Math 309: Introduction to knot theory
 Assignment 1, due September 25 by 11:59 pm.

Exercises.

1. Recall, from class, that for a pair of relatively prime positive integers p and q we can form a knot with parametrization

$$
\begin{aligned}
& x(t)=(2+\cos (p t)) \cos (q t) \\
& y(t)=(2+\cos (p t)) \sin (q t) \\
& z(t)=\sin (p t)
\end{aligned}
$$

where $0 \leq t \leq 2 \pi$.
(a) Consider the knot obtained in the case $p=2, q=3$, and consider the result of projecting this to the $x y$-plane and to the $y z$-plane. Do both these projections give rise to knot diagrams? Why or why not?
(b) Find, with proof, values of p and q for which this paramatrization gives the knot 5_{1}.
2. Figure 1.24 in $\S 1.3$ of Adams depicts the following two distinct Reidemeister moves of type III:

Using the Reidemeister moves of type I and II and the move (1), deduce the move (2). (It is also possible to show that the move (1) follows from the type I and II moves together with (2)).
3. Links are introduced in Adams $\S 1.4$. Show that the following diagrams describe the same link:

In your solution, explicitly identify where you made use of a Reidemeister Type III move.
4. Decide the 3 -colourability of each of the knots $7_{5}, 7_{6}, 7_{7}$: In each case, either give a valid 3 -colouring or prove that no 3 -colouring exists.

Problems

5. The following infinite family of knots are referred to as twist knots:

(a) Check that the case $n=1$ is the knot 3_{1}; and that the case $n=4$ is the knot 6_{1}.
(b) Prove that a twist knot is 3-colourable if and only if $n=3 k+1$. (Recall that an if and only if statement requires that you check two implications!)
6. Using the notation from the table in Adams, the figure eight knot is the knot 4_{1} and the trefoil knot is the knot 3_{1}.
(a) A 5 -colouring of a knot diagram is a choice of label from the set $\{0,1,2,3,4\}$ (these are the five "colours") for each of the strands so that at least two colours are used and at each crossing, if z is the label on the overstrand, the equation

$$
x+y-2 z=0 \text { modulo } 5
$$

holds. Show that the existence/non-existence of such a colouring is preserved under each of the Reidemeister moves.
(b) Show that the figure eight knot is 5-colourable.
(c) Using material that we have seen in the course and homework to this point, prove that the unknot, the trefoil, and the figure eight knot are mutually distinct.

