# Math 309: Introduction to knot theory <br> Assignment 4, due Wednesday October 28 by 11:59 pm. 

## Exercises.

1. Consider the following recipe, which sets up a one-two-one correspondence between twisted unknots (left) and signed trees (right):

(a) For each of the following signed trees, find the associated twisted unknot and calculate its bracket polynomial:

(b) Explain how to quickly compute the bracket polynomial of a twisted unknot. (Quickly means linearly in the number of crossings.)
2. Compute the bracket polynomial and writhe of the figure eight knot, $4_{1}$.
3. Compute the bracket polynomial of the knot $5_{2}$ using a tree of resolutions and compute the writhe of $5_{2}$ (after choosing an orientation on $5_{2}$, of course). (Hint: $2^{5}=32$, so you should probably use the result you found for exercise 1).
4. Exercise 6.8 of Adams' book is to show that the Jones polynomial satisfies the following "skein relation"

$$
\begin{equation*}
t^{-1} V\left(L_{+}\right)-t V\left(L_{-}\right)=\left(t^{1 / 2}-t^{-1 / 2}\right) V\left(L_{0}\right) \tag{1}
\end{equation*}
$$

where $L_{+}, L_{-}, L_{0}$ are oriented diagrams of links that are the same everywhere except for the interior
of a circle, inside of which they are as follows:


Show that if a polynomial invariant of links that assigns to a link $L$ the polynomial $p_{L}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ satisfies the skein relation (1), and takes the value $p_{\text {unknot }}(t)=t^{-1}+t$, then

$$
p_{L^{*}}(t)=p_{L}\left(t^{-1}\right)
$$

where $K^{*}$ is the mirror of $K$.

## Problems

5. Recall the ring of Laurent polynomials $\mathbb{Z}\left[t, t^{-1}\right]$ is defined to be the set of finite sums of elements of the form

$$
c_{i} t^{i}
$$

where $i \in \mathbb{Z}$ and $c_{i} \in \mathbb{Z}$, together with the natural operations of addition and multiplication.
(a) Check that $\left(t^{-2}+t^{-4}+t^{-6}+\cdots\right)$ is an inverse for the element $\left(t^{2}-1\right)$. Is $t^{2}-1$ invertible in $\mathbb{Z}\left[t, t^{-1}\right]$ ?
(b) To proceed more systematically, let $A, B \in \mathbb{Z}\left[t, t^{-1}\right]$ be arbitrary elements, so there are finite sets of integers $I$ and $J$, and for every $i \in I$ and for every $j \in J$, there are integers $a_{i}$ and $b_{j}$ such that

$$
A=\sum_{i \in I} a_{i} t^{i} \quad B=\sum_{j \in J} b_{j} t^{j}
$$

The product $A B$ is an element $C \in \mathbb{Z}\left[t, t^{-1}\right]$, so there is a finite set $K \subset \mathbb{Z}$ and integers $c_{k}$ such that

$$
C=\sum_{k \in K} c_{k} t^{k}
$$

Express the coefficients $c_{k}$ in terms of the coefficients $a_{i}$ and $b_{j}$.
(c) Use part (b) to prove that if $A B=1$, then $A= \pm t^{n}$, for some $n \in \mathbb{Z}$.
6. Compute the Jones polynomial of $T_{n}$, the $n^{t h}$ twist knot as defined in assignment 1. (Hint: consider separately the cases " $n$ is even" and " $n$ is odd". You will probably want to use the skein relation mentioned in exercise 4 and have to solve a recursive formula.)

