Math 309: Introduction to knot theory Additional questions for review, collected from the final lectures (not for submission)

1. Show that every braid diagram β admits and inverse braid diagram β^{-1} so that, after isotopy, $\beta \cdot \beta^{-1}$ and $\beta^{-1} \cdot \beta$ (each obtained by concatenation) are equivalent to the trivial braid.
2. Show, via an explicit example, that multiplication in the braid group (on 3 or more strands) is not commutative. For 2-strand braids, multiplication is commutative. Can you explain why?
3. Find the Artin combed form for the braid $\left(\sigma_{2} \sigma_{1}^{-1}\right)^{3}$.
4. Find all 14 so-called crossingless matchings of 8 points in the boundary of disk (you can think of these as two sets of 4 points on opposite sides of a square). Recall from class that these matchings are a basis for $\mathcal{T} \mathcal{L}_{4}$.
5. Given a braid $\beta \in B_{n}$, write down a formula for the Jones polynomial $V_{\bar{\beta}}(t)$ in terms of the value $\mathcal{B}(\beta) \in \mathcal{T} \mathcal{L}_{n}$. (Hint: try the case $n=3$ first)
6. In the case of $\beta \in B_{3}$, determine the effect of an M2 move on $\mathcal{B}(\beta)$, that is, calculate $\mathcal{B}\left(\sigma_{4}^{ \pm 1} \beta\right)$.
