MATH 309 - Solution to Homework 4
 By Mihai Marian
 April 3, 2019

1. Splittable links have 0 Alexander polynomial.

Proof. If L is a splittable link, then it has a projection as L_{0} in figure 6.36 (in Adams). Applying the Skein relation of the Alexander polynomial to the sequence of links in figure 6.36, we obtain

$$
\Delta\left(L_{+}\right)-\Delta\left(L_{-}\right)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta\left(L_{0}\right)=0
$$

L_{+}and L_{-}are projections of the same knot, so their polynomials are equal and cancel in the above equation. We get $\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta\left(L_{0}\right)=0$, therefore $\Delta(L)=0$.
2. Twist knots have genus 1 .

Proof. First of all, twist knots are nontrivial knots (a proof of this: a twist knot with n twists can be obtained as the closure of the rational link [$n 2$]. Since the fraction associated to this link is not 0 or $1 / n$, it is a nontrivial knot). Thus the genus of a twist knot is ≥ 1.
So we need to prove that every twist knot has genus ≤ 1. The most obvious Seifert surface for a twist knot is the one in figure 1 below. Note that this procedure always gives a surface, but it only gives

Figure 1: A Seifert surface for the twist knot $[-52]$.
an orientable surface if the twist knot has an odd number of twists. However, even if the number of twists is odd, we can add a crossing as in figure 2, by moving the indicated strand. Then we can apply

Figure 2: Two projections of the knot [62].
the same procedure as for twist knots with an odd number of twists to get an orientable surface; see figure 3. In either case, we can triangulate the surface by adding 4 vertices and 2 edges, as in figure 4.

Figure 3: A Seifert surface for the knot [62].

Figure 4: A triangulation on the Seifert surface of a twist knot

Cutting along the black edges makes it clear that this is indeed a triangulation, with 1 face, 6 edges and 4 vertices. The Euler characteristic is therefore

$$
\chi=4-6+1=-1
$$

which is the Euler characteristic of a torus with one boundary component. By the classification of surfaces (explained in Adams p. 92, without proof), the Seifert surface is indeed a torus with one boundary component, therefore the knot has genus ≤ 1.
3. The Alexander polynomial of a projection of the figure 8 via the linking matrix.

Solution. It is not hard to see that the figure in the homework is a projection of the figure 8. This particular projection suggests we consider the Seifert surface drawn in figure 5 , where the different colour schemes indicate the two sides of the surface and the red curves c_{1} and c_{2} are the cores of the handles. Pushing c_{1} and c_{2} in the unit normal direction, we obtain two new curves, c_{1}^{+}and c_{2}^{+}. Their

Figure 5: A Seifert surface for the figure-eight knot.
position is given in figure 6 . In the same figure, the curves $c_{1}, c_{2}, c_{1}^{+}, c_{2}^{+}$are also drawn by themselves, without the Seifert surface. It is easy to see now that the linking matrix is

$$
A=\left(\begin{array}{cc}
l k\left(c_{1}^{+}, c_{1}\right) & l k\left(c_{1}^{+}, c_{2}\right) \\
l k\left(c_{2}^{+}, c_{1}\right) & l k\left(c_{2}^{+}, c_{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right)
$$

Figure 6: The Seifert surface with c_{1}^{+}and c_{2}^{+}, and the link formed by $c_{1}, c_{2}, c_{1}^{+}, c_{2}^{+}$.

Therefore

$$
\operatorname{det}\left(A-t A^{t}\right)=\operatorname{det}\left(\begin{array}{cc}
-1+t & 0-t \\
1-0 & 1-t
\end{array}\right)=(-1+t)(1-t)+t=t\left(-t+3-t^{-1}\right)
$$

which is the Alexander polynomial of the figure 8 , up to scaling by a power of t.
4. Let us compute the HOMFLY polynomial of 6_{3}. The algorithm applies in the same way to 6_{1} and 6_{2}.

Solution. First, put an orientation on the projection of 6_{3} and select a crossing to resolve, as in figure 7. The links we obtain by changing the crossing are a right-handed trefoil and a link known as the Whitehead link. Let us use T and $W h$ to denote their HOMFLY polynomials. We further need to resolve a crossing on each of these links, which we do in the same figure. This lets us see that the HOMFLY polynomial of 6_{3} can be expressed in terms of T and the HOMFLY polynomial of the Hopf link oriented so that its linking number is +1 . Let X denote the HOMFLY polynomial of this oriented Hopf link. Since we will need this later, in figure 8 we show the resolution of the Hopf link, as well as

L-

Lo

L_{α}^{11}

$L^{11}-$

Figure 7: Resolution of a crossing of 6_{3} and of the resulting knots.
that of the disjoint union of two unknots. Explicitly, the Skein relations in figure 8 let us conclude

$$
P(\circ \circ)=-m^{-1}\left(l+l^{-1}\right)
$$

and thus

$$
X=P\left(L_{0}^{\prime}\right)=-l^{-1}\left(l^{-1} P(\circ \circ)+m P(\circ)\right)=-l^{-1}\left(l^{-1}\left(-m^{-1}\left(l+l^{-1}\right)\right)+m\right) .
$$

Figure 8: Resolution of the Hopf link with a given orientation, and computation of $P(\circ \circ)$.

We can now compute the polynomial of our right-handed trefoil with the given orientation, but let us write everything in terms of X so that the polynomial remains somewhat readable and we can do as little algebra as possible:

$$
\begin{aligned}
T=P\left(L_{+}\right) & =-l^{-1}\left(l^{-1} P(\circ)+m P\left(L_{0}^{\prime}\right)\right) \\
& =-l^{-2}-l^{-1} m X
\end{aligned}
$$

In terms of T, the polynomial of our (oriented) Whitehead link:

$$
P\left(L_{0}\right)=-l(l X+m T)
$$

This lets us compute the polynomial of 6_{3} in terms of T and X :

$$
\begin{aligned}
P\left(L_{-}\right) & =-l\left(l P\left(L_{+}\right)+m P\left(L_{0}\right)\right) \\
& =-l^{2} T-\operatorname{lm}(-l(l X+m T)) \\
& =\left(-l^{2}+m^{2} l^{2}\right) T+m l^{3} X
\end{aligned}
$$

In terms of X, this is

$$
\begin{aligned}
P\left(L_{-}\right) & =\left(-l^{2}+m^{2} l^{2}\right)\left(-l^{-2}-l^{-1} m X\right)+m l^{3} X \\
& =\left(1-m^{2}\right)+\operatorname{lm}\left(1-m^{2}+l^{2}\right) X
\end{aligned}
$$

Finally, plugging in the value of $X=P\left(L_{0}^{\prime}\right)$ obtained above, we get the HOMFLY polynomial of 6_{3} :

$$
\begin{aligned}
P\left(L_{-}\right) & =1-m^{2}+m\left(1-m^{2}+l^{2}\right)\left(-l^{-1} P(\circ \circ)-m\right) \\
& =1-m^{2}+m\left(1-m^{2}+l^{2}\right)\left(-l^{-1}\left(-m^{-1}\left(l+l^{-1}\right)\right)-m\right) \\
& =1-m^{2}+\left(1-m^{2}+l^{2}\right)\left(1+l^{-2}-m^{2}\right) \\
& =\left(1-m^{2}\right)+\left(1-m^{2}\right)\left(2+l^{-1}+l^{2}\right)+m^{4} \\
& =\left(1-m^{2}\right)\left(l^{-2}+3+l^{2}\right)+m^{4}
\end{aligned}
$$

If we replace the variables by $l \mapsto i t^{-1}$ and $m \mapsto i\left(t^{-1 / 2}-t^{1 / 2}\right)$, we obtain the Jones polynomial:

$$
\begin{aligned}
V\left(6_{3}\right) & =\left(1-\left(i\left(t^{-1 / 2}-t^{1 / 2}\right)\right)^{2}\right)\left(\left(i t^{-1}\right)^{-2}+3+\left(i t^{-1}\right)^{2}\right)+\left(i\left(t^{-1 / 2}-t^{1 / 2}\right)\right)^{4} \\
& =\left(t^{-1}-1+t\right)\left(-t^{2}+3-t^{-2}\right)+t^{-2}-4 t^{-1}+6-4 t+t^{2} \\
& =-t^{-3}+2 t^{-2}-2 t^{-1}+3-2 t+2 t^{2}-t^{3}
\end{aligned}
$$

If we replace the variables by $l \mapsto i$ and $m \mapsto i\left(t^{1 / 2}-t^{-1 / 2}\right)$, we obtain the Alexander polynomial:

$$
\begin{aligned}
\Delta\left(6_{3}\right) & =\left(1-\left(i\left(t^{1 / 2}-t^{-1 / 2}\right)\right)^{2}\right)\left((i)^{-2}+3+(i)^{2}\right)+\left(i\left(t^{1 / 2}-t^{-1 / 2}\right)\right)^{4} \\
& =\left(t^{-1}-1+t\right)+t^{-2}-4 t^{-1}+6-4 t+t^{2} \\
& =t^{-2}-3 t^{-1}+5-3 t+t^{2}
\end{aligned}
$$

5. Applying Seifert's algorithm to 6_{3}.

Figure 9: Seifert circles obtained from 6_{3}. Red dots indicate places where we need to attach bands

Solution. First, given an orientation on 6_{3} (for example the one from figure 7) we form Seifert circles. There are three of them: see figure 9. The genus of this surface is given by the formula

$$
g=\frac{\# \text { crossings }-\# \text { Seifert circles }+1}{2}=2 .
$$

The Alexander polynomial has span 4, and this is a lower bound on twice the genus of 6_{3}, i.e. the genus of 6_{3} is at least 2 . Since the Seifert surface we found achieves this lower bound, we can conclude that the genus of 6_{3} is in fact 2 .

