Math 309: Introduction to knot theory Homework 2, due Wednesday February 6 by 12:00 pm (Submit your work at Room 219 of the Mathematics building)

1. (Adams, Exercise 2.14) Show that the rational tangle associated with $\left[\begin{array}{lllll}2 & 1 & a_{1} & a_{2} & \ldots\end{array} a_{n}\right]$ is equivalent to the rational tangle associated with [$\left.\begin{array}{llllll}-2 & 2 & a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$ by both using continued fractions and by comparing the relevant tangle diagrams.
2. Prove that 2-bridge knots are alternating in two steps:
(a) (Adams, Exercise 2.17) Prove that every rational knot is alternating (by finding an alternating diagram).
(b) Prove that every 2-bridge knot is a rational knot.
3. Show that the unknotting number of the rational knot associated with $\left[\begin{array}{lll}5 & 1 & 4\end{array}\right]$ is at least 2 .
4. Give the definition of a composite knot and, by appealing to the fact that

$$
b\left(K_{1} \# K_{2}\right)=b\left(K_{1}\right)+b\left(K_{2}\right)-1
$$

(proved by Schubert), show that all rational knots are prime.
5. (Adams, Exercise 6.8) Let $V(L)$ be the Jones polynomial of a link, and prove that

$$
t^{-1} V\left(L_{+}\right)-t V\left(L_{-}\right)=\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) V\left(L_{0}\right)
$$

where each of the links L_{+}, L_{-}, and L_{0} differ at exactly one crossing, as in Figure 6.13 of Adams.
6. Calculate the Jones polynomial of the figure 8 knot.

