Math 427/527: algebraic topology

 Homework 1, due Friday February 7 by 5:00 pm.1. Let FinSet be the category of finite sets and let $\mathrm{Alg}_{\mathbf{k}}$ be the category of algebras over a field \mathbf{k}.
(i) Given a set $S=\left\{x_{1}, \ldots, x_{n}\right\}$, consider the algebra of all polynomials in x_{1}, \ldots, x_{n} with coefficients in \mathbf{k}. Show that this construction defines a functor FinSet \rightarrow Alg $_{\mathbf{k}}$.
(ii) Give the definition of a monoidal functor.
(iii) Check that (FinSet, $\sqcup, \varnothing)$ and $\left(\operatorname{Alg}_{\mathbf{k}}, \otimes, \mathbf{k}\right)$ are monoidal categories, and show that the functor defined in (i) is a monoidal functor with respect to these monoidal structures.
2. Poincaré was first to realize that homology was weaker than homotopy, and he revised his now-famous conjecture accordingly.
(i) Show that the universal cover of the special orthogonal group $S O(3)$ may be identified with the unit quaternions, and is therefore homeomorphic to the three-sphere S^{3}.
(ii) Let I be the icosahedral group. Define an action of I on $S O(3)$, and determine the group \tilde{I} acting on S^{3}, associated with the cover in part (i).
(iii) Show that \tilde{I} is a perfect group, and conclude that there exists a topological space, locally homeomorphic to \mathbb{R}^{3}, that has non-trivial fundamental group but trivial first homology (assuming that this latter group is the abelianization of the former).
3. If X and Y are CW complexes, with characteristic maps Φ_{α} and Ψ_{β}, respectively, prove that $X \times_{c} Y$ is a CW complex with characteristic maps $\Phi_{\alpha} \times \Psi_{\beta}$.
4. Fix a category \mathcal{C}.
(i) Prove that if $f, g \in \operatorname{ar}(\mathcal{C})$ are composable (that is, composable morphisms in \mathcal{C}) such that $g \circ f$ and g are isomorphisms, then f is an isomorphism as well.
(ii) Prove that if $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ is a sequence of morphisms in \mathcal{C} such that $g \circ f$ and $h \circ g$ are isomorphisms, then g (and therefore f and h) must be isomorphisms.
(iii) Now let \mathcal{C} be Top, the category of topological spaces. Give the definition of a deformation retract and, using part (ii), show that a deformation retract is a homotopy equivalence.
5. Let X be a CW complex. The unreduced suspension $S X$ of X is the quotient space $X \times I / \sim$ where $(x, 0) \sim(y, 0)$ for all $x, y \in X$ and $(x, 1) \sim(y, 1)$ for all $x, y \in X$. The reduced suspension then is just the usual the suspension: $\Sigma X=X \wedge S^{1}$. By factoring a choice of map $X \times I \rightarrow \Sigma X$ through $S X$, show that $S X$ is homotopy equivalent to ΣX. (You may find it useful to consult Proposition 0.17 in Hatcher.)
