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1. (a) The Jones polynomial of the Kanenobu knot K(n,−n) is independent of n.

Proof. Note that the writhe w(K(n,−n)) is 0 for all n, so the bracket polynomial of K(n,−n) is
identical to its X polynomial, from section 6.1 in Adams, which becomes the Jones polynomial
after changing the variable. So we just need to compute the bracket 〈K(n,−n)〉. Do this by
resolving the two crossings shown in figure 1 and applying the idea of 6.2 (in Adams) to record
that each A-split adds a factor of A and each B-split adds a factor of A−1:

Figure 1: A depth 2 resolution tree for K(n,−n)

Note that L1 is obtained from K(n,−n) by a B-split in the left twists (indicated by the green
tangle along the line connecting L1 to K(n,−n)) and an A-split in the right twists. Smilarly, note
the number of A- and B-splits to get each Li. So we have

〈K(n,−n)〉 = A−1 ·A〈L1〉+A2〈L2〉+A−2〈L3〉+A ·A−1〈L4〉.

In all cases, the resulting knot has two fewer crossings, so L4 = K(n − 1,−(n − 1). Recall that
Reidemeister 1 (R1) moves affect the bracket polynomial as in figure 2. Now we can simplify

Figure 2: The effect of R1 moves on the Kauffman bracket

L1, L2 and L3 by applying a certain number of R1 moves, each of which will add a factor of −A3

or −A−3 to the bracket polynomial. For example, we can apply n− 1 R1 moves to L2 and then
slide β−1 next to β to obtain the following:



Recall also that R2 and R3 moves do not affect the bracket polynomial, so we can annihilate the
braid β and its inverse Do this, apply some more R1 moves and do the same thing to L3 to obtain
the following:

Similarly, 〈L1〉 is the bracket polynomial of three nested circles. Finally, recall that, given any
link L and a separated unlink ©, we have

〈L ∪©〉 = (−A2 −A−2)〈L〉.

This applies to the computation of L1, L2 and L3 (it is used twice to compute 〈L1〉). We have

〈K(n,−n)〉 = 〈L1〉+A2〈© ∪©〉+A−2〈© ∪©〉+ 〈K(n− 1,−(n− 1))〉
= (−A2 −A−2)2 +A2(−A2 −A−2) +A−2(−A2 −A−2) + 〈K(n− 1,−(n− 1))〉
= 〈K(n− 1,−(n− 1)〉

Thus 〈K(n,−n)〉 is the same for all values of n ∈ Z and the Jones polynomial of K(n,−n) is
also the same for all values of n, by the argument given in the first paragraph of this proof. To
compute it, we should simply compute it for n = 0. In this case the Kanenobu knot is a connected
sum of two figure-8 knots and the Jones polynomial is multiplicative over connected sums, so

V (K(n,−n)) = (V (41))2 = (t−2 − t−1 + 1− t+ t2)2.

(b) The Alexander polynomial of K(2n, 0) is the same for all values of n.

Proof. We can see this by a direct application of the Alexander polynomial skein relation. In this
case we need to know what the braid is in order to put a consistent orientation on every strand of
the knot. In figure 3, we only indicated the orientation. Note that the Alexander polynomial is

Figure 3: Skein relation applied to a crossing in K(2n, 0)



invariant under all Reidemeister moves, so there is no need to worry about what types of moves
we are applying to the knots obtained from resolving a crossing. We have

∆(K(2n− 2, 0))−∆(K(2n, 0)) + (t1/2 − t−1/2)∆(©∪©) = 0,

but separable links have trivial Alexander polynomial, so we have

∆(K(2(n− 1), 0) = ∆(K(2n, 0)),

proving our claim. To compute this polynomial, we compute it for K(0, 0) = 41#41:

∆(K(0, 0)) = (∆(41))2 = (−t−1 + 3− t)2.

2. We show how to find a braid representing 61, which is the hardest one. The idea is explained in Adams’
Exercise 5.16. In particular, the idea does not involve applying the algorithm presented in the book.

Solution. Note that we can obtain a braid representation of a knot by finding an oriented projection
of the knot such that walking in the positive direction, we are always turning counterclockwise around
some point, which we call the centre. This because once we have such a projection, we can cut it along
a line segment emanating from the centre and the result is necessarily a braid. The following sequence
of pictures should be more enlightening than any explanation. Remark: the red dot is the centre, and
the orientation was chosen arbitrarily.

Figure 4: First move: take a strand running clockwise and push it over the centre to make it run counter-
clockwise

Let us record the following useful move:

Figure 5: A useful move to change a common tangle

Applying the move to figure 4, we find a projection with all strands running counterclockwise in figure
6. The resulting braid is drawn in figure 7.



Figure 6: An oriented projection of 61 with all strands running counterclockwise

Figure 7: A braid whose closure is the knot 61. The labels on the crossings correspond to those in figure 6

3. The knots with braid index 2.

Solution. These are the knots which can be obtained from a 2-strand braid, minus the knots which
can also be obtained as the closure of a 1-strand braid (i.e. minus the unknot). Braid closures of 2-
strand braids are exactly the same as closures of rational tangles [n]. Out of these, the rational tangles
[−1] and [1] close up to be unknots, which have braid index 1, so we must exclude them from our list
of knots with braid index 2. Note that the closure of [n] is a knot if n is odd and a 2-component link
if n is even.

Equivalently, knots with braid index 2 are (n, 2)-torus links, for n 6= ±1.

4. The closure of the n-strand braid (σ1 . . . σn−1)m is a knot iff n and m are coprime.

Proof. Note: to see why this is true and even get a hint on how to prove it, you should look at some
examples with different values of n and m. In particular, try to see why it is that (σ1σ2 . . . σ5)2 forms
a link that is not a knot.

To figure out whether the closure of a braid is a knot or not, we only need to keep track of the endpoints
of the strings forming the braid. For example, if the n strings start and end at the same height, then
we will get an n-component link, independently of how the strings of the braid are interlocking.



In our case, labeling the heights from top to bottom by 1, 2, . . . , n, the following happens: the string
starting at height 1 goes down to height n, the string starting at height 2 ends up at height 1, etc. See
figure 8 below.

Figure 8: The braid σ1σ2 . . . σ5

In the standard notation for permutations, this switching of heights is denoted by: (1 n n− 1 . . . 3 2).
In your head, you can read this as ”1 goes to n, n goes to n− 1, . . . , and 3 goes to 2”, to indicate how
the strings in the braid change heights.

Remark. (A review of permutations) We can apply the above permutation twice to get (1 n n −
1 . . . 3 2)2, which is ”1 goes to n − 1, n − 1 goes to n − 3, etc.” Note that this permutation is not
necessarily of the form (1 n− 1 n− 3 . . . 5 3), as can be seen in the example:

Example 1. (1 4 3 2)2 = (1 3)(2 4); in other words, in the braid (σ1σ2σ3)2, the string at height 1
ends up at height 3 and the string at height 3 end up at height 1 and similarly, the string at height 2
end up at height 4 and vice-versa. Closing this braid, we end up with a 2-component link (just because
walking along the string that starts at height 1 we end up where we started without ever walking along
the string that goes from height 2 to 4, so these must be disjoint components).

Thus ”permutations on n things” is a group (the identity element is the trivial permutation ”1 goes to
1, 2 goes to 2, etc.”, which we denote by 1 from now on).

Let us make a definition: a permutation of the form (1 n n− 1 . . . 3 2) is called an n-cycle. We now
make the following claim: the braid closure of (σ1 . . . σn−1)m is a knot iff the associated permutation
on heights is an n-cycle.

Proof: we have essentially proved one implication of this assertion in the parenthetical remark at the
end of the previous paragraph: if the permutation is not an n-cycle then, after closing the braid, we
can walk along a string and get back where we started without ever touching some part of the link.
Conversely, if the permutation is an n-cycle then, while travelling along the knot, we reach every string
in the braid before ending up back where we started, proving that we walked along a single circle, i.e.
that the link is a knot. This completes the proof.

So we have transformed our claim about knots and braids into the following equivalent but slightly
easier algebraic claim: (1 n n − 1 . . . 3 2)m is an n-cycle iff n and m are coprime. Suppose, without
loss of generality that 1 ≤ m ≤ n.

First, if gcd(m,n) = 1, then, by applying the division algorithm successively, it is possible to find
integers a, b such that am+ bn = 1 (this is called Bézout’s lemma). Therefore

(1 n n− 1 . . . 3 2)am+bn = (1 n n− 1 . . . 3 2),



which means that
((1 n n− 1 . . . 3 2)am = (1 n n− 1 . . . 3 2).

But then (1 n n− 1 . . . 3 2)m cannot be a product of disjoint cycles c1 . . . ck, since a power of such a
product is (c1 . . . ck)a = ca1 . . . c

a
k (think about this). Thus (1 n n− 1 . . . 3 2)m is an n-cycle.

Conversely, if gcd(m,n) 6= 1, then we can find an integer a with 1 ≤ a < n such that am ≡ 0 (mod n)
(take a to be n/gcd(m,n) and recall that mn = lcm(m,n) · gcd(m,n)). Therefore

((1 n n− 1 . . . 3 2)m)a = 1,

so (1 n n− 1 . . . 3 2)m has order a, which is less than n. It follows that it is not an n-cycle because
n-cycles have order n.

5. When n and m are coprime, the closure of (σ1 . . . σn−1)m is the (m,n)-torus knot.

Proof. Draw the braid on a cylinder, as in figure 9. We can always do this because we can imagine the
strings of the braid starting from a circle instead of a straight line; then our braid is just a rotation of
all the strings by 2π/n, so they live on a cylinder (without any self-intersections). Closing the cylinder
by attaching the ends together to form a torus, we obtain a knot (by the previous exercise) which
intersects the meridian of the torus n times, so that it runs n times around the longitude. We can
also draw a longitude and count the intersections to find that t it runs m times along the meridian
direction. Thus it is the (m,n)-torus knot.

Figure 9: The braid drawn on a cylinder


