)=x^{3}-3 x^{2}+1$ on the closed interval $[0,1]$. By substitution $f(0)=1, f(1)=-1$. Obviously the value 0 is intermediate between $f(0)$ and $f(1)$, namely $f(0)>0>f(1)$. By the Intermediate Value Theorem there exists at least one real number Γ between 0 and 1 such that $f(r)=0$. In other words the equation $x^{3}-3 x^{2}+1=0$ has a solution $x=\Gamma$ in the interval $[0,1]$.
[Suggested further practice : p.98, \#71]
$\S 4.2$, p. 225 The last sentence in this question should read : What, approximately, is the resulting error in the calculated surface area ?
The solution is as follows : $\mathrm{S}=2 \pi \mathrm{r}^{2}, \Delta \mathrm{r}=0.01$ meter.
Therefore $\Delta \mathrm{S} \approx \mathrm{S}^{\prime}(\Delta \mathrm{r}) \quad\{$ This is equivalent to "tangent line approximation", see formula (4), p. 219$\}$. Here $\mathrm{S}^{\prime}=\frac{d S}{d r}=4 \pi \mathrm{r}$, and so the error in the calculation of hemi-spherical area is approximately

$$
\Delta \mathrm{S} \approx 4 \pi \times 100 \times 0.01=4 \pi \mathrm{~m}^{2} \quad \text { (Answer)! }
$$

§ 4.3, p .235, \#33

The function $f(x)=3 x^{2}+6 x-5$ is clearly continuous and differentiable throughout the closed interval $[a, b]=[-2,1]$, so the hypotheses of the mean value theorem is satisfied.
According to that theorem, there is a number c between -2 and 1 such that

$$
\mathrm{f}^{\prime}(\mathrm{c})=\frac{f(b)-f(a)}{b-a}
$$

Since $\mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}+6$ this translates into $6 \mathrm{c}+6=\frac{f(1)-f(-2)}{1-(-2)}$.
The right hand side is $4-(-5) / 3=3, \quad$ So $6 c+6=3$ and the answer is $c=-1 / 2$

§ 4.3, p.235, \#37

The function $f(x)=|x-2|$ is not differentiable at the point $x=2$, which is inside the interval [1,4$]$. Hence the hypotheses of the mean value theorem are NOT satisfied. If we try to find a number c between 1 and 4
such that $\mathrm{f}^{\prime}(\mathrm{c})=\frac{f(4)-f(1)}{4-1}$
(\#)
we will fail because the right side equals
[|4-2|-|1-2|]/3=1/3, while the left side, being the slope of the graph of $f(x)$ at the point $x=c$, is either $-1,+1$ or
 undefined (see diagram).
Hence there does not exist a number c between 1 and 4 to make the left side and right side of (\#) match. [End of proof.]

