Math 427/527: algebraic topology
 Homework 3, due Friday March 27 by 5:00 pm.

1. Consider the function $f:[0,1] \rightarrow[0,1]$ given by $f(x)=3 x^{2}-2 x^{3}$. The cell structure on $[0,1]$ (consisting of two 0 -cells and one 1-cell) induces a cell structure on $[0,1]^{n}$; call this the obvious cell structure on the hypercube.
(i) Check that f is a Morse function on $[0,1]$.
(ii) Define $F\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)$ for $x_{i} \in[0,1]$ and show that F is Morse.
(iii) Show that $-\nabla F$ induces the obvious cell structure on $[0,1]^{3}$.
(iv) Give the definition of a 2-manifold with corners, and give an explicit description of the set of flow lines of $-\nabla F$ as a 2-manifold with corners.
2. Let $f: M \rightarrow[0,3]$ be a self-indexing Morse function on a space M, which has a unique maximum value and a unique minimum value. The picture bellow describes $f^{-1}\left(\frac{3}{2}\right)$, which is a genus 2 surface obtained from S^{2} (the page, compactified) after identifying each pair of holes at the same height (without any twisting):

You should assume that the two red curves consist of points flowing to index 1 critical points (along $-\nabla f$) and the two blue curves consist of points flowing to the index 2 critical points (along ∇f).
(i) Using the description above, calculate the cellular homology groups $H_{i}(M ; \mathbb{Z})$.
(ii) Calculate $\pi_{1}(M)$, noting that each blue curve describes a 2-cell attaching map.
(iii) Find a surjection from $\pi_{1}(M)$ to A_{5}.
3. Determine $H_{1}(\widehat{X} ; \mathbf{k})$ and $H_{0}(\widehat{X} ; \mathbf{k})$ as $\mathbf{k}\left[t, t^{-1}\right]$-modules, where X is the Klein bottle with infinite cyclic cover \widehat{X} and \mathbf{k} is any field.
4. Let X be the complement of a knot $K: S^{1} \hookrightarrow S^{3}$, and let \widehat{X} be the infinite cyclic cover determined by the Hurewicz map. Recall that if $p: \widehat{X} \rightarrow X$ is the associated covering map, then

$$
p_{*}: \pi_{1} \widehat{X} \rightarrow \pi_{1} X
$$

is a homeomorphism with image C isomorphic to the commutator subgroup $\left[\pi_{1} X, \pi_{1} X\right]$ in $\pi_{1} X$. The key observation for this problem is that p_{*} induces an isomorphism

$$
\bar{p}_{*}: H_{1}(\widehat{X} ; \mathbb{Z}) \rightarrow \frac{C}{[C, C]}
$$

Write Λ for the ring of Laurent polynomials $\mathbb{Z}\left[t, t^{-1}\right]$.
(i) Suppose $c \in C$ and let $x \in \pi_{1} X$ be an element sent to a generator under abelianization. Define $\mathbf{t}[c]=\left[x c x^{-1}\right]$ where $[\cdot]$ denotes the coset in $C /[C, C]$. Show that \mathbf{t} is a well-defined automorphism of $C /[C, C]$.
(ii) Let t be the generator of Λ acting on $H_{1}(\widehat{X} ; \mathbb{Z})$. Show that, up to appropriate choices of generators, $\bar{p}_{*} \circ t=\mathbf{t} \circ \bar{p}_{*}$. (This promotes \bar{p}_{*} to an isomorphism of Λ-modules.)
(iii) Show that C is generated by all words of the form $x^{k} g_{i}^{ \pm 1} x^{-k}$ (x as above) given a generating set $x, g_{1} \ldots, g_{n}$ for $\pi_{1} X$ where each $g_{i} \in C$, so that the substitution

$$
\pm \mathbf{t}^{k} \gamma_{i} \longleftrightarrow x^{k} g_{i}^{ \pm 1} x^{-k}
$$

gives rise to a Λ-module presentation for $C /[C, C]$.
(iv) Let K be the trefoil (as seen in class) so that

$$
\pi_{1} X \cong\langle x, y \mid x y x=y x y\rangle
$$

Setting $a=y x^{-1}$, and following the strategy suggested above, determine Λ-module structure on $C /[C, C]$.
5. As seen in class, any $K: S^{1} \hookrightarrow S^{3}$ bounds an orientable surface F. Let X be the complement of the trefoil knot, and consider the 2 -fold cover $Y \rightarrow X$ obtained by sending $\pi_{1} X$ onto $\mathbb{Z} / 2 \mathbb{Z}$. Using the Mayer-Vietoris sequence, calculate $H_{1}(Y ; \mathbb{Z})$.

